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Abstract: This work reviews the literature on spline local basis methods
for non-parametric density estimation. Particular attention is paid to B-
spline density estimators which have experienced recent advances in both
theory and methodology. These estimators occupy a very interesting space
in statistics, which lies aptly at the cross-section of numerous statistical
frameworks. New insights, experiments, and analyses are presented to cast
the various estimation concepts in a unified context, while parallels and
contrasts are drawn to the more familiar contexts of kernel density estima-
tion. Unlike kernel density estimation, the study of local basis estimation
is not yet fully mature, and this work also aims to highlight the gaps in
existing literature which merit further investigation.

Received August 2022.

1. Introduction

Nonparametric density estimation is one of the most fruitful and permeating re-
search areas in mathematical statistics, and the applications are numerous and
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constantly expanding. Since the seminal works of [35], [95], [84], [11], the liter-
ature on density estimation has steadfastly evolved in response to the growing
demand for such techniques. Although kernel density estimators (KDE) prevail
as the principal estimation approach, alternatives such as orthogonal sequence
estimators have received attention, for example, in [101], [117], [48], [112], [50],
and more recently [75], [129]. While orthogonal sequence estimators generally
rely on a global basis expansion of the (unknown) density, local density estima-
tors using B-splines and wavelets have been studied in [92, 4, 16, 23, 86, 85, 56, 1].
Related techniques, such as smoothing splines [43, 41, 42], penalized B-splines
(P-splines) [27], and logsplines [70, 67] have also been investigated.

Even though KDE remain the most popular choice for typical problems, there
are a number of practical applications for which local basis representations of-
fer attractive advantages over KDE. For example, B-spline basis expansions are
especially useful for problems which require intensive and repeated numerical
computations, which benefit from the basis representation of the density and
the closed-form computations that it facilitates. Examples are common in insur-
ance and financial risk management, where inference involves the computation
of various risk measures, such as value-at-risk (quantile estimation), expected
shortfall (conditional integration), and scenario analysis (nonparametric simula-
tion). Each of these computations is simplified by a B-spline basis. For example,
[17] derives closed-form expressions for various portfolio risk measures, such as
value at risk (VaR) and expected shortfall. Similarly, [18] provides closed-form
efficient simulation from the nonparametric density. Other recent examples in
risk management and insurance include [116, 76, 127], each of which exploits the
computational tractability of B-splines for numerically intensive applications.
Recently, [26] considers the novel use of B-splines as nonparametric Bayesian
priors, which are combined effectively with a Markov chain Monte Carlo scheme
to sample from the posterior distribution. B-splines are also important build-
ing blocks of density uncertainty quantification, see [82]. The broader roles of
splines in statics is surveyed in [119].

This work provides a comprehensive and unified perspective on the current
state of density estimation by local basis methods. There are a number of effec-
tive local basis methods, summarized in Table 1 along with some representative
literature, to be discussed in turn. We focus primarily on the case of B-spline
density estimation, in part due to the simplicity and versatility of these bases,
but perhaps more importantly for the role of such estimators in practical ap-
plications which require a balance of accuracy, tractability, and computational
performance. Moreover, B-spline density estimation has enjoyed some recent de-
velopments in both theory and methodology. For example, it was proved in [16]
that the mean integrated squared error (MISE) of B-spline density estimators
approaches the optimal convergence rate of N−1 as the basis order is increased,
where N is the sample size. A similar result is proved in [124] in the context of
logarithmic B-spline estimators, see Corollary 2 therein. From a methodologi-
cal perspective, [66] demonstrates that Galerkin methods, which are somewhat
common in applied mathematics [14, 81], can also be a powerful tool for statis-
tical inference. Special attention is also paid to the hybrid application of kernels
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Table 1

Spline methods and representative literature.
Method References

Logsplines [70, 71, 72, 67, 124]
Smoothing Splines [43, 41, 42]

P-splines [27, 74, 30]
B-splines [37, 92, 93, 80, 87]

B-spline Duality [16, 17, 66]
Shape Constrained [83]

and B-splines, through a regularization (variance reduction) technique known
as spectral filtering which operates on the empirical characteristic function of a
sample.

This work is organized as follows: the remainder of Section 1 introduces the
problem setting and reviews the development of delta sequence and basis density
estimators, as well as estimation in a transformed space (logsplines). Section 2
narrows focus to the case of B-spline density estimation, which is the primary
topic of this work. We introduce the general framework for analyzing B-spline
density estimation, and contrast five alternative estimation procedures. The the-
ory of duality is discussed, which leads to the more recent advances in B-spline
density estimation, with comparisons to kernel density estimators. A new pro-
cedure for efficient estimation in the context streaming data is proposed, setting
the stage for more research in this area. The important problem of bandwidth se-
lection is addressed in Section 3, where we cover likelihood cross-validation, least
squares (unbiased) cross-validation, rule of thumb approaches, and plug-in esti-
mation for B-spline estimators. Numerical examples are presented to illustrate
the density estimates, and compare the various bandwidth selection approaches.
We discuss applications in Section 4, with a particular focus on risk manage-
ment, where density and quantile estimation are critical to the functioning of
financial institutions. Finally, we conclude the work in Section 5, with a view
towards future development of B-spline estimation theory and its applications.

1.1. The problem setting

Consider a sample {Xn}Nn=1 which is drawn (i.i.d.) from some unknown contin-
uous probability density with respect to the Lebesgue measure, X ∼ f , where
the support of f is E ⊂ R. Our goal is to estimate the unknown function f
using the sample {Xn}Nn=1. The following benign assumption ensures that our
approximations are well defined.

Assumption 1.1. We assume that f : E → R is a density satisfying ‖f‖1 :=∫
E
|f(x)|dx = 1, and ‖f‖∞ < ∞.

Note that whenever Assumption 1.1 holds, ‖f‖2
2 ≤ ‖f‖1 ‖f‖∞ = ‖f‖∞ < ∞,

so f ∈ L2(E), where the norm ‖g‖2 =
√

〈g, g〉 is induced by the inner product
〈g, h〉 =

∫
E
g(x)h(x)dx. Unless otherwise specified, we will take E ⊂ R. While

there are many approaches to the density estimation problem, they can be
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unified under a family of methods known as delta sequence estimators. Let
δλ(x, y) be a bounded function of x, y ∈ R, parameterized by a smoothing
parameter λ > 0. We refer to {δλ(x, y)}λ as a delta sequence if, for every g ∈
C∞(R),

∫∞
−∞ δλ(x, y)g(y)dy → g(x) as λ → ∞. The delta sequence performs

a smoothing operation on g in a neighborhood of the point x, but is able to
recover the original function value in the limit as λ → ∞. In the context of a
sample of data of size N , we form the corresponding delta sequence estimator
for f , f̃λ(x;N) = 1

N

∑N
n=1 δλ(x,Xn), which provides a smoothed (regularized)

representation of the data, with the strength of smoothing controlled by λ. The
distinction between the various density estimators can be viewed as a difference
in the functional form of δλ(x, y), and how the smoothing parameter λ is chosen
based on the data. As we will discuss further below, the determination of λ is
often viewed a more important than the form of δλ(x, y). Its choice is also a key
factor that drives the computational cost of the estimation procedure, as well
as its asymptotic (and small sample) properties.

The theory of delta sequence estimators dates back to the early works of
[121, 113, 108], and encompasses many of the most common density estima-
tors, including wavelets, orthogonal series estimators, and B-spline density es-
timators. Most notable is the kernel density estimator (KDE), where for some
K(ν) : R → R with

∫∞
−∞ K(ν)dν = 1, we define δh(x,Xn) := 1

hK((x−Xn)/h),
which yields

f̃h(x;N) = 1
hN

N∑
n=1

K

(
x−Xn

h

)
. (1.1)

Several types of kernel functions are commonly used, including uniform, triangu-
lar, and Epanechnikov [32], see [114]. Perhaps, the most common example is the
Gaussian kernel K(ν) = (2π)−1/2e−ν2/2. For a KDE, the degree of smoothing is
determined by h. For larger values of h, the KDE estimate becomes smoother as
the neighborhood around any x includes more sample points with non-negligible
weight. This idea of a neighborhood of points will be even more explicit when
we consider local basis estimators. Among the many excellent works on KDE,
we invite the reader to refer to the review works of [118], [58], [105], [6], or the
classic book of [114].

1.2. Loss functions and risk

To determine the effectiveness of a density estimator, one typically defines a loss
function L(fh, f) such as the L2 loss,

L2(fh, f) :=
∥∥∥f̃h − f

∥∥∥2

2
=
∫
E

(f̃h(x;N) − f(x))2dx, (1.2)

which captures the distance between the true density and the estimate for a
particular sample. Another common loss function is the Kullback-Leibler loss,∫

E

f(x) log
(

f(x)
f̃h(x;N)

)
dx, (1.3)
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also known as relative entropy, see [51]. To accentuate the tail error, the Hellinger
loss if often used, defined by

∫
E

(√
f̃h(x;N)−

√
f(x)

)2
dx. To obtain an estimate

that averages the error over all possible samples, we define the risk R(fh, f) :=
E[L(fh, f)]. The risk corresponding to the L2 loss in (1.2) is known as the mean
integrated squared error (MISE), and is commonly used to assess the fit quality
of an estimator.

It is important to note that R(fh, f) is a pointwise metric, in the sense
that it captures the expected loss for a particular density function, f . How-
ever, the true population density is unknown a-priori, and so it often makes
sense to think about the maximum risk posed over a family P of densities, say
supf∈P R(fh, f). Typically we choose P to impose some degree of smoothness
on f , such a Sobolev or Besov space. The Sobolev spaces W s

p for s ∈ N and
p ≥ 1 are a common choice, where f ∈ W s

p if and only if
∑s

ν=0
∥∥f (ν)

∥∥
p
< ∞.

The problem of minimax estimation is to determine inffh supf∈P R(fh, f), or at
least some bounds thereon, see for example [123]. Research in this area includes
[124, 24, 2, 123, 61, 122, 39, 40].

1.3. Density basis estimators

The study of basis expansion density estimators began in [101] with the orthogo-
nal series estimator, which is defined in terms of an orthonormal basis {Ψk}k∈Z

for L2(E), where1
E ⊂ R. Recall that any f ∈ L2(E) can be represented exactly

(in the L2(E) sense) by its orthogonal projection onto an orthonormal basis2

f̃(x) =
∞∑

k=−∞
Ψk(x)

∫
E

Ψk(y)f(y)dy. (1.4)

We will refer to αk =
∫
E

Ψk(y)f(y)dy as the (basis) coefficients of the orthogonal
projection. Harmonic bases are common candidates, and are studied in the works
of [101], [117], and [75]. Later, we will relax the orthogonality constraint on the
basis when we consider biorthogonal density estimators. These estimators obey
a similar representation as (1.4), but require the concept of a dual basis to
compute the coefficients, which we discuss in Section 2.1.

If we define δM (x,Xn) by
∑M

k=−M Ψk(x)Ψk(Xn), then we can formulate the
estimator

f̃M (x;N) = 1
N

N∑
n=1

M∑
k=−M

Ψk(x)Ψk(Xn) :=
M∑

k=−M

αkΨk(x), (1.5)

where αk := 1
N

∑N
n=1 Ψk(Xn) is an unbiased estimate of the basis coefficient.

The Hermite function approach of [101] is a prominent example with E = R,
1If E is a strict subset of the support of f , then there will be a bias introduced from the

truncation error.
2Here z represents the complex conjugate of the number z ∈ C.
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where Ψk(x) := (2kkπ1/2)−1/2e−x2/2Hk(x) for k ∈ N, and function Hk(x) is
defined as Hk(x) := (−1)kex2(dk/dxk)(e−x2). For more literature on orthogonal
sequence estimators, see [9], [48], [112], [50], and more recently [19, 75]. For
orthogonal series estimators, the smoothness of the estimate is determined by
M . Truncating the series at a small value of M will tend to produce smoother
estimates, although the “optimal” estimation of M is a delicate problem, see
[75] for an interesting regularization approach.
Remark 1 (KDE vs Basis Estimators). The KDE is interesting in the sense
that it always retains the entire sample, and all sample points are required
to evaluate f̃h(x;N), for any x (similar to the K-nearest neighbor estimator
in statistical learning). By contrast, if we represent the unknown density in
terms of a basis, we are able to compress the sample data into a small set
of basis coefficients, which encapsulate all necessary information to perform
subsequent computations with the estimated density. This also highlights that
while KDE literature is primarily focused on bandwidth selection, coefficient
estimation for local bases is also of great importance, with potentially many
estimation approaches available for a given basis. It is also interesting to note
that, in the multivariate estimation case, the convergence rate for orthogonal
series estimators is independent of the dimension, whereas the KDE experiences
slower convergence as the dimension increases, see [101].

1.4. Logarithmic basis estimators

The first use of splines in density estimation dates back to the histospline ap-
proach of [5, 111], which applies a cubic spline interpolation of the empirical
cumulative distribution function (CDF). More recent approaches have sought
to represent the density (or its logarithm) in a spline basis, with coefficients that
are estimated, rather than determined via interpolation of the CDF. A promi-
nent example is the logsplines, introduced in [73] as a way to estimate log(f) via
a B-spline expansion. In the case where f > 0 on E, we have via logistic density
transform [77] that f(x) = eg(x)/

∫
E
eg(y)dy ∝ eg(x). In [73], the authors approx-

imate g(x) with a cubic B-spline basis, denoted gd(x) = θ1B1(x) + · · · θdBd(x).
That is,

fd(x) := exp (θ1B1(x) + · · · θdBd(x) − c(θ)) := exp(gd(x) − c(θ)), (1.6)

where c(θ) = log(
∫
E
egd(x)dx), with weights to be determined via maximum

likelihood. In [68, 69], the authors prove a rate of convergence of N−2α/(2α+1),
where α is the smoothness of log(f(x)) in a Besov space, using the Kullback-
Leibler loss in (1.3). By contrast to orthogonal sequence estimators for which
the estimated density can be negative in some regions, the logspline approach
ensures that fd(x) is positive by estimating coefficients of log(fd(x)). The key
issue for logspline estimation is the determination of B-spline knots: how many
knots to choose, and where to place them. The selection of knots can be likened
to the bandwidth parameter h for a KDE, or the size of an orthogonal series
basis M , see for example [73].
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Regularization was later introduced to temper the estimates, using smoothing
splines. The smoothing spline estimator of [44] is defined as the minimizer of
the penalized log-likelihood score

− 1
N

N∑
n=1

gd(Xn) + log
∫
E

egd(x)dx + λ

2J(gd),

where the final term is a regularization designed to smooth the resulting B-
spline estimator, hence the name smoothing splines. For example, the typical
roughness penalty J(gd) =

∫
E
[g′′d (x)]2dx is commonly applied with cubic splines.

Higher order roughness penalties have also been considered in [28], which the
authors refer to as P-splines (as in penalized-splines). In [99], another approach
is proposed using truncated power functions, with a ridge penalty and knots
based on quantiles, but [29] finds a strong preference for the P-spline approach.
Another interesting idea is introduced in [22] under the name H-splines, as it
applies a hybrid approach of regression and smoothing splines. This approach
is shown to provide some computational advantages over smoothing splines.
Related B-spline smoothing algorithms can be found in [62]. The extension to
bivariate logsplines was developed in [67].

In Section 2, we will take an alternative perspective on the estimation problem
for splines, which is more in line with harmonic basis and wavelet estimation,
in that it attempts to estimate f directly via basis expansion. This approach
evolved in parallel to the smoothing spline technique, and in many ways has
been overlooked. From a computational tractability perspective, dealing with
an estimator for f(x) directly is more expedient than a representation of the
form f(x) = eg(x)/

∫
E
eg(x)dx. Moreover, while the study of P-splines and esti-

mation in the logarithm space is comparatively more mature, see for example
[31] for a recent survey, B-spline density expansion, especially via more recent
developments using basis duality, is at a much earlier stage of development.

2. B-spline basis expansions of the density

Density estimation via B-spline basis expansion of the density shares features in
common with each of the estimation methods described above. Like orthogonal
series estimation, it approaches the problem as a direct expansion of the density
in a basis. Like KDE, it seeks a localized representation of the data, by choos-
ing compactly supported basis elements. Like logsplines, it utilizes a B-spline
basis representation. However, it differs in fundamental ways from each of these
related approaches. These differences lead to computational benefits, discussed
in the current section and further in Section 3, as well as advantages in various
practical applications, illustrated in Section 4.

In contrast to traditional orthogonal sequence estimations, such as Hermite
or Fourier bases which utilize globally defined basis elements over E, B-spline
basis approximation relies on local (compactly supported) basis elements in a
direct attempt to capture local features of the estimated density. They form a
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particular type of basis estimator known as a partition of unity, see for example
[94]. Taking the linear B-splines as a convenient and useful example, the basis
is spanned by scaled and shifted versions of the linear generator,

ϕ(y) =
{

1 + y, y ∈ [−1, 0],
1 − y, y ∈ [0, 1].

(2.1)

Note that ϕ is real-valued and symmetric. For a fixed resolution a > 0 that
defines the bandwidth h := 1/a, basis elements ϕa,k(x) := a1/2ϕ(a(x− xk)) are
centered over the points

xk = x1 + (k − 1)h, k ∈ Z, (2.2)

where x1 is a shift parameter determined below. The earliest B-spline density
estimator, developed by [37, 92, 93, 80] proposed to estimate f using the expan-
sion

f(x) ≈
Nϕ∑
k=1

λa,k(N)ϕa,k(x), (2.3)

where λa,k(N) is estimated using

λa,k(N) = 1
N

∑
1≤n≤N

ϕa,k(Xn). (2.4)

This approach is reasonable, by analogy with orthogonal sequence estimators.
The problem is that {ϕa,k} are not orthogonal, so this estimator does not corre-
spond to our typical notion of a basis projection. For large enough samples, and
as Nϕ → ∞, each ϕa,k will approach a Dirac delta function, and the estimates
are consistent in the limit. For finite samples, however, a much more accurate
methodology was developed in [16, 66] based on basis duality. We will refer
to (2.4) as the primal basis method for coefficient estimation, to distinguish it
from the dual basis method described next.

2.1. B-spline basis duality

While the B-spline bases {ϕa,k}k∈Z are not orthogonal, they belong to a special
class known as the Riesz bases. According to the duality theory of Riesz bases
(see [13, 55, 125], there exists a dual generator ϕ̃ such that the biorthogonal
projection of any f ∈ L2(R) onto Ma := span{ϕa,k}k∈Z ⊂ L2(R) satisfies

PMaf(y) =
∑
k∈Z

βa,kϕa,k(y), (2.5)

where we can express βa,k :=
∫
f(x)ϕ̃a,k(x)dx = E[ϕ̃a,k(X)] for a density f(x),

and
∑

k∈Z
β2
a,k < ∞. That is, {βa,k}k∈Z ∈ l2(Z). Also note that, similar to

ϕa,k(x), we define ϕ̃a,k(x) := a1/2ϕ̃(a(x − xk)). While the linear and higher
order B-spline bases are not orthogonal, they are biorthogonal in the sense that
〈ϕa,j , ϕ̃a,k〉 = 1{j=k}, for any j, k ∈ Z. Here we use 1S to denote the indicator
function of the set S.
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Assumption 2.1. We assume throughout that ϕ : R → R is a symmetric,
compactly supported generator of a Riesz basis, and a partition of unity, with a
bounded dual generator, ϕ̃ : R → R.

Note from (2.5) that PMaf(y) is completely determined by its coefficients
βa,k, for any chosen generator ϕ. As a result, to estimate the density function
f from a sample, one needs to estimate the coefficients of PMaf(y) from the
given sample. This motivates us to define the coefficient estimator

βa,k(N) := 1
N

∑
1≤n≤N

ϕ̃a,k(Xn), ∀k ∈ Z. (2.6)

It is immediate to see that βa,k(N) is an unbiased estimator of the coefficients
βa,k = E[ϕ̃a,k(X)], where for each fixed k, {ϕ̃a,k(Xn)}Nn=1 is a sequence of i.i.d
random variables. Throughout, we will use βa,k(N) and βa,k interchangeably.

The density estimator f
a(x;N) proposed in [16] is defined by

f
a(x;N) =

∑
k∈Z

βa,k(N)ϕa,k(x). (2.7)

It is easy to see that

E

[
f
a(x;N)

]
=
∑
k∈Z

βa,kϕa,k(x) = PMaf(x),

so f
a(x;N) is an unbiased estimator of the true orthogonal projection PMaf(x)

in (2.5), and
∫
f
a(x;N)dx = 1, as required of a density. Moreover, it can be

shown that (see [16]) f
a(x;N) → PMaf(x) a.s. as N → ∞. Clearly, to esti-

mate f
a(x;N), we need to estimate the coefficients βa,k(N), which is the key

differentiator between the various B-spline estimators, as described next.

2.1.1. Alternative estimation procedures

There are several feasible approaches for estimating βa,k(N), which vary in
terms of accuracy and computational cost, and offer some relative advantages
depending on the application:

1. Direct Primal Evaluation: the early works of [37, 92, 93, 80] estimate the
coefficients using the primal basis ϕa,k directly, recall (2.4). As previously
mentioned, this approach is inaccurate compared with methods that utilize
the dual basis, although it is fast and trivial to implement numerically.

2. Direct Dual Evaluation: from (2.26) below, we can directly represent the
dual ϕ̃a,k(x) in terms of an accurate finite series with 2M terms, allowing
us to compute all βa,k(N) coefficients at a cost O(2M · Nϕ · N). This
approach is feasible, but it can be made more efficient using either of the
following two procedures. It does however lead to an efficient procedure
for streaming data applications, discussed in Section 2.6.
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3. Fourier Inversion: the approach of [16] is to compute the coefficients in the
frequency domain, using the empirical characteristic function, at a cost of
O(Nϕ log2 Nϕ +Nϕ ·N). The advantage of this approach is that is enables
regularization using a spectral filtering technique discussed in Section 2.3.

4. Galerkin Solution: the complexity is further reduced in [66] to O(N +
Nϕ) = O(N) by employing a Galerkin-based approach, discussed in Sec-
tion 2.5. This method achieves optimal complexity, produces nearly iden-
tical estimates as [16], and is very simple to implement thanks to a closed-
form solution.

5. Maximum Likelihood: an alternative to closed-form coefficient estimates
is to use a MLE with the likelihood 1

N

∑N
n=1 log fa(Xn;N), at a cost of

O(N · K), where K is the number of iterations until convergence. This
idea is tightly linked to the likelihood-based cross-validation approach for
bandwidth selection, as discussed in Section 3.1.

6. Bona Fide Projection: a very recent approach to this problem, proposed
by [87], is to solve a constrained convex optimization for the optimal coeffi-
cients. As discussed in Section 2.7, this has the advantage over alternative
methods of ensuring that the density is everywhere positive (a bona fide
density), although it no longer admits a fast closed-form solution. Using
this approach, the estimation procedure is similar to logsplines, and also
shares the advantage of a positive density.

Remark 2 (Comparison with Logsplines). Compared with the logspline esti-
mator in (1.6), for which a numerical maximum likelihood optimization is the
only feasible estimation procedure, the wide variety of estimation candidates
for density expansion is one of its advantages, offering multiple alternatives
to meet the needs of an application. For example, fast estimation is available
when necessary, using the highly efficient Galerkin estimator, along with its fast
bandwidth selection procedure. The cubic splines that are commonly applied in
logspline estimation are also available to density expansion procedures, and in
either case maximum likelihood (with non-negativity constraints) is applicable.
Moreover, the logspline approach is not well suited to streaming data applica-
tions, discussed in Section 2.6. Finally we note the relative convenience of the
basis expansion estimator, as it provides a closed-form CDF (Section 2.8) and
quantile estimator (Section 4.1), each of which contribute to its efficiency and
ease of use in applications.

2.1.2. B-splines and their duals

Our primary focus is on the B-spline generators (scaling functions), ϕ[p] for
p ≥ 0 (the B-spline order), where ϕ[p] is defined in (2.8) below. These generators
are distinguished by their smoothness order (having piece-wise continuous, non-
zero derivatives of order p). Compared with global basis expansions (e.g. Fourier
series), the impact of sharp features of the density (such as peaks and rapidly
changing curvature) is more localized, and they are better equipped to capture
the fine details of a probability density function.
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Starting with the Haar scaling function ϕ[0](y) := 1[− 1
2 ,

1
2 ](y), we define the

p-th order B-spline scaling functions recursively via convolution

ϕ[p](x) = ϕ[0] 
 ϕ[p−1](x) =
∫ ∞

−∞
ϕ[p−1](y − x)1[− 1

2 ,
1
2 ](y)dy. (2.8)

Note that (2.8) reduces to (2.1) when p = 1. Importantly, similar to (2.5), one
can define the B-spline projection

PMaf(y) =
∑
k∈Z

βa,kϕ
[p]
a,k(y), (2.9)

where βa,k = E[ϕ̃[p]
a,k(X)]. As a result, one can estimate the probability density

function using the same procedure as in (2.7), for any B-spline order.
We also note that, from Proposition 3.3 of [109], for x ∈ R,

|PMaf(y) − f(y)| ≤ ‖PMaf − f‖∞ ≤ Cph
p+1,

for some positive constant Cp. Hence, the basis order directly controls the bias
of the estimator, in a similar manner as the order of a kernel. While the bias
decreases for higher order bases (and small h), the variance can become harder
to control. Under certain assumptions on the choice of bandwidth, discussed
further in Section 3.2, we can quantify the bias-variance tradeoff as a function
of the B-spline order. A detailed analysis of the theoretical properties of B-spline
estimators is provided in [16]. In practice, the choice of bandwidth h is often
much more important than the basis order, and the linear basis is well-suited
for many applications. A notable exception is when smoothness of the density
is required, as needed to estimate derivatives of the density, see [92].

While there are several alternative definitions for the B-splines, for example
the normalized splines considered in [92], we find this characterization preferable
as it unites estimation techniques that operate in the frequency and physical
domains. In particular, the convolution representation in (2.8) leads immediately
to a characterization of the dual ϕ̃ in the frequency domain.

Define the Fourier transform F [g](ξ) :=
∫
eixξg(x)dx, ξ ∈ R. From [13], we

can obtain the Fourier transform of the dual generator

̂̃ϕ(ξ) := ϕ̂(ξ)
Φ(ξ) , Φ(ξ) :=

∑
k∈Z

|ϕ̂(ξ + 2πk)|2 , ξ ∈ R, (2.10)

where ϕ̂(ξ) = Fϕ(ξ), and ̂̃ϕ(ξ) = F ϕ̃(ξ). Given that ϕ is compactly supported,
Φ(ξ) is a trigonometric polynomial with a finite cosine series expansion. From
[63, 64], we can derive an expression for the transform of the p-th order dual
generator ̂̃ϕ[p]

(ξ) = ϕ̂[p](ξ)/Φ[p](ξ) by using

ϕ̂[p](ξ) =
(

sin(ξ/2)
(ξ/2)

)p+1

,
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and

Φ[p](ξ) =
∫ p+1

2

− p+1
2

ϕ[p](x)2dx + 2
p+1∑
k=1

cos(kξ)
∫ p+1

2

− p+1
2

ϕ[p](x)ϕ[p](x− k)dx.

Simplified expressions are given in [64] for orders p = 0, . . . , 3, and the coeffi-
cients cm in (2.27) can be easily evaluated. Note that, equipped with a closed-
form for ̂̃ϕ[p]

(ξ), we are able to estimate the B-spline coefficients using the em-
pirical characteristic function of a sample, as discussed in Section 2.3.

2.2. The order of B-splines and kernels

While B-splines and kernels offer two very distinct estimation approaches, they
do share some common theoretical links. For example, we can express f

a(x;N)
from (2.7) via the following reproducing kernel representation3

f
a(x;N) = 1

N

∑
1≤n≤N

(∑
k∈Z

ϕa,k(x)ϕ̃a,k(Xn)
)

= 1
hN

∑
1≤n≤N

K

(
x

h
,
Xn

h

)
,

(2.11)

which is reminiscent of (1.1), where

K(x, y) :=
∑
k∈Z

ϕ(x− k)ϕ̃(y − k). (2.12)

Moreover, there is an interesting parallel to be made between the order of B-
splines and kernels, which ultimately governs the convergence rate for sufficiently
smooth functions.

Definition 2.1. A kernel K : R → R is said to be of order p if it satisfies:∫
R
K(u)dx = 1,

∫
R
ujK(u)du = 0 for j = 1, . . . , (p− 1), and

∫
R
upK(u)du �= 0.

For a p-th order kernel, and f ∈ C
(p+1)
b , from the Taylor’s expansion, it

follows that

E[f̃h(x;N)] =
∫
R

K(u)f(x− hu)du

= f(x) +
p∑

l=1

(−h)lf (l)(x)
l!

∫
R

ulK(u)du + o(hp),
(2.13)

so that a p-th order kernel has bias of order O(hp). This results in an asymp-
totic mean integrated squared error (AMISE) of O

(
R(f (p+1))N− 2p

2p+1

)
, given

an optimally selected bandwidth, where R(g) :=
∫
R
g2(x)dx is the roughness

of g. This relationship between the kernel order and its convergence rate has
3The idea of equivalent kernel representations for B-spline estimators is explored in [107].
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been long understood, see [84, 96, 115]. The most common kernel estimators
are second order (p = 2), such as the Epanechnikov and Gaussian kernel, which
achieve AMISE of4 O(R(f ′′)N−4/5), for f ∈ C2

b (R). All kernels of order p > 2
must take negative as well as positive values, so N−4/5 is the fastest attainable
convergence for a positive kernel.

By comparison, Proposition 2.4 of [16] proves a rate of O
(
R(f (p+1))N− 2p+2

2p+3

)
for bi-orthogonal projection, again assuming sufficient regularity. This demon-
strates that for f ∈ C∞(R), one can arbitrarily approach the optimal rate of
O(N−1) by increasing the basis order, which is equivalent to increasing the ba-
sis smoothness. For KDE, the optimal rate is achieved (for example) by the
family of “flat-top” kernels [88, 89], which are infinitely smooth. The logspline
basis discussed in Section 1.4 also achieves the optimal rate for infinitely smooth
functions as measured by the Kullback-Leibler risk, see [69].

By direct analogy to kernels, the only way for B-splines to beat the N−4/5

convergence rate is for the dual scaling function to take negative values, hence
permitting negativity of the estimates.5 By utilizing the primal basis when com-
puting B-spline coefficients, as in [92], one guarantees positivity of the estima-
tor, but caps the convergence rate to N−4/5, even for higher order B-splines
(see Table 3 of [92]). What is further intriguing is that the linear B-splines
achieve (theoretically) a convergence rate of N−4/5 when coefficients are com-
puted using either the primal or dual, where the linear dual is negative over
part of its domain. In practice, the linear dual estimator converges at a faster
rate than predicted, while the primal approaches converges much more slowly
than predicted.

It is also interesting to note the relationship between the standard histogram
estimator, where AMISE decays at a rate of O(R(f ′)N−2/3), and the Haar
basis, which achieves the same convergence order. The Haar basis is the only
orthogonal B-spline basis, and it is also the only B-spline with an everywhere
non-negative dual. While the convergence rate is relatively poor for the Haar
basis, it is still sometimes useful in applications due to its tractability [76].

2.3. The empirical fourier estimator

As previously discussed, the B-spline density estimator in (2.7) can be obtained
in several ways, each offering trade-offs in terms of complexity, accuracy, and
computational cost. The various approaches also illuminate the nature of the
estimation problem in unique ways, and offer clues for designing new and im-
proved procedures. We first review a dual basis method developed in [16] which
utilizes the empirical characteristic function (ECF) of the sample. While this
approach does not achieve the optimal complexity (i.e. O(N)) of the estima-
tor in [66], it facilitates a convenient and efficient regularization approach via

4While the rate of convergence is identical for all kernels of the same order, the constant
governing convergence varies by kernel.

5But unlike kernels, it is trivial to ensure positivity of a B-spline basis (if needed) by simply
flooring the coefficients to zero and re-normalizing.
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spectral filtering, as described below, which provides some variance reduction
in small to medium sample settings. Other applications of the ECF in statistics
are provided in [126]. The ECF approach is well-suited for B-splines in a par-
ticular, because their characteristic functions are known in closed-form, along
with those of the dual scaling function, recall (2.10).

Recall that the characteristic function of Xn
d= X is defined by

φX(ξ) = E[eiXξ] =
∫

eixξf(x)dx, ξ ∈ R.

Given a sample {Xn}Nn=1, the ECF at ξ is the complex-valued sample statistic
defined by

φN (ξ) := 1
N

N∑
n=1

exp(iXnξ) = 1
N

N∑
n=1

{cos(Xnξ) + i sin(Xnξ)} . (2.14)

Remark 3. We note that φN (ξ) is well defined and finite for ξ ∈ I ⊂ C where
I is a strip of the form: I := {ξ ∈ C|�(ξ) ∈ (A,B),�(ξ) ∈ R}, for A,B ∈ R

with A < B. By the Strong Law of Large Numbers, the ECF is a consistent
estimator of the true characteristic function φ(ξ) at each point ξ ∈ I. Moreover
from [34], we have for any 0 < U ∈ R,

P
(

lim
N→∞

sup
|ξ|≤U

|φN (ξ) − φX(ξ)| = 0
)

= 1. (2.15)

Theorem 2 of [15] showed that the above result holds true if U is replaced by
UN → ∞, but this cannot be improved further in general.

With the help of the ECF, we can estimate the coefficients βa,k using the
Fourier transform ̂̃ϕ = ̂̃ϕ[p]

of the dual from (2.10). Using the relation βa,k =
E[ϕ̃a,k(X)] = E[a1/2ϕ̃(a(X − xk))], the projection coefficients can be shown to
satisfy

βa,k = a−1/2

2π E

[∫ ∞

−∞
exp (iξ(X − xk)) · ̂̃ϕ(−ξ/a)dξ

]
= a−1/2

π
�
{∫ ∞

0
exp(−ixkξ) · φX(ξ) · ̂̃ϕ(ξ/a)dξ

}
, k ∈ Z. (2.16)

The estimates for βa,k(N) in (2.6) are obtained upon replacing φX(ξ) with
the sample ECF, φN (ξ). That is,

βa,k(N) = a−1/2

π
�
{∫ ∞

0
exp(−ixkξ) · φN (ξ) · ̂̃ϕ(ξ/a)dξ

}
, k ∈ Z. (2.17)

Since φN (ξ) is an unbiased estimator of φX(ξ), i.e. E[φN (ξ) − φX(ξ)] = 0, so
is βa,k(N) when estimated in this way. In fact, it can be shown (see [17]) that
βa,k(N) → βa,k a.s. as N → ∞.
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Remark 4 (Implementation). Practical implementation of the B-spline projec-
tion require a truncated domain, where we restrict the basis to Nϕ basis ele-
ments centered over the points xk = x1 + (k − 1)h, k = 1, ..., Nϕ, where x1
is the leftmost grid point. The truncated density support by [l, u] = [x1, xNϕ ]
is chosen simply to cover the observed sample. As described in [16], the coeffi-
cients are then computed using the fast Fourier transform (FFT) at a cost of
O(Nϕ log2(Nϕ)). The dominant cost in this procedure is actually the evaluation
of φN (ξ) in (2.14) for Nϕ values of ξ, with a complexity of O(N ·Nϕ).

2.4. Regularization by spectral filters

The ECF-based method described in the previous section offers a convenient
and effective regularization technique for the estimation of coefficients using a
spectral filter, at essentially no additional cost. This procedure is effective in
small to medium sample settings at reducing the variance in coefficient estima-
tion, which helps improve the quality of estimates. As further discussed below,
this procedure can be thought of intuitively as a light kernel-smoothing applied
to the sample prior to estimating the B-spline density projection.

Definition 2.2. A real, symmetric function Γ(ξ) is a filter of order q if it
satisfies: (i) Γ(0) = 1, Γ(l)(0) = 0, 1 ≤ l ≤ q − 1; (ii) Γ(ξ) = 0 for |ξ| ≥ 1; (iii)
Γ(ξ) ∈ Cq−1, ξ ∈ R, where in particular Γ(l)(±1) = 0 for 0 ≤ l ≤ q − 1.

We form the spectrally filtered characteristic function, supported on the in-
terval [−2πa, 2πa], which is defined by ϕ̂N (ξ) := Γa(ξ)φ(ξ), where Γa(ξ) :=
Γ(ξ/(2πa)). The regularized density is estimated by simply replacing the coef-
ficients in (2.17) by those of the spectrally filtered ECF:

βa,k(N) ≈ a−1/2

π
�
[∫ 2πa

0
exp(−ixnξ) · Γa(ξ)φN (ξ) · ̂̃ϕ[p]( ξ

a

)
dξ

]
. (2.18)

Hence, the estimation procedure is the same as before, with a simple multiplica-
tive adjustment made to the ECF. It is also interesting to note that the dual
itself acts similarly to a filter on the ECF, via the multiplication φN (ξ) · ̂̃ϕ[p]( ξ

a

)
,

while Γa(ξ) provides additional smoothing.
Example 2.1. For practical purposes, we find that the exponential filter is quite
effective (see for example [98, 16]). It is defined by Γ(ξ) = exp(−τξq), where
τ := log εm and εm is the machine precision epsilon. Figure 1 illustrates the
effectiveness of spectral filtering to dampen the spurious oscillations of the ECF,
due to sampling error. Outside of the frequency window [−2πa, 2πa], the filtered
ECF is zero, while the ECF to oscillate about zero. By contrast, the filtered ChF
decays to zero (faster than any polynomial), and the corresponding density
estimate is smooth. An interesting area for future research is to investigate the
design of spectral filters for this estimation problem, as well as the theoretical
properties of the filtered estimator.
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Fig 1. Empirical characteristic function decay and spectral filtering with normal(0, 0.5)
data using an exponential filter of order q = 6. Left: N = 50. Right: N = 100.

Remark 5 (Preservation of Moments). The spectral filter possesses an interest-
ing property in the way it preserves moments of the sample. Let X̂ denote the
filtered sample, defined implicitly by the filtered ECF ϕ̂N (ξ). From the binomial
theorem,

ϕ̂
(j)
N (0) =

j∑
k=0

(
j

k

)
φ

(j−k)
N (0) · Γ(k)

a (0) = φ
(j)
N (0) +

j∑
k=q

(
j

k

)
φ

(j−k)
N (0) · Γ(k)(0)

(2πa)k ,

where Γ(k)
a (0) = Γ(k)(0) · (2πa)−k. In particular, using the fact that E[X̂j ] =

i−jϕ̂
(j)
N (0), we have preservation of E[X̂j ] = E[Xj ] (in the sample) for j =

1, . . . , q − 1, and the added bias behaves as (2πa)−q for j ≥ q. Moreover, as
a → ∞, we observe preservation of all moments in the limit. In practice, as
N → ∞, a → ∞, which means that a feature of this regularization procedure
is that it “deactivates” automatically as our sample size increases, regardless of
the filter order.

2.4.1. Why does spectral filtering work?

Intuitively, spectral filtering replaces the empirical distribution with a (lightly)
kernel-smoothed version prior to performing the projection. In terms of the
theoretical density, at any continuity point we have

f(x) = 1
2π

∫
R

e−ixξφX(ξ)dξ

≈ 1
2π

∫
R

e−ixξφX(ξ)Γa(ξ)dξ

=
∫
R

[
F−1 ◦ φX(y)

] [
F−1 ◦ {Γa(·)e−ix·}(y)

]
dy,
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by Parseval’s identity. Hence, we can define the implicit kernel function

K(x) = F−1 ◦ Γ(x) = 1
2π

∫
R

Γ(ξ)e−iξxdξ, (2.19)

and let λ := 1/2πa, then we have

f(x) ≈ 1
λ

∫
R

f(y)K
(
x− y

λ

)
dy := (f ∗Kλ)(x). (2.20)

In other words, we can think of Γ in terms of its corresponding action in the
physical domain through the convolution operator. Starting with a spectral filter
Γ, we arrive at smoothed approximation to f(x) given by (f ∗ Kλ)(x), where
Kλ : R → R+ is the mollifier (kernel) defined by Kλ(y) = K(y/λ)/λ. The
truncation parameter which determines the frequency cutoff corresponds to the
bandwidth in the physical domain. Upon inverting the filtered ECF, we obtain

f(x) ≈ F−1 ◦ ϕ̂N (x) = 1
λN

N∑
n=1

K

(
x−Xn

λ

)
,

which is the kernel density estimator defined in terms of K = F−1 ◦ Γ. In
fact, K is actually a q-th order kernel (recall Definition 2.1), given the moment
conditions on Γ. Higher order kernels (say q ≥ 6) correspond to a low bias
from (2.13) (and moment preservation, recall Remark 5), which is why we refer
to this as a “light” filtering prior to coefficient estimation. Higher order spectral
filters are effective at removing high frequency noise without adding too much
bias to sample. Determining the optimal filter order is still an open problem.

2.5. The Galerkin estimator

A significant computational improvement over the ECF estimator is developed
in [66], which utilizes a novel statistical Galerkin method to estimate the projec-
tion coefficients. Like the method of [16], this approach seeks to estimate the L2

optimal projection of the density, but it does so over a compact interval [l, u],
with basis elements spanning the finite space Va := span{ϕa,k}Nϕ

k=1. The band-
width is given by h = (u− l)/(Nϕ − 1), which is related to the basis resolution
by a = (Nϕ − 1)/(u− l).

If the density f were known, we could approximate it by the L2([l, u]) pro-
jection PVa : L2([l, u]) → Va,

f(x) ≈ PVaf(x) =
∑

1≤k≤Nϕ

αa,kϕa,k(x).

As a projection, PVa must satisfy PVaf−f ⊥ Va, or equivalently PVaf−f ⊥ ϕa,m

for m = 1, ..., Nϕ. This leads to the set of normal equations 〈PVaf − f, ϕa,m〉 =
0,m = 1, ..., Nϕ, written equivalently as

Nϕ∑
k=1

αa,k〈ϕa,k, ϕa,m〉 = 〈f, ϕa,m〉, m = 1, ..., Nϕ. (2.21)
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Since f is a density function, we can replace the unknown integrals 〈f, ϕa,m〉
with their unbiased estimates to obtain

〈f, ϕa,m〉 = E[ϕa,m(X)] ≈ 1
N

N∑
i=1

ϕa,m(Xi) =: θa,m(N)

which results in a solvable system of equations,
Nϕ∑
k=1

αa,k(N)〈ϕa,k, ϕa,m〉 = θa,m(N), m = 1, ..., Nϕ, (2.22)

with solution αa,k(N) depending on the sample. The system in (2.22) can be
represented as

Aα = θ, (2.23)
where Am,k := 〈ϕa,k, ϕa,m〉, k,m = 1, . . . , Nϕ. The Galerkin density estimator
is defined by

PVaf(x) = α�ϕa(x) =
∑

1≤k≤Nϕ

αa,kϕa,k(x). (2.24)

From Lemma 3.1 and 3.2 of [66], the solution to (2.23) is well defined for any
p-th order B-spline basis, and the solution is stable for any basis resolutions
a > 0 due to

∥∥A−1
∥∥
∞ ≤ CA,∞.

For a p-th order B-spline basis, the matrix A in (2.23) is a banded symmetric
matrix with bandwidth �p+1

2 �, and the system Aα = θ can be solved efficiently
for the projection coefficients, α. In particular, the cost is O(Nϕ) operations,
compared with O(N3

ϕ) for a dense system. Moreover, the cost of calculating θ is
O(N), resulting in an overall computational complexity of O(Nϕ +N) = O(N),
which is optimal.

Of fundamental importance in the context of density estimation is the asymp-
totic normality of the estimator. The next result establishes this fact for den-
sities with sufficient regularity, with an analogous result holding for the ECF
estimator (see [16], Proposition 2.1).

Proposition 2.1 (Asymptotic Normality, [66], Proposition 3.3). Let ϕ = ϕ[p]

be a pth order B-spline generator. Assume that f ∈ Cp+1
b (R), and that f(x) ∼

C|x|−γ for some C > 0, γ > 0 and as |x| → ∞. Moreover, suppose that N →
∞, h → 0, and Nh → ∞. Then

PVaf(x) − f(x) − μp(h)√
Var

(
PVaf(x)

) d−→ N (0, 1), (2.25)

where the bias μp(h) satisfies μp(h) ≤ 2λp

∥∥f (p+1)
∥∥
∞ hp+1+min{|l|, |u|}−γ. The

variance is uniformly bounded for x ∈ R,

sup
x∈R

{Var(PVaf(x))} ≤ κ

Nh
‖f‖∞ ,

where 0 < κ < ∞ is bounded uniformly in N,h.
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2.5.1. Galerkin vs biorthogonal projection

The Galerkin density estimator can be thought of as a finite dimensional version
of the biorthogonal projection in (2.5). Here we review the “closeness” between
biorthogonal projection on L2(R) and Galerkin’s projection on L2([l, u]). Recall
that {ϕa,k(x)}k and {ϕ̃a,k(x)}k are biorthogonal. It should then hold that

βa,j = E[ϕ̃a,j(X)] = 〈f, ϕ̃a,j〉 ≈
∑

1≤k≤Nϕ

αa,k〈ϕa,k, ϕ̃a,j〉

=
∑

1≤k≤Nϕ

αa,k1{j=k} = αa,j ,

so βa,j ≈ αa,j . As a result, we have (PMaf)|[l,u] ≈ PVaf . This is made mathe-
matically rigorous in Theorem 3.4 of [66], which shows that ‖PMaf − PVaf‖2 ≤
2Cp

∥∥f (p+1)
∥∥

2 h
p+1 + τ(l, u), where τ(l, u) → 0 as [l, u] covers (−∞,∞). In par-

ticular, the L2([l, u]) and L2(R) approximations become arbitrarily close. In any
finite sample, as long as [l, u] covers the observed sample, the two estimators
are essentially identical in practice.

2.5.2. Regularization

Here we briefly remark on how regularization can be applied with the Galerkin
approach, similar to using a spectral filter with the ECF method. Recalling from
Section 2.4 that projecting the spectrally-filtered ECF is equivalent to projecting
a (lightly) kernel-smoothed estimator (in the physical domain), instead of solv-
ing Aα = θ, we solve Aα = θ̃, where θ̃ are kernel-smoothed mean estimates.
That is, rather than 〈f, ϕa,m〉 ≈ 1

N

∑N
i=1 ϕa,m(Xi), we can calculate

〈f, ϕa,m〉 ≈
∫
Ia,m

ϕa,m(x)f̃λ(x;N)dx

where fλ(x;N) is defined in (1.1), but with the smoothing/regularization band-
width parameter λ.6 Further development of the Galerkin approach to include
regularization is a promising research direction, as it could capitalize on the
optimal complexity of this method, but also incorporate the main comparative
advantage provided by the ECF approach of Section 2.3.

2.5.3. Estimation examples

We now illustrate the density estimation methodology, applying for concrete-
ness the Galerkin linear basis estimator of the previous section, together with
the Least-Squares Cross Validation (LSCV) bandwidth selection method, to be

6The integral can be computed efficiently by a trapezoidal (3 point) approximation on
each subdomain, for a total of 5 points per basis element, to maintain the overall optimal
complexity.
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discussed in Section 3.1. Several conceptually different distributions are selected,
whose definition and parameter configuration is presented in Table 2. In Fig-
ure 2, the estimations of the selected densities for a range of sample sizes are
depicted. As N increases from 103 to 105, we observe convergence of estimator
to the true density. Later experiments confirm the convergence in terms of the
MISE, and show that it is faster than theoretically expected.

Table 2

Test case densities for numerical experiments.
Test Case Density Test Case Density

Normal N (0, 1) Claw 1
2N (0, 1) +

∑4
k=0

1
10N

(
k
2 − 1,

( 1
10
)2)

Gamma 1
Γ(k)θk x

k−1e−x/θ, x > 0, Skewed 3
4N (0, 1) + 1

4N
(

3
2 ,
( 1
3
)2)

θ = 1
2 , k = 9 Bimodal

Separated 1
2N

(
−2,

( 1
2
)2)+ 1

2N
(
2,
( 1
2
)2) Weibull k

λ

(
x
λ

)k−1 exp(−(x/λ)k), x ≥ 0
Bimodal λ = 1, k = 5

2.6. Streaming data and direct dual estimation

The Galerkin and ECF approaches are similar in that they both estimate all
coefficients simultaneously. This is perfectly reasonable for common estimation
problems, but it is not well-suited for applications with streaming data when
estimation speed is critical. This section proposes a new alternative approach
which is ideally suited for streaming data applications, allowing the density
estimator to update efficiently as new information arrives.

We first note that we can utilize ̂̃ϕ defined in (2.10) to obtain an exponen-
tially convergent series expansion of ϕ̃. This also leads to a fast cross-validation
method for determining the estimator bandwidth, discussed in Section 3.1. From
Theorem 3.1 of [66], we have the following representation of the dual, given its
Fourier transform ̂̃ϕ:

ϕ̃a,k(x) =
∑
m∈Z

cmϕa,k−m(x) ∈ L2(R), k ∈ Z, (2.26)

where {cm} ∈ l2(Z) are given by

cm = 1
π

∫ ∞

0

( ̂̃ϕ(ξ)
)2

cos(mξ)dξ = 1
π

∫ ∞

0
cos(mξ) ϕ̂

2(ξ)
Φ2(ξ)dξ. (2.27)

As mentioned above, we can use (2.26) directly to estimate the basis coeffi-
cients, after we truncate the infinite series,

βa,k(N) = 1
N

∑
1≤n≤N

ϕ̃a,k(Xn) =
∑
m∈Z

cm

⎛⎝ 1
N

∑
1≤n≤N

ϕa,k−m(Xn)

⎞⎠ . (2.28)
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Fig 2. Linear B-spline density estimates in terms of the number of samples, N .

Rather than truncating the dual in (2.28), in the context of function approxi-
mation [65] develop an approach based on an alternative bi-orthogonal sequence
(ABS), which leads to a more efficient implementation yet preserves the con-
vergence rate. In particular, they consider a sequence that is bi-orthogonal to
{ϕa,k}, but resides in a different space7. They define an ABSγ generator which

7Recall that in order to be the true dual, a function must live in the same space as the
generator.
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is supported on [−γ, γ] and for which all moments p ≤ 2γ − 1 coincide with
the true dual (in addition to all odd moments), see [65] Proposition 5.4. For
example, the ABS2 generator for the linear basis satisfies

ϕ̆[1](x) =
∑

|m|≤3

c|m|ϕ
[1](2x−m), (2.29)

where (c0, c1, c2, c3) = (2, 5/12,−1/2, 1/12). This generator lives in the span of
functions at one higher order resolution than the dual, and produces equivalent
approximations for polynomials of degrees three or less. Because of its narrow
support, approximations using ϕ̆[1](x) are computationally inexpensive, requir-
ing only a handful of evaluations per basis element. For higher dimensional
tensor bases, the cost savings of this approach could be substantial. Figure 3
illustrates the ABS1 and ABS2 generators, in addition to the exact dual.

Fig 3. Left: ABS1 generator supported on [−1, 1]. Middle: ABS2 generator on [−2, 2].
Right: true dual ϕ̃[1], supported on (−∞,∞).

2.6.1. Streaming density estimation

Given a compactly supported ABS, such as in (2.29), we can update the pro-
jection coefficients using an on-the-fly update

β̆a,k(N) := 1
N

∑
1≤n≤N

ϕ̆a,k(Xn)

= N − 1
N

· β̆a,k(N − 1) + 1
N

· ϕ̆a,k(Xn). (2.30)

As N becomes large, the contribution of each new ϕ̆a,k(Xn) diminishes, to the
point where the estimates will no longer reflect new information. This is clearly
a problem if the distribution of {Xn} is changing over time, as our estimator
should adapt with it. As pointed out in [10], for nonstationary data, we can
consider an update rule of the form

β̆a,k(N) = θ · β̆a,k(N − 1) + (1 − θ) · ϕ̆a,k(Xn). (2.31)

As θ ∈ (0, 1) is fixed, we have 1− θ > 0 and the contribution of ϕ̆a,k(Xn) never
ceases to update the coefficient of β̆a,k(N). Moreover, each update is performed
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efficiently at a cost of O(1), since Xn falls in the support of only a handful of
ϕ̆a,k, which makes this approach ideal for streaming data applications.

We also note that the proposed method can be combined with the sliding win-
dow technique developed in [36], which proposes the sliding window estimator
for w ∈ N,

β̆a,k(N) = N − 1
N

· β̆a,k(N − 1) + 1
w

(ϕ̆a,k(Xn) − ϕ̆a,k(Xn−w)) , (2.32)

and is more suitable for data which arrives naturally in blocks, such as the case
of environmental monitoring.

2.7. Bona fide estimators

Similar to higher order kernels, higher order B-splines are not guaranteed to
produce a non-negative density estimate. For B-splines, a simple procedure of
flooring the basis coefficients, and redistributing probability mass to ensure in-
tegration to one works well in many applications, see [17]. An alternative pro-
cedure is proposed in [87], which solves a convex optimization problem for the
coefficients, subject to the constraints that the density integrates to one and is
non-negative. Let pδ denote the empirical measure,

pδ(x) = 1
N

N∑
n=1

δXn(x), (2.33)

where δXn(x) is the Dirac Delta function centered over data point Xn. We can
then solve the following problem,

f̃a
+ := argminf̃∈Ma

{∥∥〈pδ, ϕa
k〉 − 〈ϕa

k, f̃〉
∥∥2
l2

}
(2.34)

s.t. f̃(x) ≥ 0, x ∈ R,

∫
R

f̃(x)dx = 1.

This estimator, coined the “Bona Fide Projection”, is also promising for ap-
plications, and (2.34) is solvable using standard quadratic programming tech-
niques, as demonstrated in Section 3 of [87].

2.8. Distribution function estimation

Before moving on to the topic of bandwidth selection, we briefly discuss the
related problem of estimating the cumulative distribution function (CDF). Nat-
urally, each of the density estimation methods described above yields a CDF
estimator. Given f

a(y;N) :=
∑Nϕ

k=1 βa,k(N)ϕa,k(x), restricted to the set of Nϕ

coefficients that overlap the sample, define F
a(x;N) :=

∫ x

−∞ f
a(y;N)dy. From

[17], Proposition 2.2, F a(x;N) converges uniformly to F (x) under mild assump-
tions,

sup
x∈R

|F a(x;N) − F (x)| → 0 a.s as N → ∞, a → ∞.
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Moreover, closed-form expressions are easily derivable for the B-spline bases.
For example, the linear basis has a simple closed-form expression for x ∈ R,

F
a(x;N) = a−1/2

( ∑
j≤k∗−1

βa,j + βa,k∗

(1
2 + ζ − ζ2

2

)
+ ζ2

2 βa,k∗+1

)
, (2.35)

where k∗ := �(x − x1)/a� + 1, and ζ := a(x − xk∗). Formulas for higher order
B-splines can also be derived. While many properties of the B-spline density
estimators are documented in [92, 16, 66], theoretical properties of the CDF
estimators are not yet established, which offers an interesting area for further
research. In Section 4.2, we provide an application of the B-spline CDF estimator
to nonparametric simulation.

3. B-spline bandwidth selection

Of equal (or greater) importance to the estimation of B-spline coefficients is the
bandwidth selection procedure. There have been significant research efforts in
determining the optimal choice of bandwidth in the literature. Early approaches
can be found in [52], [106], [59], and references therein. A fairly comprehensive
comparison of techniques for KDE is conducted in [12]. In general, the appropri-
ate selection rule is application dependent, and no single bandwidth approach is
universally preferred, [79]. This section reviews two complementary approaches
to bandwidth selection for B-splines. The first approach, which is appropriate
for all sample sizes, is based on a closed-form cross-validation formula for the
B-spline bases. The second approach, which is ideal for larger sample sizes,
chooses the bandwidth to optimize the asymptotic mean integrated squared
error (asymptotic MISE).

3.1. Bandwidth selection by cross validation

A general approach to bandwidth selection is based on cross-validation, as dis-
cussed in [49, 8], for example. Specifically, likelihood-based cross-validation (see
[25] for more details) chooses h to minimize the average log-likelihood

LCV(h) = − 1
N

N∑
i=1

log fa

−i(Xi;N − 1),

where f
a

−i is the estimator formed from the size N −1 sample with Xi removed.
That is

f
a

−i(Xi;N − 1) =
∑
k∈Z

β
−i

a,k(N − 1)ϕa,k(Xi), (3.1)

where β
−i

a,k(N − 1) = 1
N−1

∑
1≤n≤N,n 	=i ϕ̃a,k(Xn). This approach minimizes the

Kullback-Leibler distance between the true and estimated density. Let ϕ[p] be
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a p-th order B-spline generator, with dual generator ϕ̃[p]. From Lemma 4.1 of
[66],

LCV(h) = − 1
N(N − 1)

N∑
i=1

∑
q∈K(p)

⎛⎝Nβa,k(i)+q −
∑

m∈K(p)−q

cmϕ
[p]
a,k(i)+q+m(Xi)

⎞⎠
· ϕ[p]

a,k(i)+q(Xi),
(3.2)

where γm :=
∫
ϕ[p](x)ϕ[p](x−m)dx, cm are the coefficients of the dual generator

in (2.26), and k(i) := �(Xi− l)/h+1� is the grid point left of Xi. The set K(p) ⊂
{−�p+1

2 � + 1, . . . , �p+1
2 �} is the is the set of potentially affected coefficients.

The related approach, proposed in [97, 7] and known as least squares cross-
validation (LSCV), chooses h to minimize

LSCV(h) :=
∫

(fa(x;N))2dx− 2
N

N∑
i=1

f
a

−i(Xi;N − 1). (3.3)

This approach is commonly referred to as “unbiased cross-validation”, see [102].
It follows that

LSCV(h) =
∑
k∈Z

βa,k

⎛⎝∥∥∥ϕ[p]
∥∥∥2

2
· βa,k +

∑
1≤m≤p

γm
(
βa,k+m + βa,k−m(N)

)⎞⎠
+ 2 · LCV(h).

(3.4)
Simplified closed-form expressions for LSCV(h) are provided for both the

Haar and Linear basis (Theorem 4.1 and Theorem 4.2) in [66]. The formulas
for LCV(h) and LSCV(h) are estimated with optimal efficiency in a single pass
through the data. Hence, the cost to evaluate either is just O(Nϕ+N) = O(N),
which compares favorably to O(N2) for a kernel density estimator [105] or an
orthogonal sequence estimator. While the LCV method has some nice theoretical
properties, it is commonly observed to under-smooth in practice, and tends to
under-perform the LSCV method, as demonstrated empirically below.

3.2. Plugin bandwidth with asymptotic MISE

For moderate to large sample sizes, an asymptotically optimal bandwidth can
be determined by minimizing the asymptotic MISE of the estimator. Recall that

MISE := E

[∫ (
f
a(x;N) − f(x)

)2
dx

]
=
∫

E

[(
f
a(x;N) − E[fa(x;N)]

)2
]
dx +

∫ (
E[fa(x;N)] − f(x)

)2
dx,

(3.5)
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which is the sum of the integrated variance and the integrated squared bias. We
have the following proposition regarding the MISE and asymptotically optimal
bandwidth.

Proposition 3.1 ([16]). For a p-th order B-spline basis, suppose that the rough-
ness of f (p+1) is finite, i.e. R(f (p+1)) =

∥∥f (p+1)
∥∥2

2 < ∞, and f ∈ C4
b (R)8. For

each of j = 1, 2, 3, it is assumed further that f (j) is absolutely continuous, and
f (j) ∈ L1(R). The following hold:
(i) The asymptotic MISE satisfies the following bound for small h > 0:

MISE ≤ θp
R(ϕ̃)
hN

+ γ(f)
N

+ Cp ·
∥∥∥f (p+1)

∥∥∥2

2
· h2(p+1), (3.6)

with γ(f) < ∞, and where Cp and θp ≤ 2 are provided in Table 3. Moreover, as
h → 0, Nh → ∞ and N → ∞, then f

a(x;N) L2

→ f(x), from which f
a(x;N) is

a consistent estimator of f(x).
(ii) The asymptotically optimal bandwidth with respect to (3.6) satisfies

h∗
p =

(
θp

2(p + 1)Cp

· R(ϕ̃)∥∥f (p+1)
∥∥2

2

· 1
N

) 1
2p+3

, (3.7)

where Cp and θp ≤ 2 are provided in Table 3.

Table 3

B-spline constants and asymptotically optimal bandwidth for normal data. The column
AMISE∗

p provides the AMISE given the optimal bandwidth, h∗
p.

p AMISE∗
p h∗

p C
1/2
p R(ϕ̃) θp

0 N−2/3 σ
(

2
√

π

C0

)1/3
N−1/3 0.288675 1 1

1 N−4/5 σ
(

2
3

θ1
√

π

C1
R(ϕ̃)

)1/5
N−1/5 3.72678 × 10−2 1.73205 4/3

2 N−6/7 σ
(

4
45

θ2
√

π

C2
R(ϕ̃)

)1/7
N−1/7 5.75055 × 10−3 2.84217 2

3 N−8/9 σ
(

4
105

θ3
√

π

C3
R(ϕ̃)

)1/9
N−1/9 9.09241 × 10−4 4.96473 2

(iii) The corresponding optimal asymptotic mean integrated squared error is
given by

AMISE∗
p = (αp + 1)R(ϕ̃) ·

(
Cp

∥∥f (p+1)
∥∥2

2
αpR(ϕ̃)

) 1
2p+3

·N− 2p+2
2p+3 , (3.8)

where αp := θp/2(p + 1).

Remark 6 (Alternative Convergence Measures). Like most existing literature
on B-spline density expansion, the previous discussions focus on MISE and

8Cn
b (R) is the set of nth order continuously differentiable bounded functions with bounded

derivatives
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AMISE convergence for a given density f belonging to some space of (smooth)
functions. However, it would be interesting to consider the minimax convergence
discussed in Section 1.2 as it provides an ideal trade-off between approximation
error, estimation error, and model complexity relative to the sample size; see
for example, Theorem 1 of [124].

We note that the AMISE∗
p in (3.8) depends on f only through

∥∥f (p+1)
∥∥2

2. In
particular, if we consider the family of densities P that satisfy the assumptions
of Proposition 3.1, and further obey

∥∥f (p+1)
∥∥2

2 ≤ κ, then

sup
f∈P

AMISE∗
p ≤ κp ·N− 2p+2

2p+3 ,

where κp := (αp+1)R(ϕ̃) ·
(

Cpκ
αpR(ϕ̃)

) 1
2p+3 depends only on the order of the basis.

We leave a detailed investigation of the minimax convergence properties of the
density expansion estimators, including smaller sample properties, as interesting
an interesting topic for future research.

3.2.1. Rule of thumb and plug-in estimation

Proposition 3.1 provides an asymptotically optimal bandwidth, which becomes
operational only once we have an estimate for

∥∥f (p+1)
∥∥2

2. Of course, this is
itself a non-trivial estimation problem, for which several approaches have been
proposed as follows:

1. Rule of Thumb: Assume that f is normally distributed, that is f(x) =
1

σ
√

2π e
−x2/(2σ2). We can then compute

∥∥f (p+1)
∥∥2

2 explicitly, plugging in σ̂

for σ: ∥∥∥f (p+1)
∥∥∥2

2
= (−1)3(p+1) H2(p+1)(0)√

π · (2σ)2p+3 ,

where Hn(x) := (−1)nex2
dn/dxn

(
e−x2) is the nth order Hermite polyno-

mial. Pluging this into (3.7) yields the rule of thumb bandwidth. The rule
of thumb works well for near-normal data, but is otherwise not robust to
outliers or multiple modes.

2. Adaptive Heuristic Rule of Thumb: One can also consider the robust rule
of thumb where the standard estimate σ̂ is replaced by σ∗ = min(σ̂, R̂/ζ).
Here R̂ is the inter-quartile range and ζ := 2.5 + (1 − e−κ), where κ is
the maximum of the excess kurtosis and zero. As demonstrated in [16]
(see Section 3.1.2), this choice of σ∗ not only protects against outliers
but also performs well for multi-modal data. The authors then provide
an adaptive heuristic which adjusts the bandwidth according to a binning
procedure. Like the standard rule of thumb, it is a poor choice for multi-
modal data.

3. Plug-In Estimation: a more careful estimate of
∥∥f (p+1)

∥∥2
2 can improve the

B-spline estimation performance. The so-called plug-in methods use an it-
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erative approach to estimate
∥∥f (p+1)

∥∥2
2 (see [60], [106]). A more recent

(and highly effective) approach is developed in [6]. Unlike the rules of
thumb, this approach performs well even for most multi-modal distribu-
tions, and provides a competitive general-purpose alternative to the LCV
and LSCV methods of Section 3.1.

Once an estimate for
∥∥f (p+1)

∥∥2
2 is determined, we plug it into (3.7) to obtain

h∗
p.

3.3. Bandwidth selection comparison

In the next sequence of experiments, we analyze the behavior of four bandwidth
selection procedures for several density estimation examples. As cautioned in
[79], selection methods which over-smooth in some cases may also be susceptible
to under-smoothing in others, and one should avoid blindly applying “asymp-
totically” optimal selection methods such as plug-in rules, even in large-sample
settings. Here we compare the following four methods:

1. Likelihood Cross Validation (LCV) – defined in (3.2)
2. Least-Squares Cross Validation (LSCV) – defined in (3.4)
3. Adaptive Heuristic Rule of Thumb (RoT) – discussed in Section 3.2.1
4. Plug-In Estimator (Plug-In) – discussed in Section 3.2.1, using the method

of [6] to estimate
∥∥f (p+1)

∥∥2
2

For concreteness, we estimate the bandwidth for the linear basis using the
Galerkin estimator of Section 2.5. For an empirical comparison of various estima-
tion procedures, see [66]. Experiments comparing the accuracy of each approach
are considered later in Figure 7, while the current experiments aim to highlight
the disparities among each type of selection approach, in terms of their tendency
to over vs under-smooth.

In Figure 4 we present the histograms (out of 1000 realizations) of the opti-
mal bandwidth values provided by the four alternatives described above for the
standard normal distribution. First note how tightly distributed the RoT band-
widths are (given that the assumed distribution matches the true distribution),
especially compared with the LCV approach, which can be overly sensitive to
the observed sample. The Plug-In estimator tends to over-smooth in this case.

We also consider the skewed bimodal and gamma distributions defined in
Table 2, with bandwidth histograms displayed in Figure 5 and 6. While gamma
presents a relatively stable behaviour, for the skewed bimodal distribution the
RoT is clearly inappropriate (given its unimodal assumption). Both the RoT
and Plug-In approaches over-smooth in this case, resulting in a higher MISE.
By contrast, the LCV method under-smooths (as it is well-known to do, see for
example [79]), and LSCV performs ideally well.

Next, we compare the bandwidth selection methods presented above in terms
of the MISE convergence. The observed outcomes are presented in Figure 7.
Besides the distributions employed in the previous experiment, we consider ad-
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Fig 4. Histogram (out of 1000 realizations) of bandwidths for the Normal distribution
with N = 103.

ditional ones with their own peculiarities, namely the Separated Bimodal, Claw,
and Weibull distributions, defined in Table 2. In general, strong performance is
provided by LCV, LSCV and Plug-In methodologies, achieving a convergence
rate usually superior to 4

5 , i.e. superior to the theoretical convergence predicted
by Proposition 3.1. This fact is often observed in practical applications, so when
estimating derivatives of the density is not a concern, the linear basis is an ex-
cellent choice and is highly tractable.

3.3.1. Recommendation

From these and numerous other experiments (including [66, 16, 17]), we find
that the LSCV method has the best all-around performance. It is robust to
idiosyncrasies in the data, such as heavy tails or multiple modes, and it is quite
efficient as demonstrated in [66]. Compared with LCV, it is less prone to under-
smoothing, and has a similar computational cost. The Plug-In methodology
works well in larger samples (say N ≥ 5, 000), but is not as robust as the LSCV
method for idiosyncratic data, especially at smaller sample sizes (N < 1, 000).
As expected, the heuristic RoT performs poorly in multi-modal cases, like for the
Claw or Separated Bimodal distributions. However, when the data is known to
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Fig 5. Histogram (out of 1000 realizations) of bandwidths for the Skewed Bimodal
distribution with N = 103.

be unimodal, and reasonably close to normal (including some heavy-tailed dis-
tributions), the heuristic RoT performs quite well, as can be seen for the Normal,
Gamma, and Weibull examples. When performance is a key consideration, the
heuristic RoT has obvious computational advantages over both cross-validation
and plug-in estimators, but should be applied judiciously.

4. Applications

There are numerous existing and potential applications of B-spline estimation
techniques, and this section illustrates a few interesting examples. For instance,
there is a long history of nonparametric statistical techniques in financial econo-
metrics (see [33]), with ever-increasing demand for statistical risk management
since the 2008 financial crisis, and the financial fallout of the COVID-19 pan-
demic. Section 4.1 illustrates the problem of quantile estimation, which is espe-
cially important in statistical risk management through measures such Value-at-
Risk (VaR) and expected shortfall. We then discuss the application B-spline den-
sity estimation to nonparametric simulation in Section 4.2. Other interesting re-
cent applications of B-spline estimators include [110, 91, 104, 100, 47, 46, 26, 54].
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Fig 6. Histogram of bandwidths for the gamma distribution (1000 samples).

4.1. Quantile estimation

One way to exploit the tractability of the B-splines is to obtain formulas for
quantiles and conditional moments directly from the estimated density, rather
than via a quantile regression approach. Recall that F−1(α) := inf{x ∈ R :
F (x) ≥ α}. For each N ∈ N, define the B-spline quantile function F

−1
a (α;N) :=

inf{x ∈ R : F a(x;N) ≥ α}. Under reasonable assumptions, Corollary 4 of [17]
shows that F

−1
a (α;N) a.s.−→ F−1(α) as N → ∞ and a = a(N) → ∞. Closed-

form expressions can be derived for various B-splines, such as (4.1) below for
the linear basis.
Remark 7. An alternative B-spline approach to quantile estimation is via quan-
tile regression. For example, [53] prove that with sufficiently many knots, B-
splines can achieve the optimal convergence rate of N−r/(2r+1) for a conditional
quantile if the quantile function is smooth up to order r. A related approach is
provided more recently in [20].

We now describe an important (and common) practical application in risk
management which requires quantile estimation on a large scale. The problem is
to estimate the risk posed by a financial position (a portfolio of stocks, options,
futures, etc.), for example to a bank or the clearing house which safeguards
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Fig 7. Comparison of bandwidth selection methods: LCV, LSCV, heuristic Rule of
Thumb (denoted by RoT) and Plug-In. MISE(N) (log-scale) computed by means of
1000 trials.

market participants in default events. Let {Stn}Nn=0 be a historical sample of
position values9, and {σtn}Nn=0 a series of estimates for the latent volatility state,

9For example, for a long position in a single asset, St is just the time series of values for
that asset.
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Fig 8. Sequential quantile estimation (VaR backtest) of a long position in USD/EUR
FX futures. FX returns are displayed, along with three VaR(α) estimates using a sliding
window {Xn}750

n=1.

estimated from the returns of the {Stn}.10 The “de-volatilized” return series is
given by Ytn = σ−1

tn−1
· log(Stn/Stn−1), and σtN serves as an estimate for the

current volatility level, see [45] for more discussions on this common approach.
Hence, we obtain the conditional sample of “re-volatilized” returns, Xn :=

σtN ·Ytn , n = 1, . . . , N , which serves as a reasonably stationary series of returns
and captures the current volatility state. From {Xn}Nn=1, we can estimate the
Value-at-Risk (VaR), defined as VaR(α) := F

−1
a (1−α;N), which is interpreted

as the maximum losses expected to occur with probability α. VaR is used by risk
managers to internally manage the risk of an institution’s financial positions,
as well as clearing houses to determine the amount of money (margin) that
must be set aside to cover losses and mitigate the risk of default. Additional
risk-measures are based on conditional tail events, such as

1
1 − α

∫ 1

α

F
−1
a (x;N)dx a.s.−→ 1

1 − α

∫ 1

α

F−1(x)dx as N → ∞,

which captures the “expected-shortfall”.
Model risk evaluation, that is the ongoing statistical assessment of model

quality, produces a sequence of VaR(α) estimates, known as a backtest, com-
puted from a sliding window of data to assess the statistical integrity of a risk
model. Financial institutions calculate millions of these VaR/expected short-
fall estimates on a daily basis, using both realized (historical/nonparametrically
simulated) and synthetically generated time series data. Figure 8 illustrates the
procedure for USD/EUR futures, using data between 5/19/2014 and 5/21/2021.
On each of the 1000 dates in the backtest window, we compute the B-spline es-

10Traditionally, GARCH and EWMA are the standard models in practice. In this example,
we use and EWMA estimate.
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timator VaR from (4.1), using the most recent 750 point series of {Xn}. Three
typical levels of α are displayed, and we can see how the VaR estimates evolve
and react over time, in response to changing market conditions. Since speed is an
important requirement of this type of large scale testing, we utilize the Adaptive
Heuristic Rule-of-Thumb bandwidth, which performs very well on the unimodal
data that are typical of financial returns time series (see experiments/discussion
in Section 3.3.)

4.2. Nonparametric simulation

B-spline estimators are also useful in the context of nonparametric simulation.
From a given sample, the obvious approach to re-sampling is to simply boot-
strap the observed sample (that is, sample with replacement from the empirical
histogram). However, this has the disadvantage of a slow convergence rate as
well as an inability to draw points outside of the observed discrete sample. The
B-splines offer efficient simulation from a continuous representation of the sam-
ple as outlined below, performing a sort of interpolation between observed data
points to produce a continuously-drawn sample.

Recall the definition of the linear CDF F
a(x;N) from (2.35), where βa,k

are estimated by any of the alternative approaches. We can perform efficient
simulation from F

a(x;N) by first tabulating F k := F
a(xk;N) at the grid points

xk. Then, for any y ∈ (0, 1), let k ∈ {0, . . . , Nϕ} be the unique integer satisfying
F k ≤ y < F k+1, and set dk := βa,k+1 − βa,k, where βa,0 = βa,Nϕ+1 = 0. The
inverse CDF is derived in [17], and satisfies

F
−1
a (y;N) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk + 1

a · dk

(
−βa,k +

√
β

2
a,k + 2a1/2 · dk(y − F k)

)
, dk �= 0;

xk + y − F k

a · (F k+1 − F k)
, dk = 0.

(4.1)
Figure 9 illustrates the procedure, by estimating the nonparametric CDF

from a sample of N (0, σ2Δt) data (left), which corresponds to the log-changes
of a geometric Brownian motion, sampled at a weekly frequency. The sample size
of N = 1000 is effectively reduced to a few dozen basis coefficients (indicated
by ‘+’). After estimation, we simulate Nsim = 105 new data points from the
nonparametric density, and obtain a smooth empirical density for the simulated
data (right), which closely matches the true density.

The simulated sample reflects the nonparametric CDF, and this can be
thought of as a way to increase the sample size by interpolating the data, while
preserving the empirical distribution.11 From Figure 9 we can see that the re-
sulting CDF is smooth and closely matches the distribution used to generate the

11This is important for sensitivity analysis and calculations of risk measures such as the
Value-at-risk (VaR), which can be sensitive to the coarseness of an empirical distribution.
The continuous density representation benefits from the improved convergence of the B-spline
estimators over the standard histogram, and provides a smoothing function for the empirical
distribution.
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Fig 9. Nonparametric CDF: estimation and simulation. Left: nonparametric CDF of
N (0, σ2Δt), σ = 0.3,Δt = 1/52; estimated from sample of size N = 1000, with true
CDF overlay. Right: sample of size Nsim = 105 simulated from nonparametric CDF.

sample. This methodology can also be applied to simulate parametric stochastic
models from known characteristic functions, as studied for example in [38, 3].
Remark 8. An alternative approach to simulation is to recognize that the density
f
a(x;N) =

∑Nϕ

k=1 a
−1/2βa,k(N) · a1/2ϕa,k(x) is a mixture distribution. Each

a1/2ϕa,k(x) is triangularly distributed, and can be simulated as the sum of two
uniforms. By sampling from the discrete distribution with weights a−1/2βa,k(N),
we determine in which bin the triangular variate falls. This idea generalizes to
higher order B-splines, and was first proposed in [92].

5. Conclusion

The work provides an in-depth account of the current state of nonparametric
density estimation by local basis methods, with particular attention paid to
B-spline basis estimation. Most often, B-splines are applied in the transformed
log-density space, as is the case for logsplines, smoothing splines, and P-Splines.
However, direct estimation by B-spline basis expansion of the density is a pow-
erful technique for which recent progress have been made. This work surveys the
current state-of-the art and recent developments in B-spline density estimation,
with a particular focus on the direct expansion of the density. We detail the
progress of existing literature, and offer new insights, experiments, and analy-
ses to cast the various estimation concepts in a unified context. Parallels and
contrasts are drawn to the more familiar context of kernel density estimation.
Applications to quantile estimation with time series data, as well as nonpara-
metric simulation are provided to illustrate the versatility of B-spline density
estimation.

5.1. Future research directions

Before concluding this work, we highlight just a few interesting topics which
merit further study:
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1. Analysis of higher order splines: in theory, the MISE of a p-th order B-
spline projection behaves like N− 2p+2

2p+3 for the optimally selected band-
width, with higher order splines offering accuracy that approaches the
optimal rate for sufficiently smooth densities (recall Section 2.2). While
the Haar and Linear basis are well-studied, higher order B-splines have
not been extensively analyzed in the literature. For applications which re-
quire derivative estimation, higher order B-splines possess the necessary
differentiability (see for example [92]).

2. Extension to multivariate density estimation: multivariate density esti-
mation is another important problem in nonparametric statistics, see for
example [103]. While some recent progress has been made for B-splines,
such as [120, 90, 128] for bivariate tensor product B-splines, and [21] for
an adaptive tensor product approach using B-splines as nonparametric
Bayesian priors, the literature is still quite limited, and the approach via
multivariate duality has not yet been considered.

3. On-line coefficient estimation: recent “big-data” applications require the
estimation of coefficients on-the-fly, in a computationally and memory
efficient manner, see for example [36]. Section 2.6 proposes an adaptive
coefficient estimator that is well-suited for streaming data applications.
Given the compact (and narrow) support of this “alternative dual” es-
timator, it is also promising for multivariate extensions. We leave these
extensions for future research.

4. Theory of spectral filtering: at this point, the use of spectral filtering
in combination with B-spline projection remains an empirical tool (recall
Section 2.4), and the filter order is treated as hyper-parameter to be tuned
to a particular problem area. Analysis of the theoretical properties of
filtered projection, such as the choice of optimal filter order as a function
of the sample size (and properties of the data), remains wanting.

5. Nonparametric regression: a natural extension is to the related strain of
research on nonparametric regression, where it remains to be seen if the
concept of B-spline duality is equally powerful, see for example [78, 57].

6. Additional theory: the theory of B-spline density estimation is far from
complete at this stage. As discussed in Remark 6, most of the literature
focuses on pointwise converge results based on MISE, and measures such as
minimax convergence, which are well developed in the context of logslines
[124], are not yet established for B-spline density expansions.

Compared with kernel density estimation, the literature on local basis estimation
is not nearly as mature, and there remain many possible avenues for future
research, including those outlined above.
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