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hypothesis » = x, against % > %, because under Central
Place Theory, » will be very large under H,. Note that
under both hypotheses, we have 7’ = (0, 0, 1).

Under the Fisher approximation to K(/, %), we
could use under H,
1 -3

2v0(n — 22 ~ X3n, vo' = %' — 5 %0
where (x;, yi, 2:), it = 1, ---, n, are the n spherical
coordinates for Delaunay’s triangles specified on
the half-lune as in Kendall (1983). The critical region
is the lower tail of the distribution. Note that in
terms of Bookstein’s shape variables for the triangles
(Qui, @), i=1, - -+, n, we have

2, = ‘/_3-Q2i/(Q%i + Q% — Qu + 1).

There is considerable room to improve the test. For
example, we could estimate the percentage points of
the test by simulating the Poisson process. Also, we
could carry out a test for the non-nested hypothesis
of the Miles’ distribution versus K(/, ») without any
approximation. All these ideas require further inves-
tigation. Another approach when the size of the tri-
angles is important is to use the mean area of triangles
like Mardia (1977) but now without normalizing to
R = 1. Its mean and variance are known under the

Comment

Wilfrid S. Kendall

David Kendall has been my close collaborator from
the very start of my scientific career, and so it gives
me great pleasure to add to the discussion of this
paper. I take as my theme the application of computer
algebra in statistics and probability. As evidenced
from the paper, some of the first instances of this have
occurred in the statistical theory of shape. I shall make
some remarks on the general application of computer
algebra in statistical science, and’ then turn to the
specific application (to the diffusion of shape) with
which I have been involved recently.

1. COMPUTER ALGEBRA IN STATISTICS AND
PROBABILITY

The reader will have noticed several references to
the use of computer algebra (CA) in the investigations
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Miles’ distribution and thus we can test the null
hypothesis. Of course, testing H, is only a small part
of the main problem; the shape and size summary
statistics themselves are revealing, e.g., in investigat-
ing comparative evidence of Central Place Theory for
various different data. It would be interesting to see a
detailed analysis of the Wisconsin data along the lines
given in the paper.

Finally, let me say that I found the paper very
stimulating and look forward to reading the forthcom-
ing book. ‘
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reported in the paper. To my knowledge this usage
represents one of the first substantial applications of
CA in the fields of statistics and probability. The
others known to me are my own related work on shape
diffusions (referred to in the paper as W. S. Kendall,
1988), which was encouraged by the success of CA in

A investigating the geometry of shape and is discussed

further below; and the work on asymptotics in density
estimation as described by Silverman and Young
(1987). (I would be most grateful to hear of further
instances.)

At present the use of CA in statistical science is in
its infancy, although many exciting possibilities
beckon. The emergence of readily available and pow-
erful personal workstations gives reason to hope for
rapid progress in the next few years. The wide screens,
multiple tasking facilities and cut - and - paste editing
of these workstations combine to yield a most produc-
tive environment for CA.

In what sort of areas might we anticipate CA’s
profitable employment? At the time of writing it seems
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to me that maximum benefits will derive in areas that
not only require complicated calculations but also
exhibit considerable structure. The theory of statistics
of shape is a good example: the calculations compris-
ing Le Huiling’s magnificent determination of shape
densities are undergirded by a profound appreciation
of the tessellation structure hidden within the density,
and I believe it is this structure that facilitates the
implementation of an effective algorithm in CA. In
this case manual calculations preceded the implemen-
tation, and so CA played a supportive role. But one
can envisage a future in which the CA implementation
of the structure develops at the same pace as one’s
theoretical understanding of the structure (and
this was indeed the case in the work on diffusion of
shape). Other possible applications are to the theory
of asymptotic distributional approximations, and to
the related field of differential geometry of statistical
inference.

Where the underlying structure is not properly ap-
preciated, naive use of CA can very easily lead to a
kind of algebraic overflow. In the words of Hearn
(1985) “... we attempt to solve more and more com-
plicated problems and succeed only in producing larger
and larger expressions.” Hearn’s point here (as author
of a CA system) is the need for structure-detecting
algorithms in CA systems; I believe that as users we
should draw the moral that increasing usage of CA
will force us to acquire ever deeper theoretical under-
standing in our search for useful and practicable ways
to express the underlying structure. (Consider the
mathematical demands made on the reader of
Davenport (1981), which expounds a CA algorithm for
solving indefinite integrals.)

It is of course a legitimate concern whether one can
accept as valid an argument which depends on a CA
package, whose correctness has not been mathemati-
cally established. Although a proper treatment re-
quires more philosophical expertise on the nature of a
valid proof than I can muster, the following remarks
may be helpful. Firstly, we learn from the history of
famous conjectures that (even when CA is not em-
ployed) it is a nontrivial matter to establish whether

~an argument is valid. At the very least, potential bugs
in a CA package are rather more public than possible
bugs in my head! Secondly, and related to this, con-
vincing mathematical arguments derive from good
exposition, which builds up a coherent and checkable
mathematical world in which the target result appears
as a natural result. In a similar way a good application
of CA should clearly implement a mathematical struc-
ture, susceptible to interactive checking by sceptics.
Thus the final CA program should serve as a kind of
“active text”; if an opponent can legitimately manip-
ulate it to derive (for example) a negative variance

then the argument fails. These points provide further
motivation to use CA to implement mathematical
structure rather than merely to crunch large formulas.

As remarked above, the next few years should see
rapid development in the application of CA to statis-
tical science. The work surveyed in the paper is pi-
oneering in this as well as in other respects.

2. DIFFUSION OF SHAPE

The investigations reported in W. S. Kendall (1988)
were motivated by a desire to develop CA in applica-
tion to statistics and probability. About two years ago
I realized that the basic idea of stochastic calculus
(“replace the square dB? of the Brownian path incre-
ment by the time increment dt”’) lent itself naturally
to implementation as a substitution role in a CA
language such as REDUCE. To my surprise I found
this implementation could actually be used to provide
a stochastic calculus proof of the remarkable Clifford-
Green result reported in Clifford, Green and Pilling
(1987), and this led naturally to determination of the
statistics of shape diffusion for triads of points.

Here is a summary of the argument concerning
diffusion of shapes of triads.

(a) The shape of a triangle formed by k£ = 3 points
in m-space (for m = 3) is parametrized by the ratios
of the squared side-lengths of the triangle (the so-
called homogeneous shape coordinates).

(b) If the vertices of the triangle diffuse as
Ornstein-Uhlenbeck processes then their equilibrium
distribution is rotationally-symmetric Gaussian.

(c) Computer algebra allows the ready determina-
tion of the statistics of the induced random process of
homogeneous shape coordinates, using the implemen-
tation of stochastic calculus described above.

(d) Further computer algebraic manipulation re-
veals: the natural geometry of the shape space (as
suggested by the shape process) is that of (“northern”)
hemisphere of radius Y.; and moreover a time change
of the shape process is Brownian motion on this
hemisphere modified by a drift directed toward the
north pole of the hemisphere. The drift can of course
be found explicitly!

(e) The equilibrium distribution of the shape dif-
fusion (and thus the shape density for a rotationally
symmetric Gaussian triangle) can then be found using
diffusion theory arguments.

(f) The same picture arises (with minor technical
modifications) if the vertices diffuse by Brownian
motion.

In particular these results make it clear that in high
dimensions a Brownian triangle spends most of the
time in shapes that are close to equilateral. This is
the surprising conclusion referred to in the paper—
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surprise however is a relative concept and readers of
McKean (1973) would not be surprised at all!

No doubt readers will see other ways of addressing
these problems using perhaps stochastic calculus with-
out benefit of CA or the theory of Wishart distribu-
tions (indeed Mr. James of Leeds University has
shown me how to use Wishart matrix theory to estab-
lish the Clifford-Green result mentioned above). The
main purpose of this work has been to initiate the
development of CA as an effective tool in the study of
random processes, rather than to develop new results.
More recently, and with the same motivation, I have
been working on the use of CA to derive the statistics
of shape diffusions for k-ads with k > 3. Here the
technical problem is to find effective ways of dealing
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In stochastic geometry as in number theory, it is
easy to ask questions that the layman can understand
but that the specialist can only answer with difficulty
or not at all. Under the older name, geometrical prob-
ability, the subject is old, e.g., Buffon’s famous prob-
lem was invented around the time Buffon was
preparing a French version of Newton’s “fluxions.” I
don’t know of any ancient and unresolved conjectures
like Fermat’s but it is easy to give simple-sounding
problems that are hard to solve, e.g., the motivating
problem of Kendall’s theory of shape. How do the
shapes of triangles vary when their vertices are inde-
pendently and uniformly distributed in a fixed rectan-
gle? This problem arises from questions about whether
there is too much “collinearity” in sets of points (see
Figures 1 and 2). A recent and very readable survey of
Kendall’s theory has been given by Small (1988).

All but the most mathematically gifted readers will
find this paper difficult. Rather more basic details are
given in Kendall (1984), but this too is written for
mathematicians. I hope the promised book (now in
preparation) by Carne, Kendall and Le will make it
clear to statisticians, because I'm sure that this is a
fascinating area for research and applications. To
support this belief I will give a brief summary of my
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with sums involving k summands, when k is not fixed
beforehand but must be treated as a symbolic quantity.
Some progress has been made, but work is not yet
complete.
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own related efforts, sticking mainly to triangles. This
is reasonable because most of the suggested applica-
tions use them and they are the simplest case.

The shape of A, a triangle P;, P,, P;, with vertex
angles a;, as, as, could be defined as the pair (o, as).
But for most problems this is not easy to work with,
or to generalize to k labeled points in .#™. There are
lots of other ways to define the shape of a triangle.
We may think of A as a 2 X 3 matrix [2;, 25, 23], where
the column z; has elements x;, y;, and denotes the
position of the vertex P; in the plane. Because we are
only interested in the shape of A we may translate,
dilate and rotate A without changing the shape of A,
so we seek a “canonical” triangle. Kendall’s approach
is a variant of the following. Change the origin to the
centroid of the triangle and consider the singular value
décomposition of the new 2 X 3 matrix, RAL’, where
R is a 2 X 2 rotation and so irrelevant. By scaling we
could make Af + A} = 1. The remaining object defines
the shape. See Mannion (1988) for a simple descrip-
tion—it is very similar to the next suggestion—and
Small (1988).

I found Kendall’s reduction hard to understand and
considered (in Watson, 1986) two alternatives, which
worked well in the simple planar problem I had posed.
Move P, to the origin (0, 0), move P, to (0, 1), which
uses up the available transformations, and denote P;
by 2z, which then serves to define the shape of A. It is
natural to take it as a point in the complex plane.
The other alternative came from taking z;, 2., 2; as’



