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Abstract. Estimating treatment effects conditional on observed covariates
can improve the ability to tailor treatments to particular individuals. Doing
so effectively requires dealing with potential confounding, and also enough
data to adequately estimate effect moderation. A recent influx of work has
looked into estimating treatment effect heterogeneity using data from multi-
ple randomized controlled trials and/or observational datasets. With many
new methods available for assessing treatment effect heterogeneity using
multiple studies, it is important to understand which methods are best used in
which setting, how the methods compare to one another, and what needs to
be done to continue progress in this field. This paper reviews these methods
broken down by data setting: aggregate-level data, federated learning, and
individual participant-level data. We define the conditional average treatment
effect and discuss differences between parametric and nonparametric estima-
tors, and we list key assumptions, both those that are required within a single
study and those that are necessary for data combination. After describing
existing approaches, we compare and contrast them and reveal open areas
for future research. This review demonstrates that there are many possible
approaches for estimating treatment effect heterogeneity through the combi-
nation of datasets, but that there is substantial work to be done to compare
these methods through case studies and simulations, extend them to differ-
ent settings, and refine them to account for various challenges present in real
data.

Key words and phrases: Treatment effect heterogeneity, combining data,
generalizability and reproducibility.

Carly Lupton Brantner is a PhD Candidate, Department of
Biostatistics, Johns Hopkins Bloomberg School of Public
Health, Baltimore, Maryland 21205, USA (e-mail:
cluptonl @jhu.edu). Ting-Hsuan Chang is a PhD Student,
Department of Biostatistics, Columbia Mailman School of
Public Health, New York, New York 10032, USA (e-mail:
tc3255@cumc.columbia.edu). Trang Quynh Nguyen is an
Associate Scientist, Department of Mental Health, Johns
Hopkins Bloomberg School of Public Health, Baltimore,
Maryland 21205, USA (e-mail: trang.nguyen @jhu.edu).
Hwanhee Hong is an Associate Professor, Department of
Biostatistics and Bioinformatics, Duke University, Durham,
North Carolina 27710, USA (e-mail:

hwanhee.hong @duke.edu). Leon Di Stefano is a PhD
Candidate, Department of Biostatistics, Johns Hopkins
Bloomberg School of Public Health, Baltimore, Maryland
21205, USA (e-mail: lds@jhu.edu). Elizabeth A. Stuart is

640

1. INTRODUCTION

Identifying the right treatment for the right patient can
improve quality of healthcare for individuals and popula-
tions. Treatments for disorders and diseases like depres-
sion (Trivedi et al., 2006), schizophrenia (Samara et al.,
2019), and diabetes (Xie, Chan and Ma, 2018) can ex-
hibit differential treatment effects across individuals due
to effect moderators, defined as known and unknown in-
dividual, genetic, environmental, and other characteristics
that are associated with the effectiveness of medical treat-
ments (Baron and Kenny, 1986). Finding ways to identify
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and leverage effect moderators at the point of care to fa-
cilitate clinical decision-making can improve efficiency,
quality and outcomes of healthcare.

Although crucial for delivery of treatment and preven-
tative medicine, detecting treatment effect heterogeneity
is challenging with common study designs. Randomized
trials yield comparable treatment groups on average but
are typically under-powered to detect moderation. One
rule-of-thumb is that study samples need to be four times
larger to test an effect moderator than to detect the overall
average effect (Enderlein, 1988). In addition, randomized
trial samples are also often not representative of the target
population for which treatment decisions will be made;
for instance, Black individuals are on the whole under-
represented in pivotal clinical trials (Green et al., 2022).
Therefore, conclusions from one particular trial might not
reflect conclusions for a target population, and different
trials might give conflicting results due to differences in
their enrolled participants. On the other hand, large-scale
non-experimental studies can have improved external va-
lidity, but these studies can suffer from confounding bias.
Given power concerns in single randomized trials and bias
concerns in non-randomized studies, much can be gained
by combining multiple trials, or combining experimental
and non-experimental studies, to examine effect modera-
tion (Berlin et al., 2002, Brown et al., 2013).

Many methods have been proposed to examine effect
moderation in a single study. One of the popular ap-
proaches is to prespecify a few key subgroups and fit mod-
els with treatment-subgroup interactions. This approach is
limited in that data analysts could explore a range of pos-
sible subgroups and report only those that are statistically
significant (Kent et al., 2010); additionally, this approach
does not allow the contribution of multivariate factors in
effect moderation. Another approach is “risk modeling”
(Kent et al., 2010, 2020), where a risk score is created
using the covariates to predict the outcome (usually out-
come under the comparison/control condition), and the
treatment effect is assessed based on the interaction be-
tween treatment and this risk score in a regression model
of the outcome. This review focuses on what is some-
times called “effect modeling.” Effect modeling spans a
spectrum that includes parametric approaches in which a
few effect moderators are prespecified, and nonparametric
approaches where effect moderation is assumed to be via
some potentially complex function of a large set of covari-
ates. Regression analyses and variable selection are com-
mon approaches for the former; machine learning meth-
ods for the latter.

In order to examine treatment effect heterogeneity
based on observed characteristics, the target estimand in
the present work is the conditional average treatment ef-
fect (CATE). Notation for this estimand is presented in
the following section. The CATE is a general function of

covariates that could be quite complex and so requires
large sample sizes to estimate reliably. A key assumption
when combining studies to estimate the conditional aver-
age treatment effect is that the CATE function is substan-
tially similar across studies. When discussing the CATE,
it is relevant to note that the CATE function is related to
subgroup average treatment effects and identification of
groups who benefit from treatment; these similar goals
are mostly outside of the scope of this review. We there-
fore focus on the CATE and mention subgroup treatment
effects and other similar topics briefly when relevant.

There have been recent statistical advances in model-
ing heterogeneous treatment effects and a separate bur-
geoning interest in combining data from multiple sources.
A select few works have done both—simultaneously
leveraging data from multiple studies to assess treatment
effect heterogeneity. Methods like these are needed to
best harness the available data to optimize and individ-
ualize treatments, and to leverage information from mul-
tiple studies to provide more systematic, comprehensive,
and generalizable conclusions. This paper reviews these
novel methods of assessing treatment effect heterogeneity
using multiple studies in the form of multiple random-
ized trials, or one randomized trial with a large observa-
tional dataset. We focus on methods identifying which of
two treatments is more likely to improve outcomes for
an individual or subgroup—a causal question that sits at
the core of clinical practice. In this review, we consider
the situation where the variables are similarly defined and
available from all studies. It is common though that dif-
ferent studies may have different sets of variables. In this
more complicated case, either harmonization is needed on
the variables or some shared structure is required on con-
ceptually related variables. We will return to this point in
the Discussion section (6).

Methods discussed in this paper are broken down
based on data setting: aggregate-level data, federated
learning, and individual participant-level data (IPD). The
aggregate-level data setting occurs when researchers only
have access to summary information from each study.
With aggregate-level data, individual-level effect hetero-
geneity can only be truly assessed if each study estimated
treatment-covariate interactions using the same statistical
models (e.g., same link function, same set of covariates),
which is not often feasible. In the federated learning set-
ting, sensitive individual-level data are distributed across
decentralized studies and cannot be shared beyond their
original storage location (Vo et al., 2021). Finally, the IPD
setting is the most straightforward and powerful scenario
for assessing treatment effect heterogeneity, as individual-
level covariates are available from all studies simultane-
ously. With IPD, we can harmonize covariates, estimate
effect moderation by using the same statistical models in
each study, and assess model assumptions consistently.
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Within each of these data settings, methods are primar-
ily geared towards either combining multiple RCTs or one
RCT with one observational dataset. We discuss the use of
meta-analysis models with multiple RCTs (Debray et al.,
2015, Burke, Ensor and Riley, 2017), along with the op-
portunity to employ variable selection approaches to iden-
tify effect moderators (Seo et al., 2021). When combin-
ing an RCT with observational data, we consider various
methods that allow for complicated relationships to be in-
cluded in the treatment effect function and account for
potential bias from the observational data. These methods
can involve estimating the CATE in the RCT and observa-
tional data separately and then combining them through
an estimated weighting factor (Rosenman et al., 2022,
2020, Cheng and Cai, 2021, Yang, Zeng and Wang, 2020),
or estimating the observational CATE and the confound-
ing effect in the observational dataset (Kallus, Puli and
Shalit, 2018, Yang, Zeng and Wang, 2020, Wu and Yang,
2021, Hatt et al., 2022). Colnet et al. (2021a) reviewed
some methods that combine RCT and observational data,
and we extend upon this review by focusing on this com-
bination explicitly for treatment effect heterogeneity. We
also add in more methods that combine RCT with obser-
vational data along with methods that focus on combin-
ing multiple RCTs. In general, there are many approaches
outside of those we reference here that focus on estimat-
ing the average treatment effect by combining datasets,
some of which are discussed by Colnet et al. (2021a); we
choose to primarily focus on efforts to examine treatment
effect heterogeneity in the present review.

To provide context to the methods discussed in this
review, we can consider a few example scenarios. We
first consider an assessment of the efficacy of surgery
in stage IV breast cancer according to 15 studies where
researchers combining the studies only had access to
aggregate-level data (Petrelli and Barni, 2012). We also
discuss a comparison of outcomes for veterans who re-
ceived the Moderna versus the Pfizer vaccination for
COVID-19 in five different sites where IPD was avail-
able within each site but could not be shared across sites,
known as a “federated learning” situation (Han et al.,
2021). Another setting investigates a diabetes medication,
pioglitazone, versus placebo for individuals coming from
one of six RCTs, where IPD was available in each trial
(Hong et al., 2015). And finally, we discuss data assessing
the treatment effect comparing two active treatments for
major depression, duloxetine and vortioxetine, wherein
we have access to IPD from a combination of RCT data
and electronic health records (EHR) from a hospital sys-
tem (Brantner et al., 2023a). These scenarios all could
clearly benefit from combining data to examine hetero-
geneity in treatment effects, but they each require distinct
considerations and statistical approaches to best integrate
information. We will use these examples throughout the
paper to ground the methods in specific applications.

Importantly, to effectively combine information from
multiple datasets, the original studies need to have high
transparency and reproducibility. Whether data are re-
ported in aggregate or at the individual participant level,
researchers using the data for additional analyses—such
as those discussed here—need extensive information
about how the data were collected, analyzed, and pre-
sented to be able to determine if and how to combine
the information with other datasets. It is therefore vital
to keep these ideas of transparency and reproducibility
of data, code, and results at the forefront when apply-
ing these methods. Movements towards data sharing and
reproducible research will greatly facilitate the types of
research discussed here, which can lead to important new
insights regarding effect heterogeneity that cannot be an-
swered from single studies alone due to generalizability,
sample size, or confounding concerns.

In the following section (2), we introduce the esti-
mand and assumptions. The next sections are then or-
ganized based on the level of data access so that re-
searchers can determine available methods in their given
data setting. Specifically, Section 3 discusses aggregate-
level data; Section 4, federated learning; and Section 5,
individual participant-level data (IPD). Finally, Section 6
compares methods and provides an overview of potential
future areas for research.

2. NOTATION
2.1 Target Estimand

Our target estimand to assess effect heterogeneity is the
conditional average treatment effect (CATE), defined us-
ing the potential outcomes framework under the Stable
Unit Treatment Value assumption (Rubin, 1974). Suppose
S is the categorical variable indicating study membership,
A =0, 1 is a binary treatment variable, Y is the observed
outcome, Y (1) and Y (0) are the potential outcomes under
treatment and control respectively, X is a set of covari-
ates, and Z is a subset of X containing the proposed effect
moderators.

The CATE can be formally defined as a function of X:

7(X) = g(E[Y(1)IX]) - g(E[Y (0)|X])

(Abrevaya, Hsu and Lieli, 2015, Kiinzel et al., 2019),
where E[-|-] denotes conditional expectation in the tar-
get population of interest and g(-) is a link function that
defines the scale on which the interactions occur, whether
additive (mean or risk difference) or multiplicative (risk,
rate, or odds ratio). In this paper, we primarily discuss a
continuous outcome, in which case we use the identity
link function and write the CATE as

1) T(X)= E[Y(1)—Y(0)|X].
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This 7(-) can often be assumed to be a flexible function
in which all covariates are considered as potential moder-
ators, so we do not have to a priori differentiate Z and X
when methods allow for this flexibility.

One can also consider study-specific CATE functions.
This is often the case when researchers are interested in
assessing heterogeneity of the treatment effect functions
across trials/datasets, or when this heterogeneity is high
and it is potentially unreasonable to combine informa-
tion across studies. We can denote study by S: in the
case where data is being combined from one RCT and
one observational dataset, S = 0 will indicate RCT and
S =1 observational data; otherwise, S will be a categori-
cal variable ranging from 1 to K, where K is the number
of RCTs. The above equation (1) defines a general CATE
that is not study-specific. When estimating study-specific
CATEs, equation (1) can be rewritten as

) 7(X) = E[Y(1) =Y (0)|X, S =5].

In most of the methods to follow, the CATE is defined
by conditioning on a set of available covariates, X. An al-
ternative is to a priori define subgroups of interest and es-
timate subgroup-specific treatment effects. This approach
is similar to the methods discussed in this review but
somewhat distinct because subgroups must be specified
first. The form of the estimand when examining subgroup-
specific effect estimates is instead

o = E[Y(1) — Y(0)|K =K,

where K represents subgroup membership (Rosenman
et al., 2020, 2022).

2.2 Assumptions

Across many methods, the key assumption that allows
pooling data from multiple studies to estimate the treat-
ment effect is that either entire or partial components of
the treatment effect function 7(X) is shared across stud-
ies. This review also focuses solely on the case when there
are only two treatments (or one treatment and one con-
trol/placebo) being compared. If there are more than two
conditions being compared, different approaches would
need to be used (i.e., network meta-analysis; Efthimiou
et al., 2016, Debray et al., 2018, Hong et al., 2015). Aside
from these overarching assumptions, individual methods
employ their own specific assumptions. When multiple
RCTs are included in meta-analyses, they are often as-
sumed to have similar eligibility criteria (specifically in
terms of the covariates thought to be effect modifiers)
(Dahabreh et al., 2020), and distributional assumptions
are made for model parameters (Debray et al., 2015).

Broadly, parametric approaches require the assumption
of a parametric relationship between covariates (including
treatment, effect moderators, and interactions between the
two) and outcomes; further, this parametric relationship is

assumed to be approximately correctly specified (Debray
et al., 2015, Yang, Zeng and Wang, 2022, 2020). Specif-
ically in the meta-analytic framework when combining
multiple RCTs, effect moderation is often assessed using
treatment-covariate interaction terms. This approach typ-
ically uses an outcome model of the form

WEY)) = u(X) + A x (Z),

where A (-) is a link function, w(X) is the modelled mean
of the outcomes under control, Z contains a subset of the
variables in X that often needs to be prespecified, and
t(Z) is the the CATE function:

3) 1(Z)=8+0"Z.

In this expression for t(Z), § corresponds to the effect
of treatment A when Z = 0 (or when the covariates in
Z equal their means if they have been centered), and 6
corresponds to the coefficients of treatment-moderator in-
teraction terms AZ in the A(E(Y)) model. Similarly to
the general format of the CATE in equation (1), this para-
metric form of 7(Z) can be expressed as multiple study-
specific functions:

) 0(2)=8,+0"Z.

When combining an RCT with an observational dataset,
there are a few within-study assumptions, including un-
confoundedness (Assumption 1), positivity (Assump-
tion 2), and consistency (Assumption 3) (Colnet et al.,
2021a, Cheng and Cai, 2021).

ASSUMPTION 1. {Y(0),Y (1)} 1L A|X within each

study.

ASSUMPTION 2. For almost all X with 7 (X) =
P(A = 1|X) (the propensity score), there exists a con-
stant ¢ > 0 such that ¢ < 7 (X) < 1 — ¢ within each study.

ASSUMPTION 3. Y =AY()+ (1 — A)Y(0) almost

surely.

The unconfoundedness assumption (1) is satisfied by
design in an RCT. Assumption 2 also holds by design in
an RCT since the probability of treatment is independent
of observed covariates and is prespecified.

When combining datasets, we expand upon the previ-
ous assumptions. In the setting where observational data
is being combined with an RCT, the unconfoundedness
assumption (1) can be relaxed in the observational data.
This is because there are analysis possibilities with mul-
tiple datasets that include assessing whether this assump-
tion is met or not and using the RCT to account for any
confounding in the observational data (Cheng and Cai,
2021, Yang, Zeng and Wang, 2020, 2022). Assumption 3
in the multi-study setting implies that the treatments be-
ing compared are the same across all studies (since there
is no s subscript) to ensure that the potential outcomes
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Y (0) and Y (1) are well-defined. We also can introduce
two other assumptions that are involved at some level in
methods that combine an RCT with observational data;
these assumptions include study membership positivity
(Assumption 4) (Colnet et al., 2021a, Cheng and Cai,
2021) and unconfounded study membership (Assump-
tion 5) (Hatt et al., 2022, Cheng and Cai, 2021, Kallus,
Puli and Shalit, 2018).

ASSUMPTION 4. For almost all X, there exists a con-
stantd > O suchthatd < P(S=s|X=x)<1—d.

ASSUMPTION 5. {Y(0),Y (1)} 1L S|X.

The following sections break down methods based on
available data.

3. AGGREGATE-LEVEL DATA

The broadest level of data access is in the form of
aggregate-level data (AD), where individual studies have
been carried out and analyzed, and only summary data
(e.g., sample mean, standard deviation, or regression
model coefficient estimates) are available. AD are often
used in meta-analyses when IPD are unavailable. Meta-
analysis with AD can estimate average effects effec-
tively and provide similar results as meta-analysis with
IPD (Burke, Ensor and Riley, 2017, Hong et al., 2015).
However, aggregation bias (also known as the ecological
fallacy), which occurs when conclusions are incorrectly
drawn about individuals when the relationship is found
at the group level, can easily be introduced if researchers
want to make a conclusion about individual-level effect
moderation when only AD is available (Berlin et al., 2002,
Debray et al., 2015, Teramukai et al., 2004). This ag-
gregation bias will not be present if each paper reports
subgroup-specific outcomes for all necessary subgroups;
however, this is rare in practice because subgroups are of-
ten defined by more than one covariate. AD therefore has
limited power for detecting effect moderation (Lambert
etal., 2002). However, IPD is not always easy to access or
use, so the following section discusses what can be done
with AD. In framing this discussion, one can think of the
example assessing the effects of tumor-removal surgery in
individuals with breast cancer (Petrelli and Barni, 2012)
using aggregate data from several relevant studies.

3.1 Meta-Analysis of Interaction Terms

If AD is all that is available for a question of interest,
there is still an opportunity to estimate individual-level
effect moderation under specific circumstances. If all pre-
vious studies have performed similar analyses and have
included a particular treatment-covariate interaction term
using the IPD from that given study, then these interaction
terms can be pooled at the aggregate level (Simmonds and
Higgins, 2007, Kovalchik, 2013). For instance, although

this approach was not taken by Petrelli and Barni (2012),
if a treatment-age interaction term was estimated in each
of the individual studies assessing the effect of surgery on
mortality in individuals with stage I'V breast cancer, then
these interaction terms could be pooled together. In this
way, researchers can estimate an individual-level effect
moderation term across multiple studies and can combine
such terms to estimate 7(Z) as in equation (3). However,
this requires that the studies assess and report the interac-
tions of interest consistently. Similarly, the aggregate data
could include subgroup-specific treatment effects rather
than interactions, which could also be pooled to describe
effect moderation if the effects are reported in each study
(Godolphin et al., 2023).

3.2 Meta-Regression

If such study-specific interaction coefficients are not
available across all studies, AD can be also modeled
through meta-regression with treatment-covariate interac-
tion terms, where importantly only aggregate level covari-
ates (e.g., mean age, proportion female) are available. For
example, the individual-level covariate of interest might
be whether the person has severe disease or not; in an
AD meta-regression, this covariate would become the per-
centage of individuals in the study who have severe dis-
ease. Meta-regression was the approach taken by Petrelli
and Barni (2012) in their assessment of surgery efficacy.
Specifically, they investigated hazard ratios of overall sur-
vival according to the 15 different studies and did so while
including covariates such as median age and mastectomy
rate.

AD analyses can handle study-level effect moderators
well. However, the ability to assess individual-level mod-
erators depends on the level of detail available in the
AD. Multiple papers have assessed the differences be-
tween AD and IPD meta-regressions for estimating treat-
ment effect heterogeneity. In an analysis by Berlin and
colleagues (2002), models using IPD picked up on a key
effect moderator that had been found in previous litera-
ture, but all models using AD missed this effect modera-
tor at the group level. Extensive simulation studies also
have shown that the power for detecting treatment ef-
fect moderation is much lower in meta-regression using
AD; in these simulations, effect moderation was only ef-
fectively discovered in AD analyses when there were a
large number of trials with large sample sizes (Lambert
et al., 2002). Again, relationships that are picked up in an
AD meta-regression cannot be immediately interpreted as
individual-level effects; for example, if the percentage of
individuals with severe disease is an effect moderator in
the AD model, researchers cannot immediately conclude
that the individual-level presence of severe disease is an
effect moderator at the individual level.

Furthermore, the aggregate-level covariates also often
do not vary much across studies. Since studies included in
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meta-regressions require similar eligibility criteria, they
likely will have somewhat similar covariate distributions.
For instance, the percentage of individuals with severe
disease is likely to be similar across trials; in this case,
the interpretation of effect moderation cannot be extrapo-
lated beyond the aggregate-level range of the covariates.

The estimand in meta-regression can still be considered
to be a version of the CATE, but it is the CATE according
to group-level effect moderators; for example, it could be
written like equation (3) but as 7(Z) where Z consists of
aggregations of Z at the study-level. Such an estimand
assumes that the included studies are representative of the
target population of studies.

4. FEDERATED LEARNING

Federated learning (similar to distributed modeling)
uses a combination of IPD and AD; namely, IPD exists
across decentralized studies but can only be accessed in
the study in which it is stored (Yang et al., 2022). An ex-
ample of this is a study of the efficacy of two COVID-
19 vaccinations (developed by Moderna and Pfizer) for
preventing COVID-19 in veterans in five Veterans Affairs
sites (Han et al., 2021). This data setup is increasingly
common in fields where there is interest in combining
multiple cohorts (“cohort consortia”), but where data pri-
vacy concerns prohibit full direct data sharing. Therefore,
the IPD data must be turned into AD or aggregated mod-
els so that information can be shared across studies.

We discuss two approaches for CATE estimation in fed-
erated learning in this section. Other approaches exist that
focus on estimating the average treatment effect (ATE)
(Han et al., 2021), and those can be extended to CATE es-
timation but must provide sufficient information about the
parameters of effect moderation. Depending on the ATE
approach, it is unclear how easily the method can be ex-
tended to CATE estimation; we focus instead on methods
explicitly focused on CATE estimation.

4.1 Meta-Analysis After Local Model Formulation

There are three steps in meta-analysis within the fed-
erated learning setting: (1) fit models within studies, (2)
aggregate the model coefficients, and then (3) conduct a
meta-analysis (Silva et al., 2019). This is similar to the
meta-analyses of interaction terms using aggregate data
discussed in Section 3.1. A key difference here is that
federated learning models apply a predetermined statis-
tical model including desired interaction terms so that
the interaction effects are assessed consistently across all
studies, while the traditional meta-analysis with AD has
access to model coefficient estimates but not the model
fitting process. Here, the estimand of interest is the com-
mon CATE function as in equation (3) that is calculated
by summarizing model coefficients corresponding to in-
teraction terms AZ (treatment-moderator) and A (treat-
ment) from each study-specific regression.

4.2 Tree-Based Ensemble

Another option within federated learning would be to
still create study-specific models first, but to use informa-
tion from other studies to improve those individual mod-
els. Tan, Chang and Tang (2021) use tree-based ensemble
methods to combine information about treatment effect
heterogeneity from multiple separate studies. Specifically,
they allow for study-level heterogeneity as well as hetero-
geneity due to individual-level covariates.

Their procedure involves first fitting models to esti-
mate the CATE in each of K individual studies, us-
ing single-study machine learning methods like causal
forests (Athey, Tibshirani and Wager, 2019, Brantner
et al., 2023b). These K study-specific models are then
applied to a single “coordinating study,” so that each in-
dividual in the coordinating study has K estimates of the
CATE. In other words, if there are n individuals in the
coordinating study, there will be n x K CATE estimates.
Finally, these n * K estimates are used as outcomes in an
ensemble regression tree or random forest, in which the
predictors are the individual-level covariates and an indi-
cator of the study model from which the specific CATE
estimate was estimated. Ultimately, this method provides
study-specific CATE functions (equation (2)) that have
hopefully been made more accurate because they have
been adjusted to incorporate information from other stud-
ies. Tan, Chang and Tang (2021) applied this approach
to investigate the effects of oxygen saturation on hospital
mortality across 20 hospitals and found effects that var-
ied across sites but did not have high levels of within-site
heterogeneity based on covariates like age or gender.

5. INDIVIDUAL PARTICIPANT-LEVEL DATA

Finally, when individual participant-level data (IPD) is
available from all studies, treatment effect heterogeneity
can be estimated through a wide variety of methods. Re-
cently, many novel methods have been proposed and are
actively being developed. While the previous two settings
of AD and federated learning are more restrictive, esti-
mating individual-level effect moderation in this setting
with all IPD available is much more feasible and flex-
ible. The methods to follow are broken down based on
whether the data being combined is from multiple RCTs
or from one RCT and one observational dataset. Many of
the methods in this multi-study setting build upon single-
study methods, which are discussed in depth in the Sup-
plementary Material (Brantner et al., 2023b).

5.1 Combining Multiple RCTs

As mentioned when discussing aggregate data, meta-
analyses are an effective and widely used parametric ap-
proach for combining information from multiple RCTs
(Riley, Stewart and Tierney, 2021). Recently, more and
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more IPD has become accessible to researchers, allowing
them to go a step further from AD and more effectively
assess effect moderation. Having IPD available, such as
in the example of assessing the effects of pioglitazone for
individuals with diabetes (Hong et al., 2015), allows for
baseline individual-level covariates to be used to study
subgroup effects and effect moderation at the individual
level.

5.1.1 Types of IPD meta-analyses. There are two com-
monly discussed IPD meta-analysis estimation methods:
two-stage and one-stage. In two-stage IPD meta-analysis,
aggregate statistics are calculated within each study (e.g.,
overall treatment effects, effects for each subgroup, inter-
action terms), and then these results are combined in a
between-study model. In one-stage IPD meta-analysis, all
individual-level data are put directly into a hierarchical
or multilevel model (Burke, Ensor and Riley, 2017). Al-
though results with respect to average treatment effects
are often similar between the two approaches (Burke, En-
sor and Riley, 2017, Debray et al., 2015, Tierney et al.,
2015), model assumptions do differ, and choosing the ap-
proach that seems best fit to a specific research question
is an important decision. In this paper, we focus on one-
stage IPD meta-analysis because of its flexibility (Debray
et al., 2015).

5.1.2 One-stage IPD meta-analysis. In one-stage IPD
meta-analysis, a common technique is to use a general-
ized linear mixed model (GLMM) to estimate the mean
outcome given covariates. The model can have the form

(5)  g(E(Yi)) = a5 + 85 Ais + B Xis + 07 Ai Zis,

where Yjs is the outcome for individual i from study s,
og ~ N(a, ao%) is a study-specific intercept, §; ~ N (8, 052)
is the vector of study-specific treatment effects when
the covariates are set to O (or their means, if centered),
By ~ N(B,Xp) is the study-specific vector of main ef-
fects of covariates on the outcome, and 05 ~ N (0, Xg) is
the study-specific vector of effect moderation terms (Seo
et al., 2021). Here, 60%, 052 and the diagonal elements of
X g and Xy measure the between-study variability of the
effects. B, and @ are often assumed to be uncorrelated in
the literature; however, we can extend this model to allow
for correlation between B and 6.

If the outcome is continuous (as assumed in this paper),
g(+) is often set to be the identity function; if the outcome
is binary, g(-) could be the logit link function. Key param-
eters of interest are §, which indicates an overall measure
of the treatment effect when the moderators are set to 0,
and @, which indicates the magnitude of the effect moder-
ation. For easy interpretation, covariates can be centered
at zero so that the treatment effects, §; represent the treat-

ment effects at the mean value of each covariate (Dagne
et al., 2016, Gelman, Hill and Vehtari, 2020).

The model above includes random effects for all coef-
ficients, and so explicitly models between-study hetero-
geneity for each coefficient (the 8,’s and 0’s). This ap-
proach can be thought of as interpolating between two ex-
tremes. The first of these is a “no-pooling” model, with
the same structure as equation (5) but with study-specific
coefficients fit as fixed effects independently to the data
from each study. Such a model avoids the sharing of infor-
mation across studies, but also includes more free param-
eters, which may be less stably estimated. This approach
also does not ultimately provide a global treatment effect
estimate across studies, as all studies are given their own
fixed coefficients.

A simpler model would treat some coefficients as
shared across studies. This might take the form of as-
suming a common intercept or slope (Thomas, Radji and
Benedetti, 2014); for example, in equation (5), if between-
study variability of the main covariate effects (represented
by X ) were small, a common coefficient could be esti-
mated instead by replacing §, with 8. In practice, 0 is
often assumed to be shared across studies. GLMMs can
quickly become too complicated if many effects are al-
lowed to vary across studies (especially when study sam-
ple sizes are small); on the other hand, the model might be
misspecified if it ignores important variation that does ex-
ist. Therefore, each coefficient—and whether it should be
treated as common across studies, modelled as random,
or estimated independently within each study—should be
considered carefully to ensure that the model effectively
represents between-study variability while still being suf-
ficiently simple.

GLMMs can be fit under both frequentist and Bayesian
frameworks (Debray et al., 2015). If a Bayesian frame-
work is used, prior distributions need to be assigned to
each parameter; an option for this is noninformative pri-
ors to all parameters of interest (McCandless, 2009). In-
formative priors can be used when information about the
parameters is available from expert opinion or historical
data analysis. Hong et al. (2015) utilize a Bayesian frame-
work for their analysis of diabetes medication; however,
they compare more than just two treatments and perform
network meta-analysis, which is not the focus of this pa-
per.

One other consideration in one-stage IPD meta-analysis
is the option to decompose between-study and within-
study variability. To avoid aggregation bias, some re-
searchers (Hua et al., 2017, Debray et al., 2015, Donegan
et al.,, 2012, Hong et al., 2015) suggest decomposing
the interactions into two sources: individual-level (i.e.,
within-study effect) and aggregate-level (i.e., between-
study effect) interactions. This model can be written by
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extending equation (5):
S(E(Yig)) = a5 + 85 Ais + B yienin Xis — X)
+ Bioross X5 + 0sT,withinAis(Zis —Zy)
+ 0] o5 AisZs.

Here, we have broken up the covariate and treatment-
covariate interaction terms into within-study effect and
between-study components so that we can separately as-
sess the associations of individual covariates and their
study-level summaries with the outcome. This is espe-
cially helpful when specific effect moderators vary sig-
nificantly both within studies and across studies (Debray
et al., 2015). Equation (5) is a special case of this model
when B, cr0ss and @across are equal to the average of the
B within'S and the @ within’s, respectively (Hua et al.,
2017).

Standard implementations of meta-analysis techniques
to assess effect heterogeneity assume that a set of poten-
tial moderators has already been identified and observed
in all included studies. Because studies measure several
variables that could plausibly serve as effect moderators,
selecting which terms to include in the model is an impor-
tant and challenging decision. Furthermore, testing a high
number of potential effect moderators can increase the
risk of false positives (Hayward et al., 2020). When many
potential moderators exist, variable selection or shrinkage
methods can help overcome these challenges and identify
meaningful moderators while controlling for overfitting.
Seo et al. (2021) compared one-stage IPD meta-analysis
methods that identified effect moderators and estimated
their effect size. They compared various variable selection
methods under both frequentist and Bayesian frameworks
including stepwise selection, Lasso regression, Ridge re-
gression, adaptive Lasso, Bayesian Lasso, and stochastic
search variable selection (SVSS). In extensive simulation
studies, the shrinkage methods (Lasso, Ridge, adaptive
Lasso, Bayesian Lasso, and SVSS) performed best, sup-
porting the usage of such methods in IPD meta-analysis
to enhance performance (Seo et al., 2021). Especially in
settings in which large numbers of variables are available
and many could plausibly serve as treatment effect moder-
ators, these methods could be useful to efficiently estimate
the conditional average treatment effect.

5.1.3 Integrating IPD with AD. If data are available at
the individual level in some studies but at the aggregate
level in others, both levels of data can still be combined
to estimate treatment effects. One straightforward way to
do so is through two-stage meta-analysis, as introduced
in 5.1.1, where models are fit to each study with IPD to
calculate aggregate statistics, and then these statistics can
be combined with those reported in the AD (Riley et al.,
2008). Another more complicated but effective approach

is to combine the IPD and AD simultaneously in one-
stage meta-analysis: Riley et al. (2008) describe a method
for doing this where the outcome for each trial with only
AD is simply the estimate of the treatment effect and there
is just one observation. They also incorporate an indicator
of IPD versus AD.

Bayesian methodology can also be incorporated to
combine IPD with AD and allow for adaptive borrow-
ing of information. In such a setting, Hong, Fu and Carlin
(2018) recommend treating the AD as auxiliary data and
utilizing a power prior to adaptively incorporate the AD
and a commensurate prior to borrow from the AD to es-
timate treatment effects. In another Bayesian approach,
Saramago et al. (2012) incorporate IPD-level covariates
to improve estimation of treatment-covariate interactions
over that available by AD alone.

5.2 Combining an RCT with Observational Data

Another usage for IPD in estimating treatment effect
heterogeneity is through combining data from an RCT
with an observational dataset. For example, we can con-
sider the scenario introduced earlier where we are inter-
ested in comparing two treatments for major depression,
duloxetine and vortioxetine, and we have access to RCT
data and a large observational dataset containing elec-
tronic health records (Brantner et al., 2023a). This sce-
nario requires attention to potential confounding in the
observational dataset; notably, the individuals are not ran-
domly assigned to treatment in the observational data un-
like in the RCTs. In this setting, the approaches are often
nonparametric, with some exceptions, and they include
some approach for accounting for confounding in the ob-
servational dataset. We use 7" (X) and 7°(X) to represent
the estimated CATE function based on data from the RCT
and observational study, respectively.

Colnet et al. (2021a) provides a literature review of
methods that combine RCT and observational data. They
touch on many different purposes of combination, one of
which is CATE estimation. Their review includes some
of the nonparametric approaches listed in this section
(Kallus, Puli and Shalit, 2018, Yang, Zeng and Wang,
2022, 2020) and discusses key assumptions, code, and im-
plementation of methods. Our review incorporates some
of the same papers but includes other recent and related
approaches as well.

Existing methods for combining RCT and observa-
tional data first involve estimating the CATE in either the
randomized trial data, the observational data, or both, us-
ing single-study methods. These estimators are then com-
bined in one of multiple different ways.

5.2.1 Combining separate CATE estimates from RCT
and observational studies. When combining one RCT
with one large observational dataset (the usual approach
in the methods to follow), one category of approaches
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involves estimating the CATE in both datasets. In sev-
eral of these approaches, the final CATE estimate is a
weighted combination of the two study-specific CATE es-
timates, where the weight is derived based on a method-
specific estimate of bias in the observational data. This
is the approach taken by Rosenman et al. in two papers
(2022; 2020). In each paper, Rosenman and colleagues
discuss the CATE in terms of average treatment effects
within “strata,” or subgroups that can be defined as a com-
plex function of covariates (Rosenman et al., 2022). The
authors construct strata based on effect moderators and
propensity score estimates from the observational data.
They assume that within each stratum, the true average
treatment effect is the same for both the observational and
RCT data; however, the observational data may yield a
biased estimate due to unobserved confounding. The base
estimator used in their papers is a difference in mean out-
comes between the treatment and control group within
stratum k:

o _ 2ieo, AiYi Yieo, (1 = ADY;
g Yico, Ai Yico,(1—A)

where o indicates observational study, k indexes strata,
and O is the set of individuals in the observational study
belonging to stratum k. The same estimator can be es-
tablished for the RCT by replacing o and Oy with r
and Ry, respectively. From this, Rosenman et al. (2022)
construct a “spiked-in” estimator, in which individuals
from the RCT are assigned to their corresponding strata
with individuals from the observational data. Then the
stratum-specific treatment effects are estimated as in
equation (6) but including both RCT and observational
data. They compare this “spiked-in” estimator with a dy-
namic weighted average in which stratum-specific treat-
ment effects are estimated separately in the RCT and ob-
servational data, and then the weight for combining the
RCT and observational stratum-specific treatment effects
is constructed based on the variance of the RCT estima-
tor and the mean squared error (MSE) of the observa-
tional data estimator. Ultimately, they discover that the
“spiked-in” estimator is only effective when the covari-
ate distributions are very similar across datasets and that
their dynamic weighted average has low bias regardless
of whether the covariate distributions are similar or not.
In their second paper in this stratum-specific treatment
effect framework, Rosenman et al. (2020) utilize shrink-
age estimation to combine CATE estimators from the
RCT and observational dataset. They first determine a
structure for a given shrinkage factor, A, and then optimize
an unbiased risk estimate to solve for this A. They again
define stratum-specific average treatment effects under
the assumption that treatment effect heterogeneity can be
assessed by dividing up the dataset into strata. For exam-
ple, they define a common shrinkage factor A selected by

(6)

minimizing the unbiased risk estimate such that
(7) B0 =2 — MF — %),

where r indexes the RCT estimator, o the observational
estimator, k indexes strata, and 7] and 7 can be esti-
mated as specified in equation (6). They also discuss an
estimator that is the same as equation (7) but multiplies
the difference A(7] — 7)) by the variance matrix from the
RCT. Note that both of these approaches by Rosenman
and colleagues are technically at the subgroup-level; how-
ever, these subgroups can be complex functions of covari-
ates, so the approach can be easily discussed in terms of
covariates, X, instead of stratum membership.

A recent paper by Cheng and Cai (2021) incorporates
a similar approach to the shrinkage estimation by Rosen-
man et al. (2020) by adaptively combining CATE func-
tions between an RCT and observational dataset based on
the estimated degree of bias in the observational estima-
tor to yield study-specific CATE estimates that minimize
MSE. Cheng and Cai (2021) also use a weighted linear
combination of CATE estimators from the RCT, 7] (X)
and the observational data, 77 (X):

(X)) = 7, (X) + vx {77 (X) — 77 (X))},

where s = 0, 1 denotes RCT and observational data, re-
spectively and vy is a weight function. To estimate CATE
functions in each study separately, the authors use doubly-
robust pseudo-outcomes (Kennedy, 2020) that are defined
as influence functions for the average treatment effect
(see more in the Supplementary Material, Brantner et al.,
2023b). These influence functions are then regressed on
the potential effect moderators, X, to estimate the CATE
in both the RCT (7] (X)) and observational data (7 (X))
separately. The weight vy is estimated by minimizing a
decomposition of an estimate of the mean squared error
(MSE) for the CATE function and varies based on X . This
strategy allows for the weight to heavily favor the RCT es-
timator when the observational data is biased and to com-
bine both estimators efficiently to minimize asymptotic
variance in the presence of insignificant bias in the obser-
vational data.

Cheng and Cai’s method of estimating vy is similar to
Rosenman et al. (2020) approach of estimating A using an
unbiased risk estimate. An important distinction between
the two approaches is that Rosenman et al. (2020) rep-
resent treatment effect heterogeneity through K distinct
strata within which they assume that the treatment effect
is common across the RCT and observational datasets.
Cheng and Cai (2021) instead use individual covariates
as part of their CATE estimation, and they do not require
the treatment effects to be equivalent between the RCT
and observational datasets. Cheng and Cai (2021) also use
a different base estimation procedure for the initial esti-
mates of 7 in the RCT and observational data.
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Finally, Yang, Zeng and Wang (2020) also combine
separate estimates of the CATE from the RCT and obser-
vational data to minimize MSE under the assumptions of
unconfoundedness in the RCT (Assumption 1 in the RCT;
satisfied via randomization) and a structural model for the
CATE (7(X) = 7y, (X)). This approach uses elastic in-
tegration to combine the estimates based on a hypothe-
sis test that determines whether the assumption of uncon-
foundedness in the observational data (Assumption 1 in
the observational data) is sufficiently met or not (Yang,
Zeng and Wang, 2020). To construct this test, Yang et al.
(2020) introduce

(8) Hy(X) =Y — 7 (X)A

such that E(Hy,|A,X,S) = E(Y(0)|A, X, S). From
here, they introduce a semiparametric efficient score of
the parameters o which we will call SES,. This semi-
parametric efficient score is used in their hypothesis test
with a null hypothesis of E(SESY, ) =0 where SES{, is
the score in the observational data. If this null hypothe-
sis is rejected, the ultimate parameters for the CATE are
determined solely from the RCT data; if not, parameters
are solved for using an elastic integration of both the RCT
and observational data. Estimating the parameters is dis-
cussed in more detail in Yang et al.’s (2020) paper; briefly,
they solve

N

-+ 1 SES

i=1 ¥ =0
N

by plugging in estimators of unknown quantities and solv-
ing for .

5.2.2 Estimating and accounting for the confounding
bias in the observational data. Another category focuses
on estimating the CATE—and the confounding bias, as
estimated by bringing in the RCT data—in the obser-
vational data, rather than estimating the CATE in each
dataset. Kallus and colleagues (2018) estimate the CATE
in the observational data first and then estimate a correc-
tion term to adjust for confounding. They focus on deriv-
ing a CATE estimator that is consistent. The approach as-
sumes unconfoundedness (Assumption 1) in the RCT, but
does not assume that the observational data fully overlaps
with the RCT data (Kallus, Puli and Shalit, 2018, Colnet
et al., 2021a). The authors note that the CATE function
in the observational data, t°(X) does not equal the true
CATE, 7(X) because of confounding, so they define the
confounding effect to be

n(X) =7t(X) — 1%(X)

and focus on estimating this 1 to correct the observa-
tional CATE estimator. The observational CATE is esti-
mated using any single-study approach, such as a causal
forest (Athey, Tibshirani and Wager, 2019, Brantner et al.,
2023b), and the confounding effect is estimated using the

following equation. For the propensity score in the RCT,
7" (X)=P(A=1|X,S =0), Kallus et al. define

A; 1—A;
"(X;) 1—-n"(X;)
for individuals in the RCT. This leads to the final equation
to solve to estimate the confounding effect:

q" (X)) =

nr
 =argmin ¥ (¢"(X)Y: — t°(X;) — 07 X;)’
0 =1
again applied to only individuals in the RCT, where n” is
the total number of individuals in the RCT. Finally, they

set N(X) = @TX and ultimately define
T(X) =7°(X) + n(X).

Yang, Zeng and Wang (2022) also estimate confound-
ing in the observational study directly. They focus on
the conditional average treatment effect on the treated
(CATT), t1(X) = E[Y(1) — Y(0)| X, A = 1], and define a
confounding function to estimate the effect of unobserved
confounding in the observational data. They assume un-
confoundedness in the RCT (Assumption 1), a structural
model for both the CATT and the confounding function,
¢, and that the RCT and observational data come from
the same target population, though their covariate distri-
butions need not overlap. Their confounding function is
defined in the observational study as the difference in po-
tential outcome means between treatment groups:

t(X)=E[Y(0)|A=1,X,5=1]
—E[Y(0)]A=0,X,S=1].

When all confounders are measured, ¢(X) = 0, but in re-
ality, unobserved confounders will lead the function to
be nonzero. Yang, Zeng and Wang (2022) show that this
function is only identifiable when the RCT data is used
with the observational data.

To estimate the parameters for the CATT and the con-
founding function, Yang, Zeng and Wang (2022) utilize
estimating equations and semiparametric efficiency the-
ory, similar to the approach taken by Yang, Zeng and
Wang (2020). Specifically, they define an equation sim-
ilar to that of their previous work (Yang, Zeng and Wang,
2020) shown in equation (8):

Hyy =Y — 7,0 (X)A — St4y(X)(A — e(X, 5)),

where ¥y = (¢, ¢o) are parameters and such that the final
term in the equation will only come into play when S =1,
that is, in the observational data. They solve an estimating
equation based around this H to get a preliminary esti-
mator of the parameters for t and ¢; next, they update
this solution based on a semiparametric efficient score.
The authors finally show that their estimator of the CATT,
which integrates both datasets, is more efficient than the
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CATT from the RCT data when the predictors from the
CATT function and confounding function are linearly in-
dependent.

The “integrative R-learner” falls in a similar category of
methods and is based on adapting the original R-learner
by Nie and Wager (2021) (see Supplementary Material,
Brantner et al., 2023b) to the setting with one RCT and
one observational dataset (Wu and Yang, 2021). This ap-
proach minimizes loss and is consistent and asymptoti-
cally efficient compared to an RCT-only estimator. The
authors use a very similar definition of the confounding
function as in Yang, Zeng and Wang (2022), with a slight
adjustment:

cX)=EY|X,A=1,5=1)
—-EY|IX,A=0,5=1)—-1(X),

where ¢(X) = 0 when there is no unobserved confound-
ing in the observational dataset (Assumption 1). Wu and
Yang (2021) estimate this confounding function and 7 (X)
by minimizing an empirical loss function that has the
Neyman orthogonality property, as found in the original
R-learner (Nie and Wager, 2021).

Finally, Hatt et al. (2022) propose a method that uti-
lizes the estimated confounding effect in the observational
data through a representation learning approach. Under
similar assumptions to previous methods such as consis-
tency (Assumption 3), common support across the RCT
and observational data (Assumption 4), and unconfound-
edness in the RCT (Assumption 1) among others, Hatt
et al. (2022) define ¢* to be a representation of the shared
structure of covariates in both the RCT and the observa-
tional data. They also define /4, and h, as “hypotheses” in
the RCT and observational data, respectively, fora =0, 1
indicating control or treatment. These so-called hypothe-
ses are functions meant to be applied to the representation,
¢* where for r representing membership in the RCT and
o in the observational data,

E(Y'|A =a,X =x)— E(Y°|A° =a, X° =x)
= hy (" (x)) — hg(¢™(x)).

Similarly to previous methods, Hatt et al. (2022) use a
confounding function to represent the bias, defined as
Ya = h!, — h{. Their algorithm starts by estimating ¢ and
fzg for a = 0, 1 from the observational data by minimiz-
ing an empirical loss. Next, these estimates are applied
to the RCT data and the empirical loss in this dataset is
minimized to derive an estimate for the bias y,, a =0, 1.
Finally, these estimates are combined using the fact that
Ya = h!, — h to solve for fzg =7.+ ﬁg and to ultimately
estimate the CATE as

2(X) = 1 ($(X)) — hy($(X)).

6. DISCUSSION
6.1 Comparison of Approaches

The recent influx of interest in studying treatment effect
heterogeneity has led to novel and adapted methods that
strive to improve the identification of tailored interven-
tions. Furthermore, with the increase of IPD availability
and the simultaneous research interests of combining data
sources, assessing treatment effect heterogeneity in a re-
producible manner is more feasible than before. Table 1
summarizes the aforementioned approaches, with a focus
on their data setting, modeling approach, and motivation.

6.2 Parametric and Nonparametric Approaches

Meta-analyses have been in use for many years but are
less often conceptualized in terms of identifying treatment
effect moderation. This review and some other continuing
work (i.e., Seo et al., 2021) have tied meta-analyses into
this framework. Traditional methods for assessing moder-
ation generally have involved parametric approaches that
require prespecification of the potential moderators. How-
ever, parametric regression models are limited by the need
to prespecify interaction terms, and complex nonlineari-
ties might be missed in the ultimate CATE function. Vari-
able shrinkage techniques (including priors) could help to
ensure that the most important interactions are included
without overfitting the model (Seo et al., 2021).

Newer approaches listed in Section 5.2 include flex-
ible machine learning methods that allow for compli-
cated functional forms for the covariates in the CATE
and do not require that moderators be prespecified. The
nonparametric side to estimation that is often employed
when combining an RCT with observational data allows
for the CATE function to be more complex, but there
are some potential weaknesses of these methods com-
pared with simpler parametric models. First, the result-
ing CATE estimates may be more difficult to interpret,
particularly if the goal is to pick out individual effect
moderators and assess their precise relationship with the
treatment effect. Second, the desirable theoretical prop-
erties of these methods—consistency of the estimators,
robustness against model misspecification, accuracy of
the associated confidence intervals—are for the most part
asymptotic, and so a priori one would expect that the non-
parametric/machine learning methods are better suited to
situations with enough data. The point at which the ro-
bustness of the nonparametric approaches is to be pre-
ferred over the explicitness and simplicity of the paramet-
ric approaches is perhaps best assessed using a combi-
nation of contextual or scientific background knowledge,
simulation studies, data splitting techniques like cross-
validation and training/test/validation sets, and real-world
experience with the methods.
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Comparison of approaches to estimate CATE using multiple studies

TABLE 1

651

Approach Data level Data types Model Estimand Motivation

Meta-Analysis of Interactions AD RCTs Parametric Pooled Pool treatment-covariate interactions

Meta-Regression AD RCTs Parametric Pooled Model group-level treatment-covariate
interactions

Meta-Analysis of Local Models FL RCTs Parametric Pooled Pool treatment-covariate interactions

Tan, Chang and Tang (2021) FL RCTs Nonparametric Study-specific Borrow information from other studies
to improve model

One-Stage Meta-Analysis IPD RCTs Parametric Pooled Model individual-level
treatment-covariate interactions

Meta-Analysis of IPD and AD IPD/AD RCTs Parametric Pooled Adaptively incorporate AD as
auxiliary data

Rosenman et al. (2022) IPD RCT and OD Parametric Pooled Weight combination of CATE
estimators based on OD bias

Rosenman et al. (2020) IPD RCT and OD Parametric Pooled Weight combination of CATE
estimators based on OD bias

Cheng and Cai (2021) IPD RCT and OD Nonparametric Study-specific Weight combination of CATE
estimators based on OD bias

Yang, Zeng and Wang (2020) IPD RCT and OD Parametric Pooled Weight combination of CATE
estimators based on OD bias

Kallus, Puli and Shalit (2018) IPD RCT and OD Nonparametric Pooled Estimate confounding function

Yang, Zeng and Wang (2022) IPD RCT and OD Parametric Pooled Estimate confounding function

Wu and Yang (2021) IPD RCT and OD Nonparametric Pooled Estimate confounding function

Hatt et al. (2022) IPD RCT and OD Nonparametric Pooled Estimate confounding function

AD = aggregate-level data, FL. = federated learning, IPD = individual participant-level data, RCT = randomized controlled trial, OD = observa-

tional data

In conclusion, parametric models may suffer from
model misspecification but are easy to interpret and ap-
ply. Although machine learning methods are relatively
untested, their statistical properties are mostly asymptotic,
and their implementation can be more computationally in-
tensive, they incorporate a large amount of flexibility and
could be ideal when complex nonlinear associations are
expected with a large number of variables.

6.3 Current Shortcomings and Future Directions

Because this field is growing rapidly and the meth-
ods discussed are somewhat new, many methods have
not been thoroughly compared to one another in simu-
lation studies or illustrated using real trials and/or obser-
vational datasets. There is therefore a broad opening for
future research that assesses these approaches in compar-
ison to one another through data applications. For meta-
analysis, many real-world applications exist, but not all go
in-depth into treatment effect heterogeneity. The remain-
ing approaches discussed in this study are all very recent,
and the new methods have not been tried out extensively

in real data. Real-world applications will be important
for understanding the practical implications and consid-
erations such as differential measurement across datasets,
missing data, and more—such implications must be ad-
dressed for the methods to be fully useful in applications.
Furthermore, any comparisons that have been done do not
combine parametric and nonparametric approaches in this
field of CATE estimation using multiple studies.

Another useful field of follow-up study is consolidating
and evaluating assumptions. The assumptions of methods
discussed here vary in whether they are required, relaxed,
or unneeded. It would be helpful to be able to empirically
evaluate the assumptions across datasets to examine their
feasibility, although not all assumptions explored in this
paper can be empirically assessed. Specific approaches
for inference in the form of variance estimation and con-
fidence intervals are also needed in many approaches. For
parametric approaches discussed throughout the review,
often standard methods such as Wald confidence inter-
vals can be employed (Yang, Zeng and Wang, 2022), or
bootstrapping can be used to estimate intervals and stan-
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dard errors as well. However, there is an opening for more
work to determine the best inference approaches in the
parametric and nonparametric cases, and how these ap-
proaches vary depending on the method.

More work could also be done when it comes to the type
of data being combined. One might be interested in deter-
mining how to apply the meta-analytic framework to the
combination of trial and observational data; this field has
been called cross-design synthesis and has been debated
in the literature (Debray et al., 2015). On the other hand,
the methods geared towards combining an RCT with ob-
servational data could be tailored to combine multiple
RCTs, but this option was not discussed in the methods
previously described aside from briefly in the federated
learning setting (Tan, Chang and Tang, 2021)

In terms of specific data availability settings, aggregate-
level data consistently provides a challenge for estimat-
ing individual-level effect moderation, and there are only
a couple of limited settings in which this goal can be
achieved. Therefore, more IPD data access is the sim-
plest solution to being able to derive an in-depth model
to estimate the CATE. For the case when IPD is avail-
able but cannot be shared across studies (i.e., federated
learning), the approaches discussed in this review could
be tailored to deal with this. Very few methods exist in
this field within federated learning; only one paper specif-
ically discusses treatment effect heterogeneity when data
is distributed privately across studies (Tan, Chang and
Tang, 2021). Thus, future work could be done to derive
approaches to estimate the CATE in federated learning.

Data availability also can vary within a given set of
studies, and researchers often run into the issue of sys-
tematically missing covariates—that is, covariates avail-
able in some but not all data sources. Covariates also can
be sporadically missing, where the covariate is present in
all studies but missing for some individuals throughout
the studies. Future development of the methods discussed
previously should incorporate these considerations, as
many of the new approaches leave this for future work.
Some papers have looked into these types of missingness
in a slightly separate context (Colnet et al., 2022); for
example, Audigier et al. (2018) investigated the perfor-
mance of multiple imputation procedures for systemati-
cally and sporadically missing data. Jolani et al. (2015)
also describe a generalized imputation approach for IPD
meta-analysis when covariates are systematically missing.

An appropriate follow-up question from this work is
when to best implement each method. Because the ma-
chine learning methods have not been compared to one
another in simulation studies, it is difficult to conclude
which of the methods is optimal in which scenario. This
review does attempt to clarify which type of data can be
handled by each method, and whether the method works
with RCT and observational data, or multiple RCTs.

However, further study is needed to determine which ap-
proach will yield the most accurate predictions depending
on the types of heterogeneity present in the study (i.e., het-
erogeneity across studies, heterogeneity within studies).

For those working in this field or those who want to
learn more, it is important to continue to look out for new
research that comes out, since this field is changing and
growing rapidly. At the time of this review, many future
directions of work are open for pursuit. The new methods
mentioned throughout this review increase the feasibil-
ity of reproducible conclusions regarding individualized
treatment decisions. Because we can employ data from
multiple sources, we are developing a deeper understand-
ing and can more effectively estimate individual treatment
effects that are reliable and generalizable.
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SUPPLEMENTARY MATERIAL

Single-Study CATE Estimation Methods (DOI: 10.
1214/23-STS890SUPP; .pdf). This supplement provides
an overview of approaches that estimate the conditional
average treatment effect (CATE) in a single randomized
controlled trial or observational dataset. Both parametric
and nonparametric methods are included, and the non-
parametric methods are grouped into classes to help dif-
ferentiate the approaches.
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