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Defining Replicability of Prediction Rules
Giovanni Parmigiani

Abstract. In this article, I propose an approach for defining replicability
for prediction rules. Motivated by a recent report by the U.S.A. National
Academy of Sciences, I start from the perspective that replicability is obtain-
ing consistent results across studies suitable to address the same prediction
question, each of which has obtained its own data. I then discuss concept and
issues in defining key elements of this statement. I focus specifically on the
meaning of “consistent results” in typical utilization contexts, and propose a
multi-agent framework for defining replicability, in which agents are neither
allied nor adversaries. I recover some of the prevalent practical approaches as
special cases. I hope to provide guidance for a more systematic assessment
of replicability in machine learning.

Key words and phrases: Replicability, prediction, decision theory.

1. INTRODUCTION

1.1 Preface

Prediction and machine learning technologies are play-
ing increasingly important roles in science, as many fields
leverage rapidly evolving data-generating technologies.
Yet replicability, to many an essential element of sci-
ence, remains inadequately studied in prediction, in part
because its definition in relation to prediction remains
somewhat elusive. In this article, I discuss concepts and
issues in replicability of prediction from a perspective
rooted in my experience as a practitioner of prediction
approaches in biomedical research, and propose a frame-
work for defining replicability.

1.2 Examples

I begin with examples, to give a concrete sense of ap-
plication contexts and constituents. All are drawn from
medicine, where prediction rules are regularly used to
support decision making, and replicability is a practical
concern. I hope the framework I propose will also guide
investigations in other areas. While illustrative examples
may make the concepts more concrete, my intent is not to
provide a descriptive account, but rather to encourage dis-
cussion about prescriptive theories of replicability quan-
tification.

In medicine, recent years have seen a trend toward
regulating models and software using criteria similar to
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those used for medical devices. For example, the Euro-
pean Commission’s Medical Devices Coordination Group
has published guidance on the classification of software
for regulatory purposes. A critical element of their defini-
tion is whether the software is intended to support deci-
sion making affecting patients or the public [2]. Regula-
tory requirements include validation in independent data
as well as surveillance of the stability of performance in
newly gathered data from practical settings after approval.
These general trends, as well as many specific applica-
tions, are motivating the definitions in this paper.

1.2.1 Predicting sepsis. Models alerting clinicians to
the presence of bacterial sepsis are widely used in emer-
gency medicine. In April 2020, one such model, pro-
vided by a commercial entity (Epic Systems), was deac-
tivated by one of the hospitals using it (the University of
Michigan Hospital) because of the frequency of false pos-
itive alerting associated with COVID-19 [13]. To investi-
gate this issue, [50] quantified the performance of sep-
sis detection models in 24 hospitals before and during the
COVID-19 pandemic. Among individuals with COVID-
19 virus infections, the relationship between fevers and
sepsis differs from what is observed in the majority of
the individuals in the dataset originally used for train-
ing the model. This leads to a deterioration of the per-
formance of the model, as captured, for example, by an
increase in the frequency of alerts, as the prevalence of
individuals with COVID-19 increases. In this case, the is-
sue emerged as a result of a data collection specific to
the user’s context. More broadly, Kelly et al. [21] discuss
challenges for clinical implementation of machine learn-
ing algorithms across a diverse set of populations and sys-
tems.
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1.2.2 Predicting survival of ovarian cancer patients.
High throughput measurement of gene transcription of-
fers an opportunity to more accurately predict the survival
times of patients diagnosed with cancer. In Waldron et al.
[48], focusing on ovarian cancer, we carried out a com-
prehensive review of published prediction / scoring rules
of this kind, identifying 14 from published articles that
could be recoded with a high degree of reproducibility.
Modelers divulge these algorithms with clinical users in
mind, hoping they will serve to inform decision making
at the bedside. In parallel, we comprehensively surveyed
and collected all available data sets that could be used to
assess model performance and systematically evaluated
every rule on every dataset. Our work followed, and was
in part motivated by, a case involving “premature use of
omics-based tests” [56]. Our results, among others such
as Chang and Geman [7], systematically document a con-
sistent gap between the performance of prediction rules
within the training studies (as measured, say, by cross-
validation) and the performance of the same rule in rele-
vant independent datasets. I will revisit this example later
as “the ovarian cancer example.”

1.2.3 Evaluating retinal images. Diabetic retinopathy
is diagnosed with the support of imaging techniques. Au-
tomated interpretation of images is important for primary
care settings. Investigators at the United States’ Veteran
Administration (VA) Health System [25] carried out a
large prospective multi-center validation study to perform
a head-to-head comparison of seven algorithms, including
one FDA-approved algorithm, evaluating retinal images.
I will revisit this example later as “the VA example.”

1.2.4 Screening for tuberculosis. Chest radiography is
used to screen people for pulmonary tuberculosis (TB).
Deep learning (DL) neural networks are now available to
interpret the images. Qin et al. [34] acquired images from
two existing studies in Nepal and Cameroon, and com-
pared three commercially available deep learning neural
networks algorithms in both countries. I will revisit this
example later as “the TB example.”

1.2.5 External assessment. In each of these examples,
replicability is evaluated via multiple data sets, with either
no overlap of individual units with the data used to train
the prediction rule, or a clear indication of whether this
overlap exists and how it affects the results.

2. GLOSSARY

In this section, I try to clarify the use of the terms “pre-
diction,” “prediction rule,” “replicability” and “study,”
also pointing briefly to challenges and issues with these
definitions.

2.1 Prediction

A prediction, for the purpose of this discussion, is a
statement p ∈ P about a future or unknown observable
y ∈ Y (the label). A prediction rule generates predictions
on the basis of observations x ∈ X (the predictors), and
is thus a mapping φ :X → P . In scoring systems P ⊆ R;
in statistical prediction P is either a probability space on
Y or a probability space on probability distributions on
Y . I will also consider the simple binary case where the
prediction rule directly assigns each point to one of two
possible estimated labels, in which case P =Y .

The terms observable and unknown, which I used in
my definition, are far from being self-explanatory. By ob-
served (y or x) I mean that there is agreement, within
a relevant group of individuals to be discussed further,
about the precise value of the labels or predictors. This is
not to say that I exclude disagreement altogether. Say ra-
diologists A and B classify the label of the same medical
image differently. Radiologist A judges it to reveal a “ma-
lignant” condition while B judges it to be “benign.” This
could be formalized by defining separate dimensions yA

and yB within y. My discussion, however, is within con-
fines where at some point, the disagreement within the
group ceases, for example, because it is at least agreed
that the two radiologists’ answers are indeed yA and yB .
By observable I mean that, should the observation pro-
cess be carried out, there will typically be agreement on
the value of the result. By “unknown” y, I mean simply
that knowledge of the value of y is not part of the making
of φ.

More broadly, observations are not in general separable
from the theories that provided the framework to gener-
ate them, and from the contextual values of the prediction
tasks. Think of predicting an individual’s mental health
outcomes, or their subversive political behavior, as ex-
amples. Thus my definitions, and by extension any ensu-
ing consideration about replicability, are contextual to the
goals, value systems, and theories that underlie the agree-
ment among the individuals in the reference group. The
nature and size of the reference group may vary widely in
different contexts.

Prediction is regarded by several pioneers of statisti-
cal thought as the fundamental problem of statistics [16].
Examples include de Finetti, Pearson and arguably Bayes
[43] and Laplace. Predictive approaches are supported by
both empiricist and pragmatist considerations. An impor-
tant motivation when discussing foundations is avoiding
the additional degree of abstraction necessary to define
concepts such as parameter, hypothesis, representation,
latent class and so forth.

2.2 Replicability

Among the fundamental premises of the scientific en-
terprise is a degree of concordance among experimental
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observations made in sufficiently similar circumstances.
From this follows the desideratum that scientific pre-
dictions also agree well with experimental observations
made across sufficiently similar circumstances. Defining
this rigorously is not straightforward.

In 2019, the U.S.A.’s National Academy of Sciences
(NAS) established a Committee on Reproducibility and
Replicability in Science. Their report [32] is essential
reading for those interested in this topic. Though their fo-
cus is primarily on scientific hypotheses, their definition
is a good starting point for this discussion. Conclusion
3-1 on page 36 states: “Replicability is obtaining consis-
tent results across studies aimed at answering the same
scientific question, each of which has obtained its own
data.” This definition is consistent with that given by the
American Statistical Association [6] and with other work
in statistics [18].

A distinct concept is that of repeatability: a repeatable
prediction approach produces predictions without varia-
tion across independent tests carried out by repeating the
entire process, including data collection, on the same in-
dividual or sampling unit [28]. This is important but is not
examined here.

Replicability is also used in contrast to reproducibility,
defined as “obtaining consistent results using the same
input data, computational steps, methods, and code, and
conditions of analysis” [32]. Usage of these terms is often
inconsistent and is plainly reversed in computer science—
a sarcastic twist in the parallel evolution of the same con-
cepts in siloed fields. A thread of literature debates and
documents related terminologies and their usage [22, 17,
1].

For predictions, I propose to modify the NAS definition
to say:

DEFINITION 2.1 (Replicability of prediction rules).
Replicability is obtaining consistent results across studies
suitable to address the same scientific prediction ques-
tion, each of which has obtained its own data.

Key edits are in bold. I narrowed the scientific question
to prediction, but I broadened the definition to the consid-
eration of suitable studies or datasets irrespective of the
original aim of the data collection or design.

Determining whether any two studies are suitable for
answering the same scientific prediction question is a mat-
ter of judgment. As was the case for observations in Sec-
tion 2.1, my view is that it is useful to frame this deter-
mination in terms of inter-subjective agreement. Given
the challenges of objectively defining both experimental
results, and suitability of studies to a specific prediction
question, I do not think it is useful to attempt an objective
definition of prediction replicability. A more realistic goal
is to aim for a broad consensus on observables and data,

so that data can be used to descriptively quantify repli-
cability in a way that will be found to be convincing by
many.

The NAS report proposes to think of replication as
“the act of repeating an entire study, independently of the
original investigator without the use of original data.” A
strength of such replication activity is that similarities and
differences between the original study and its replica are
themselves part of the experimental design. In my opin-
ion, this type of activity can in principle lead to the most
compelling evidence about replicability. I will call it repli-
cation by design.

Definition 2.1, however, allows for a broader empiri-
cal scope, including data generation activities that may
or may not originate to answer the same prediction ques-
tion, or any prediction question. I will call it observational
replication. While replication by design is defined in ref-
erence to a specific study and the activity of replicating it,
observational replication is defined in reference to a spe-
cific prediction task and a collection of relevant datasets.
Interest in forming collections of datasets for the purpose
of understanding prediction rule replicability and study
heterogeneity “in the wild” is growing—see, for example,
the WILDS data collections [23].

External validation studies of prediction rules gather
evidence about the applicability of a prediction rule be-
yond the conditions wherein it was trained, using avail-
able independent data [42]. This can be implemented by
design or observationally or both depending on the cir-
cumstances. There is an element of replicability in these
analyses, insofar as they compare properties of predic-
tion rules across datasets. Many study designs and ana-
lytic techniques are relevant for both tasks. An important
distinction is in the questions asked. Simplifying, valida-
tion asks weather a model’s prediction ability is adequate
for a certain set of tasks, while replicability asks whether
prediction ability varies across multiple independent stud-
ies.

2.3 Studies

Formally, a study S is a collection of units, where a unit
is a point in (X × Y). So a study of size n is a point in
(X × Y)n. It is useful to frame discussions of replicabil-
ity of predictions around a collection of relevant studies
S1, . . . , SK . The size of study k is nk .

In an example of replicability by design, focus may
be on decision rule φ, associated with a specific publi-
cation or software tool. Investigators may prospectively
perform replication studies S1, . . . , SK , (as in the VA Ex-
ample 1.2.3 where K = 2) not necessarily from identi-
cally distributed populations. In this case, we have a sharp
pre-existing definition of φ, X and Y .

In an example of observational replicability one may
gather evidence about the applicability of φ beyond the
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conditions where it was trained, using existing data.
S1, . . . , SK are chosen based on a set of inclusion criteria
which could include: sufficient similarity of X and Y to
those used in φ; sufficient relevance of the units sampled;
sufficient quality, and so forth. Specifics will be heavily
dependent on the context so it is difficult to provide gen-
eral guidance. In Section 2.5, I will revisit the examples
of Section 1.2 to help fix ideas.

Generally speaking, replicability by design is imple-
mented prospectively, while observational replicability
can also occur via retrospective data collections. The
Medical AI Evaluation Database [51] catalogues medi-
cal artificial intelligence devices recently approved by the
United States’ FDA, and systematically reports on how
they were evaluated before approval. Included are the
three algorithms for the analysis of retinal images cov-
ered in Example 1.2.3, where prospective validation stud-
ies were carried out after the training of the algorithm
was finalized. In two cases in the database the prospective
study was multi-site. Prospective validation now accounts
for a small minority of the approval processes reported by
[51], just 4 of 130. However, there is interest in a more
systematic use of prospective study design [12] for both
validation and replicability assessment.

2.4 Study-to-Study Variability

A useful way to think about replicability is to identify
interesting sources of variation across which it would be
desirable for φ to be replicable, and define studies accord-
ingly. For example, these can include variation in the tech-
nologies used for data collection, or in the selection crite-
ria for including study units.

Ideally, identification of these sources of variation may
begin as part of the initial study, through substantive in-
sight as well as formal statistical analysis. Guidance on
how to assess and report potential sources of variation ex-
ists in various application niches, such as the analysis of
batch effects in high throughput biology [27, 26, 54].

While replicability can be evaluated across any collec-
tion of studies, the utility of this assessment is far greater
if the study collection is defined and gathered in a system-
atic and comprehensive way, and based on criteria defined
prior to the replicability analysis. Considerations are sim-
ilar to those relevant in meta-analysis.

One way to conceptualize S1, . . . , SK is to think of it
as a draw from a multi-level probability model, composed
by a set of qk(x, y)’s that generate units within each study,
and a q(1, . . . ,K) drawing study indices from a hypothet-
ical population of studies. Much of the relevant variabil-
ity discussed so far will translate into variation in the joint
distributions qk .

In machine learning, cross-study heterogeneity is de-
scribed as “dataset shift.” More specifically, “concept
shift” refers to changes in the conditional probability of

labels given predictors, while “covariate shift,” refers to
changes in the joint distribution of the predictors [24, 55]
and “label shift” refers to changes in the marginal dis-
tribtion of labels. Moreno-Torres et al. [31] review and
compare terminology and concepts.

2.5 Examples

This section revisits three of the earlier examples to il-
lustrate inclusion criteria and sources of variation.

2.5.1 Ovarian cancer example. In Waldron et al. [48],
we discuss in detail a case study where we form a col-
lection of studies deemed suitable for the replicability
analysis of a family of prognostic rules. We carried out
a comprehensive review of available data, with prede-
fined inclusion criteria. Sources of variation across studies
include different microarray analysis technologies, dif-
ferences in laboratory utilization of these technologies,
differences in patient populations, including variation in
stage and tumor size, and differences in clinical annota-
tions (e.g., surgical outcomes). Nonetheless, studies are
sufficiently comparable that meta-analytic biomarker dis-
covery and model training provide robust results [38, 15].

When data collection technologies vary across studies,
a nontrivial step, both practically and conceptually, is to
map variables across studies. In this example, Ganzfried
[15] illustrates the challenges of mapping transcriptomics
data across high throughput technologies.

2.5.2 VA example. [25] prospectively collected data
within the VA system at two separate locations, which
constitute the studies in this case. Studies are homoge-
neous in important ways, including a shared IT infras-
tructure and data dictionaries, but vary in the populations
served and some of the clinical workflows.

2.5.3 TB example. [34] retrospectively identified two
relevant existing studies with sufficiently similar chest
radiography images and clinical annotations. Variation
arises from differences in populations and in referral pat-
terns, among other sources.

3. A MULTI-AGENT FRAMEWORK FOR
REPLICABILITY

Definition 2.1 refers to obtaining “consistent results.” In
this section, I propose a framework for quantifying con-
sistency of results.

3.1 Roles

In the applications of Section 1.2, obtaining “consistent
results” depends on modeling strategies of the developer,
utilization patterns by the user, as well as the nature and
variety of the collection of studies used for assessment.
The process is complex. Multiple constituencies are in-
volved and their goals are only partly overlapping. I pro-
pose to model it by defining three essential roles.
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* Modeler. This is the entity developing φ through statis-
tical / machine learning techniques.

* User. This is the entity applying φ to execute policy,
commercial, legal, medical, or other decisions in prac-
tice.

* Assessor. This is the entity or group defining the rele-
vant collection of studies S1, . . . , SK , including defini-
tion of variables, and criteria for data quality. In Sec-
tion 2.1, I mentioned a reference group who needs to
agree on observables. The assessor groups needs to be
a subset of this group.

My premise is that it is helpful to distinguish these three
roles to arrive at definitions that address important societal
uses of prediction algorithms. In some applications, roles
may overlap. For example, the user and assessor may be
the same entity. In others, the developer may also be the
user. I find it hard, however, to frame replicability as a
traditional single-agent decision problem in the vein of,
say Savage [40]. In none of the examples of Section 1.2
are the interests of all entities involved fully aligned, al-
though broadly speaking all agents may have an interest
in replicability to occur.

In one version of these roles, the modeler, solely con-
cerned about the construction of a useful φ, is Algorithmic
in the sense of Breiman’s two cultures [5]; the user, im-
mersed in a specific medical or commercial reality with
clearly defined goals, is a Rational Bayesian in the tra-
dition of Ramsey [35]; and the assessors, in an effort to-
wards neutrality, limit their scope to Descriptive statistics,
a practice as old as the field. Alternatively, assessors could
take a Fisherian perspective [14] and test for significance
of departures from replicability. Further discussion on this
can be found in Section 6.2.

Throughout, I assume that the modeler has not used any
of studies S1, . . . , SK in the training of φ.

3.2 Single User

Consider first the scenario where φ is used by a single
rational agent for supporting a specific decision, defined
as the choice of a point a in a decision space A with the
goal of maximizing the expectation of a utility function

U(a, x, y) : (A×X ×Y) →R.

A decision function is a mapping δ(φ) : P → A from pre-
dictions to actions.

I assume that the user is an expected utility maximizer
and holds a personal probability distribution π(x, y) on
the observables relevant for their decision problem. π will
affect the replicability analysis via the choice of the op-
timal decision function. Also, π may or may not reflect
information arising in studies S1, . . . , SK , but, to begin,
will be independent of k. While it is critical that studies
S1, . . . , SK are not used by the modeler in the develop-
ment of φ, the same does not necessarily hold, in my view,

for the user, although the nature of the replicability evalu-
ation does change depending on whether π reflects these
studies.

An optimal decision function δ∗ satisfies

δ∗(φ) = max
δ∈�

Eπ

{
U

(
δ
(
φ(x)

)
, x, y

)}
.

I assume the user, as a rational agent, will utilize φ solely
via δ∗.

The assessor, for each study in turn, will describe the
user’s utility through the vectors

(
U

(
δ∗(

φ(x1k)
)
, x1k, y1k

)
, . . . ,

U
(
δ∗(

φ(xnkk)
)
, xnkk, ynkk

))

for k = 1, . . . ,K . For study k, the user’s utility is, on av-
erage,

(1) Uk = 1

nk

nk∑

i=1

U
(
δ∗(

φ(xik)
)
, xik, yik

)
.

From here, I propose to define the prediction rule φ to
be replicable if its optimal application to the same deci-
sion problem in different data sets leads to approximately
the same average utility to the user. The degree of approx-
imation can be formalized in many ways, and could itself
be viewed as a decision problem if the assessor’s role can
be modeled in those terms.

A summary of deviations among Uk’s is a useful depar-
ture point. For example, the K ×K matrix U with generic
element Uk −Uk′ could be examined or visualized. Binary
summarizations of the Uk’s can be used to define replica-
bility. Two examples are in the following definitions:

DEFINITION 3.1 (Absolute ε-replicability). φ is ε-
replicable in absolute utility over S1, . . . , SK if

max
k,k′ |Uk − Uk′ | ≤ ε.

DEFINITION 3.2 (Relative ε-replicability). φ is ε-
replicable in relative utility over S1, . . . , SK if

max
k,k′

2|Uk − Uk′ |
Uk + Uk′

≤ ε.

Definitions 3.1 and 3.2 can be applied both to replica-
tion by design and observational replication, depending
on how S1, . . . , SK is formed.

Definitions 3.1 and 3.2 are conditional on observed
data. Agreeing on the conclusions only requires agreeing
on the choice of studies and data integrity.

This descriptive, empirical, definition is in contrast to
potential definitions that may require additional theoreti-
cal constructs, such as collections of hypothetical datasets
defined by a data generating model, or families of such
data generating models. In such constructs, the summa-
tion in Equation (1) would be replaced by the expectation
with respect to a joint predictive distribution reflecting the
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assessor’s knowledge and beliefs. This distribution would
not necessarily coincide with π(x, y).

The ideas of this section are the basic building blocks
for replicability assessment across multiple users and util-
ity specifications. For example, our user could have mul-
tiple applications for the same prediction rule in different
decision problems, each requiring a separate replicability
analysis. More generally, the process could be repeated
for various users separately, as illustrated in some of the
examples below, each with potentially different decision
spaces, priors, and utility functions.

3.3 Examples

3.3.1 VA example. In the VA study [25], the model-
ers are 5 participating companies which commercialize
the algorithms considered. The replicability evaluation is
carried out in parallel for 7 algorithms provided by the 5
companies. To the extent that any of these algorithms fo-
cus on the same clinical detection task, the companies are
in direct competition. The users are physicians in the VA
Health System. It is unknown, but possible, that individual
physicians may have dual interest with some of the com-
panies. The assessors are scientists working within the VA
system. The utility of the algorithms is defined for the VA
as an entity. User and assessor in this case are somewhat
aligned, but are not necessarily in complete agreement.
Assessors report not to have duality of interest with the
companies [25]. This exemplifies a complex overlap of
interests in the three roles.

The study collection consists of K = 2 VA hospitals,
one in Seattle and the other in Atlanta. These two stud-
ies are used (a) together, to produce a replicability-by-
design analysis of previous claims, and (b) separately, to
examine replicability across components of the VA sys-
tem. Labels are abstracted from medical records. A sub-
set was regraded by a second expert, and differing grades
were arbitrated by a retina specialist who did not know
the identities of the graders. This illustrates the strengths
gained from inter-subjective agreement on data. The clin-
ical decision varies with the algorithm. For simplicity one
may approximate it as whether or not additional follow-
up is needed based on the retinal scan. Though multiple
metrics are examined, the closest to a utility is the “value
per encounter,” defined by the authors as “the estimated
pricing of each algorithm to make a normal profit (i.e.,
revenue and costs = 0) if deployed at the VA.” This cal-
culation was based on a two-stage scenario in which an AI
algorithm would be used initially and then the images that
screened negative would not need additional review by an
optometrist or ophthalmologist” [25], page 1170. In the
replicability analysis |Uk − Uk′ | is the difference in value
of encounter between Atlanta and Seattle. This turned out
to be nontrivial, owing, according to the authors, both to
differences in the populations served, and to the quality

of the images. One of the centers did not perform a useful
preliminary dilation as often as the other before collecting
the images.

3.3.2 Ovarian cancer example. In the Ovarian Cancer
Study [48], the modelers are 14 research groups who pub-
lished prognostic algorithms meeting a set of criteria in
terms of clinical goals and reproducibility of code. The
replicability evaluation is carried out in parallel. The as-
sessors are scientists funded by the NIH. There is some
overlap between the assessors and the modelers for at
least two of the models. The potential conflict is addressed
by “freezing” the algorithms to the version originally pub-
lished and by providing a transparent and reproducible
analysis workflow for the replicability work. The poten-
tial users are physicians, although none of the 14 algo-
rithm was in broad clinical use at the time of the evalu-
ation. In fact the validation and replicability analyses in-
cluded among their goals to assess whether this family of
rules was ready for clinical application. No formal deci-
sion framework is considered in [48].

3.4 Dominance

Consider now comparing φ to other classifiers. Begin-
ning with two studies, a useful perspective is to partition
the average utility space as in Figure 1. The dot is po-
sitioned at coordinates (U1,U2) for φ. Compared to φ, an
alternative classifier in region B would display a better av-
erage utility in both studies, as well as better replicability,
because the empirical average utilities would be closer to
each other. An alternative in region C displays better av-
erage utility in both studies, but worse replicability; the
reverse is true in region A.

This reasoning suggests that, if we are interested in both
high utility and replicability, we can define dominance in
this context as follows. Consider classifiers φ and φ′, the
latter with average utilities U ′

k , k = 1, . . . ,K .

FIG. 1. Regions of Average Utility for comparison between φ and
alternative classifiers. The dot is positioned at coordinates (U1,U2)

for φ. The two 45◦ lines are equidistant from the main diagonal, not
shown. Letters denote regions of interest considered in the text.
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DEFINITION 3.3 (Dominance). φ dominates φ′ in ab-
solute utility and replicability over S1, . . . , SK if both

max
k,k′ |Uk − Uk′ | ≤ max

k,k′
∣∣U ′

k − U ′
k′

∣∣

and

U ′
k ≤ Uk, k = 1, . . . ,K.

Formally, this definition could be applied to the context
of Section 3.2. However, a decision maker with their own
probability model π may not decide based on the empiri-
cal average utilities, but rather update π in the light of the
studies and evaluate expected utilities accordingly. On the
other hand, the assessor would remain interested in the
empirical average utilities, and, to the extent that the util-
ity function captures objectives of common interest, may
value comparisons such as those of Figure 1. For exam-
ple, assessors can gain insight about whether replicability
is achieved at the cost of a worsened performance in some
studies.

Figure 1 suggests the possibility of a formalization
where the assessors hold their own utility function, cap-
turing replicability. We could then leverage multi-agent
decision theory approaches [20] to understand the trade
offs between the goals of accuracy and replicability. This
might be interesting in some applications but too restric-
tive in others. For example, if φ is of general public health
utility, both the user and the assessor would have an inter-
est in high values of U .

4. THE BINARY CASE

4.1 Replicability of Binary Prediction Rules

In many applications, the product of the prediction rule
are binary class labels rather that probabilities or risk
scores. I will denote this special class of algorithms by
the script variant of the letter phi, as in ϕ :X → Y .

In the user-centered approach of Section 3.2 this is a
special case obtained setting A = Y and considering the
rule ϕ constructed from prediction/scoring rule φ via

ϕ(x) = δ∗(
φ(x)

) = max
δ∈�

Eπ

{
U

(
δ
(
φ(x)

)
, x, y

)}
.

The definition of Uk specializes to:

(2) Uk = 1

nk

nk∑

i=1

U
(
ϕ(xik)

)
, xik, yik)

based on which we can apply Definitions 3.1 and 3.2.
A formal tie between ϕ and the trio (δ, U , π ) is not

always made explicitly. Nonetheless it is often the case
that binary prediction rules are built with some consider-
ation of the modeler’s expectation of x and y, and desired
properties of δ for users. A common example occurs when
modelers first build a prediction rule φ and then apply
thresholds to dichotomize the results. Another interesting

scenario covered by this case is one where modeler and
user are the same entity and the action space is binary.

When δ and π are not explicitly specified, one can still
evaluate replicability of ϕ by positing a utility function
directly as

U(ϕ,y) : (Y ×X ×Y) →R.

For example, if U(ϕ,x, y) = Iϕ=y for every x, then Uk

is the empirical proportion of cases where prediction and
outcomes coincide in study k and ε-replicability obtains
when this proportion does not vary by more than ε in any
two-study comparison. Here replicability can be charac-
terized without reference to a user’s subjective probability
distribution π . The utilities still refer to a specific, albeit
hypothetical decision problem. In practice utilities like
U(ϕ,x, y) = Iϕ=y are widely used for simplicity and in
the hope that they may capture the quality of a classifier
well enough across several potential applications.

Another commonly used approach in binary prediction
is to separately penalize the two possible errors. This is
particularly important in medical applications where it is
rarely the case that the error of assigning a low risk indi-
vidual to the high risk class is as severe as the opposite.
This holds across a wide range of clinical applications.

A typical generalization of U(ϕ,x, y) = Iϕ=y is

(3) U(ϕ,x, y) = u01Iϕ<y + u10Iϕ>y,

where u01 and u10 are negative numbers quantifying the
consequences of each of the two error types. Defining the
relative frequencies of the study-specific errors as

f k
01 = 1

nk

nk∑

i=1

Iϕ(xik)<yik

and

f k
10 = 1

nk

nk∑

i=1

Iϕ(xik)>yik

leads to

(4) Uk = u01f
k
01 + u10f

k
10.

In the canonical two-by-two table of labels versus predic-
tions, f k

01 and f10 represent the off-diagonal joint prob-
abilities. Any, but not necessarily all, aspects of the K

joint distributions of φ and y may be relevant for assess-
ing replicability. The utility function reflects information
on which are relevant in a specific problem. For example,
the two frequencies of correct predictions are not distin-
guished in this utility specification, as they are both as-
signed the maximum utility, that is, 0. The function U de-
fines a three-set partition of the four-set sample space for
φ and y into equivalence classes relevant for the user’s de-
cision. In this case, cross-study variation in the frequen-
cies of correct predictions would be irrelevant for user-
based replicability as long as the overall proportion re-
mained constant.
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Expression (4) can be further rewritten in terms of the
empirical sensitivity and specificity of detection of y = 1,
and the empirical proportions of y = 1 cases, as long as
all the latter are nonzero. Viewed this way, replicability
requires sufficient stability of these three quantities across
studies, so that their combination according to (4) may
not vary by more than ε. The empirical proportions of
y = 1 cases remains necessary for the evaluation of (4).
As a corollary, metrics that depend solely on sensitivity
and specificity cannot be viewed as special cases of (4).

Importantly, the same collection of studies may meet
the user-centered replicability definition for one user and
not another, depending on of their specification of u01 and
u10. The same classifier may be sufficiently replicable for
a user that requires high sensitivity, but not for another
requiring high specificity.

Definition 3.2 can be used to build extensions to mul-
tiple utility functions. These could arise either from the
need for the agent to use φ in multiple applications, or
from the desire to define replicability across a set of
agents, each with their own utility. Defining user-centered
replicability over a class of users requires either scaling
the utility functions so they are comparable or using a vec-
tor of bounds instead of a single ε in the definition. This
variant is not pursued here in any detail.

4.2 Examples

4.2.1 TB example. In [34], the modelers are companies
developing algorithms for image analysis. The assessors
are supported by philanthropic funding, and no conflicts
with companies are reported. Assessors selected compa-
nies based on a comprehensive literature review, further
strengthening the independence of the assessment. The
user is a hypothetical TB clinician in one of the two coun-
tries considered, Cameroon and Nepal.

The algorithms generate “abnormality scores” φ. La-
bels y encode bacteriologically confirmed TB status. As-
signment of images to predicted classes δ∗(φ) is based
on a threshold on the abnormality score. According to
the authors, there are no generally recommended thresh-
old scores to use, which motivates them to consider ROC
curves.

Each specification of u01 and u10 implies an optimal
threshold, which depends on these quantities as well as
empirical specificity, sensitivity and prevalence [30]. Per-
haps the ROC could be viewed as a step towards assessing
performance and replicability across a range of specifi-
cations for u01 and u10, each corresponding to a differ-
ent hypothetical user. However, explicit consideration of
prevalence is required for the computation of any instance
of (2), and is lacking from ROC analysis and related sum-
maries. A similar consideration applies to the C-index for
time-to-event outcomes used in [48] in Example 1.2.2.

4.2.2 Sepsis. In Example 1.2.1, φ produces a risk score
used for classifying patients according to their risk of sep-
sis. The developer is a company, providing IT services
to many hospitals. Again we have multiple users, each
aiming to optimally use the score to inform clinical deci-
sions in their emergency rooms. Assessors are academic
researchers, some of whom work at one of the K = 24
hospitals studied. Replicability is evaluated across hospi-
tals as well as over time within each hospital. Replicabil-
ity is evaluated with respect to the proportion of patients
generating sepsis alerts per day, or

∑
i Iϕ(xik)=1.

4.3 The Case of K = 1

In replicability by design, as well as in many model val-
idation efforts [42, 8] one may begin the assessment with
a single study S1. A user-based replicability analysis can
still be carried out if a benchmark value U0 is available,
typically from the modeler. In this case, replicability anal-
ysis reduces to the comparison of the vector

(
U

(
ϕ(x11), x11, y11

)
, . . . ,U

(
ϕ(xn11), xn11, yn11

) )

to the benchmark U0, followed by appropriate summariza-
tions. When knowledge of the user’s δ∗ is available to
the modelers, they can then evaluate U0 using their own
validation data, or earlier published evidence, or set-aside
data from the training set. In another scenario, modeler
and user cooperate in evaluating U0 before external as-
sessment.

5. DISTANCE REPLICABILITY

In this section, I consider a scenario with a modeler and
an assessor, possibly coinciding, and no user. This may be
relevant in early stages of development of a model, before
individual users are identified specifically, or in the case of
models that target a very wide range of users with distinct
goals, as do models embedded in smartphone apps.

Irrespective of the decision problem at hand and of
the user’s utility, the realized average utilities U1, . . . ,UK

only depend on the data through the triplets
(
φ(xik)

)
, xik, yik) i = 1, . . . nk, k = 1, . . . ,K.

Let Fk be the empirical joint cumulative distribution of
the points (φ(xik)), xik, yik) i = 1, . . . nk . A driver of
replicability across different utility functions is the sim-
ilarity among the distributions F1, . . . ,FK . If φ is a clas-
sifier for a discrete label, and the utility only depends on
x through φ, then F is a simple bivariate distribution on
a contingency table, or confusion matrix. If φ generates a
probability distribution, more general spaces are required,
but the concepts are similar.

Mirroring the development in Section 3.2, define
D(Fk,Fk′) to be a distance between the c.d.f.’s Fk and
Fk′ , such as the total variation distance on the appropriate
space. Then we can posit the following definition.
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DEFINITION 5.1 (Distance ε-replicability). φ is ε-
replicable in distance over S1, . . . , SK if

max
k,k′ D(Fk,Fk′) ≤ ε.

A predictor φ defines a partition of X into sets with
equal φ. Generally, for given S1, . . . , SK , the coarser the
partition, the smaller maxk,k′ D(Fk,Fk′) will be. Even for
the degenerate case in which φ is constant over X , Defi-
nition 5.1 may not hold owing to differences in the distri-
bution of y’s.

A contrast with Definitions 3.1 and 3.2 is provided by
the following observation. For given π and U , Uk is a
functional of Fk . The difference

Dπ,U(Fk,Fk′) ≡ |Uk − Uk′ |
fails to satisfy the definition of distance among empirical
c.d.f’s, because it is possible to have Dπ,U = 0 with Fk 
=
Fk′ .

Analyses that consider solely properties of the distribu-
tions of prediction rules conditional on class labels, such
as the ROC curve or the C-index are also not covered by
this definition, again because equality of conditional dis-
tributions alone does not imply equality of the joint distri-
butions.

When ε = 0, we can refer to distance replicability and
user-based replicability as exact. This case is not of much
practical interest as long as replicability is defined de-
scriptively, as sampling variation will generally be present
and will generate some variation across studies. Nonethe-
less it is conceptually interesting to note that exact dis-
tance replicability is a more strict requirement than ex-
act user-based replicability. In other words if φ is exactly
replicably by distance than it must be exactly replicable
for any user in the sense of Section 3.2.

To see this, consider that equality of the empirical
c.d.f’s requires equality of the support points and asso-
ciated point masses. This in turn occurs only if one of the
two studies is formed by collating b copies of the other,
b = 1,2,3, . . .. From this, follows that each element in the
sum (1) for the study with smaller sample size has b iden-
tical terms in the sum (1) for the other. As the sample size
of the larger studies is b times that of the smaller one, b

cancels in the averaging and the result follows.
For an example, return to the setting of Expression (4)

and define f k
00 and f k

11 to be the frequencies of the two
possible correct classifications. A pair of studies such that
f k

00 +f k
11 = f k′

00 +f k′
11, f k

01 = f k′
01, and f k

10 = f k′
10 but f k

00 
=
f k′

00 will have exact replicability for users with utility (3)
but will fail to achieve exact distance replicability.

6. INFERENCE

6.1 Uncertainty Quantification for Replicability

All the descriptive statements presented so far could be
complemented by uncertainty quantification. Inevitably,

this would require an additional layer of assumptions on
the part of the assessor. I will mention here approaches
that require a minimal amount of modeling and therefore
a modest degree of additional stipulations.

To begin, one can consider resampling. Bootstrap of
units within each study in turn would provide variance
estimates for each Uk and, assuming independence of the
studies, of each element of the matrix U . Variance esti-
mates obtained in this way would condition on the selec-
tion of studies S1, . . . , SK . For a simple extension, Davi-
son and Hinkley [10] describe a randomized cluster boot-
strap procedure where both clusters (in this case studies)
and observations within a cluster are sampled with re-
placement.

In some cases, uncertainty may extend to study mem-
bership of individual units. In one example, data are ex-
tracted from a single encompassing data collection in-
frastructure and partitioned into k studies based on geo-
graphical or administrative criteria, which could reason-
ably be specified at different levels of resolution. In an-
other, individuals may be assigned to studies based on
ethnicity, a trait that may not be known with certainty in
some cases. The study strap approach of Loewinger et al.
[29], is a resampling technique that generates a collection
of “pseudo-studies,” generalizing the randomized cluster
bootstrap. The study strap is controlled by a tuning pa-
rameter that determines the proportion of observations to
draw from each study, and can be used to dial the amount
of study heterogeneity in the synthetic data throughout a
range going from what is empirically observed to the case
of complete exchangeability of units. The latter extreme is
not a useful setting for a replicability analysis, but choos-
ing tuning parameters that generate collections of studies
close to the empirical distribution could provide a useful
sensitivity analysis.

For a given ε, and for any of the definitions in the
preceding sections, resampling procedures would pro-
duce a proportion of cases that satisfy ε-replicability. In
turn, these could serve as an uncertainty quantification of
whether φ meets the definition.

6.2 Rejecting Replicability

Another basic inferential question is whether repli-
cability can be rejected via a significance testing ap-
proach. For an example with distance replicability, con-
sider maxk,k′ D(Fk,Fk′) from Definition (5.1) to be the
test statistic of interest. A simple procedure for produc-
ing significance statements in this context is to generate a
permutation null for the vector (U1, . . . ,UK) and its func-
tions by permutations of the study labels, and compute
a p-value based on the permutation distribution. Multiple
testing methods can also be relevant if one wishes to sepa-
rately assess replicability for each of the pairwise compar-
isons. Elements of U are not independent, which requires
additional care.
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7. DISCUSSION

7.1 Sampling Frame

In my definition of a study, the sampling frame is the
space (X × Y). Before units are sampled into a study,
both x and y are unknown. All the descriptive measures
of replicability proposed in this paper consider joint varia-
tion of both x and y. Any heterogeneity of this joint varia-
tion across studies can and should challenge replicability.
In machine learning terminology, replicability should be
challenged by any of label shift, covariate shift or con-
cept shift [24, 55]. This applies to both the utility-based
definitions and the distance-based definitions.

The theory outlined in this paper does not cover efforts
aiming at the useful but more limited goal of assessing the
discrimination ability of prediction rules. These efforts,
in analysis and often in design, condition on the class
labels y. Examples include the ubiquitous ROC analy-
sis which is often used as a criterion, or the sole crite-
rion, for evaluating prediction rules. In scenarios with la-
bel shift, failures of replicability with important practical
consequences can elude class-conditional analyses.

7.2 Local Replicability

My discussion considered properties of algorithms
when applied to entire datasets. In this sense they are all
global properties. In many applications, it may be very in-
teresting to consider groups within these studies. Replica-
bility could be differentially evaluated within each group.
If we define X ∗ ⊂ X to be any subset of the feature space,
we can revisit every definition given in the preceding sec-
tions, upon restricting the analysis to x ∈ X ∗, provided
the set is not empty. In general, the variation of U across
studies will depend on the X ∗ chosen, and it may be the
case that replicability is achieved in some groups but not
others. When X is coarse and cells are sufficiently popu-
lated, this logic can be pushed to the level of considering
each cell separately to serve as X ∗.

7.3 Algorithmic Fairness

It is interesting to think about replicability across col-
lections of studies where individuals in different studies
have the same rights (applicants for credit or for edu-
cational opportunities), or users of predictions have the
same ethical responsibilities (medical providers). In this
type of circumstance, it may be possible to construct
meaningful collections of studies around notions of algo-
rithmic fairness of the prediction rule studied [11, 53]. Al-
gorithmic fairness in classification is concerned with pre-
venting discrimination against individuals based on their
membership in some group. A connection arises with
(global) distance replicability if one chooses the labels
1, . . . ,K to represent these groups. If φ satisfies distance
replicability, it will be difficult for any user to discrimi-
nate among groups, on average, using φ.

It is more difficult to tie fairness to user-based repli-
cability, as fair algorithms could produce different user’s
utilities in different groups, as a result of “benign” vari-
ation in the Fk’s, that is, variation that is not associated
with a discriminative use of φ.

Alternatively, a protected groups assignment could be
used to investigate local replicability by appropriately
choosing X ∗. Achieving local replicability within a pro-
tected group would not protect from discrimination if it
exists, but may quantify its replicability.

These considerations apply to groups. Dwork et al. [11]
define a seminal framework for fair classification at the
individual level. In their words, it comprises:

1. a (hypothetical) task-specific metric for determining
the degree to which individuals are similar with respect
to the classification task at hand;

2. an algorithm for maximizing utility subject to the fair-
ness constraint, that similar individuals are treated
similarly.

Here the definition of similarity among individuals
should not include the group membership we intend to
protect. Their approach, like the one I describe here, is
also multi-agent, and also considers the modeler sepa-
rately from the user. In contrast, it also explicitly consid-
ers the rights of the individuals being classified, which
I did not consider. Extending the framework of this pa-
per to include individuals as a fourth role could be inter-
esting. Depending on the application context, individuals
may have an interest in any subset of fairness, replicabil-
ity, and prediction accuracy.

7.4 Retraining

I discussed how to define and quantify replicability of
an algorithm φ that was previously trained and remains
fixed throughout the analysis. My goal is to capture the
implementation stage of a machine learning algorithm,
once the development is completed. From a methodologi-
cal perspective, however, the question of replicability can
and should also be asked of model fitting techniques.

Given a collection of k studies, and analogously to what
I described in Section 3.2, replicability of training tech-
niques can be explored using designs that consider every
pair of studies. For an example, in Bernau et al. [3] we
defined a cross-study validation matrix whose generic el-
ement measures predictive performance when one trains a
predictor in study k and evaluates it externally in k′. Our
goal was to investigate properties of methodologies for
training classifiers when external replicability is a goal. In
contrast to how U is defined in Section 3.2, φk is differ-
ent in every row and trained de novo using study k. Both
U and the Bernau et al. version, offer the opportunity to
learn about study heterogeneity and outlying studies. See
also [44].
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Another useful design for investigating replicability of
training techniques is the leave-one-study-out design [39],
which applies the jackknife logic at the study level. When
training on K −1 studies, however, a challenge is to prop-
erly incorporate potential study-to-study heterogeneity, an
issue considered in Section 7.6.

In the social sciences, Vijayakumar and Cheung [46]
investigated the replication success of R2 in both cross-
validation and cross-study validation. They focus on three
replication aims: (1) tests of inconsistency to examine
whether single replications reject the originally reported
study-specific R2; (2) tests of consistency based on a re-
gion of equivalence, and (3) meta-analytic intervals for
accuracy measures—a goal also pursued by Waldron et
al. [48].

In addition to prediction performance and the utility
thereof, it is interesting from a methodological stand-
point to investigate replicability of various aspects of
model construction, such as dimensionality, smoothness,
variable selection and variable importance. Examples in-
clude [47]. Yu and Kumbier [52] emphasized model sta-
bility as a guiding principle. They define it as acceptable
consistency of a data result relative to appropriate per-
turbations of the data or model. As examples of perturba-
tion they suggest jackknife, bootstrap, and cross valida-
tion. Multi-study extensions would be interesting from a
replicability standpoint.

7.5 Testing Replicability and Replicability of Testing

In a testing approach to replicability of prediction rules,
such as that sketched in Section 6.2, the null hypothesis
is the equality of the expected utility of a prediction rule
across studies for a specific user or users. This has not to
my knowledge been explored in depth.

On the other hand, there is a robust and useful litera-
ture on assessing the replicability of tests of hypotheses,
which considers whether a hypothesis about the data gen-
erating mechanism is replicably rejected in multiple stud-
ies. Often this is framed in the context of multiple testing.
An important foundational paper in this area is Heller and
Benjamini [18] who introduce the r-value, defined as the
lowest false discovery rate at which a given finding can be
called replicated.

The context of meta-analysis, the systematic combina-
tion of results from studies investigating the same hy-
potheses, offers an interesting contrast to replicability
analyses in terms of how the two approaches relate to
study-to-study variation. For an anecdote tied to Exam-
ple 1.2.2, in [15] we identified expression of the gene
CXCL12 as prognostic of overall survival in patients with
ovarian cancer, via the combined analysis of 14 studies,
in only two of which CXCL12 expression is a significant
predictor. [19] offers additional and more systematic ex-
ploration of the discordance of goals and results between
meta-analysis and replicability.

Since the publication of [15], substantial biological evi-
dence has accumulated on the prognostic role of this gene
(see [9] and references therein), thanks to progress in can-
cer immunology research. This supports the conclusion
of the meta-analysis. On the other hand, the data of [15]
would most likely provide evidence against the replica-
bility of the hypothesis that CXCL12 expression is as-
sociated with survival, as measured by, say, an r-value.
And although such analysis was not carried out, the data
would likely have questioned replicability of prediction
rules based solely on CXCL12 expression as well. Repli-
cability reaches a different conclusion compared to meta-
analysis because it asks a different question. Replicabil-
ity is intentionally sensitive to the heterogeneity of study
designs, the challenges in the normalization across tech-
nologies of the measured expression of a gene with only
moderate transcriptional activity, and, if implemented via
significance, the study sample sizes. In contrast, meta-
analysis hopes to find signal in the midst of this variation.

7.6 Learning Replicability

After discovering failures of replicability, whether in in-
ference or prediction, a reasonable next step is to move
beyond a single study analysis, and tackle the study-to-
study variation as part of the learning process. In infer-
ence, meta-analysis exemplifies this.

In prediction, availability of multiple datasets suitable
to address the same or similar prediction question offer
the opportunity to train algorithms that can incorporate
knowledge of cross-study heterogeneity and produce pre-
dictions that are more likely be replicable in future data
from the same or other studies. The domain generaliza-
tion literature is particularly germane here as it focuses
on leveraging multiple datasets in model training to im-
prove prediction performance on an unseen, but related,
domain [49].

In statistics, interest in drawing upon multiple data sets
in prediction is also emerging. Approaches include meta-
analyzing model coefficients (e.g., [37, 36, 45]) and en-
sembling models with weights that reward replicability.
Specifically, in Patil and Parmigiani [33] we propose a
multi-study generalization of stacking [4] to achieve this
goal. Our approach comprises two stages: (1) training
models on each study separately, and (2) ensembling them
via a stacking regression on the merged data. This struc-
ture rewards cross-study prediction performance as en-
semble weights are primarily driven by how well each
model predicts across studies different from the one where
it was trained.

7.7 Prediction Tasks

An interesting direction for generalization is to char-
acterize replicability of a broadly defined prediction task,
such as response to a drug treatment based on information
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on a patient’s genome. In this case, we would not neces-
sarily have a specific φ or a methodology of interest. We
would need to establish a class of measurements of x and
y that constitute a sufficiently homogeneous collection to
be worth studying from a replicability viewpoint, and po-
tentially extend the definition of replicability to classes of
φ’s or optimally selected φ’s within a class.

7.8 Broader Perspectives

An open question is whether or not to approach the def-
inition of replicability from a game theoretic perspective.
I imagine there would be many ways of meaningfully do-
ing so depending on the context in which the prediction
is developed, used, and assessed. My attempt here is to
take a slightly more general perspective where the goal is
to provide definitions that address trustworthiness of pre-
dictions across a relevant scientific community. Of course
this is predicated on trust in the assessor and data. But
even taking this trust for granted, there remains a gap be-
fore we arrive at statements about a specific prediction
rule for a specific application. This is the gap my defini-
tions try to fill.

While I discussed illustrative examples to make the
concepts more concrete, I did not intend to provide a de-
scriptive theory but rather to encourage discussion about
prescriptive theories of replicability quantification. As a
first step, my sense is that an explicit and transparent state-
ment about who are the actors in the roles of modeler, user
and assessor is a foundational step that should be encour-
aged in these analysis. The next is to explicitly connect the
metrics used to quantify replicability to users’ decisions.

I will close by noting that ultimately, as a field, we
would benefit from examining the development, valida-
tion and trustworthiness of prediction rules in their his-
torical, cultural, and social contexts. Such efforts would
be close in scope to the field of science and technology
studies [41] which has already contributed important per-
spectives to epistemology.
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