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Abstract. Response-Adaptive Randomization (RAR) is part of a wider class
of data-dependent sampling algorithms, for which clinical trials are typically
used as a motivating application. In that context, patient allocation to treat-
ments is determined by randomization probabilities that change based on the
accrued response data in order to achieve experimental goals. RAR has re-
ceived abundant theoretical attention from the biostatistical literature since
the 1930s and has been the subject of numerous debates. In the last decade,
it has received renewed consideration from the applied and methodological
communities, driven by well-known practical examples and its widespread
use in machine learning. Papers on the subject present different views on its
usefulness, and these are not easy to reconcile. This work aims to address this
gap by providing a broad, balanced and fresh review of methodological and
practical issues to consider when debating the use of RAR in clinical trials.

Key words and phrases: Ethics, patient allocation, power, sample size im-
balance, time trends, type I error control.

1. INTRODUCTION

Randomization to allocate patients to treatments is
a defining element of a well-conducted study, ensur-
ing comparability of treatment groups, mitigating selec-
tion bias and providing the basis for statistical inference
(Rosenberger and Lachin, 2016). In clinical trials, a ran-
domization scheme that does not change with patient re-
sponses is still the most frequently used patient alloca-
tion procedure. Alternatively, randomization probabilities
can be adapted during the trial based on the accrued re-
sponses, with the aim of achieving experimental objec-
tives. Objectives that can be targeted with a Response-
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Adaptive Randomization (RAR) procedure include maxi-
mizing power of a specific treatment comparison and as-
signing more patients to an effective treatment during the
trial.

Few topics in the biostatistical literature have received
as much attention over the years as RAR (also known as
outcome-adaptive randomization). RAR has been a fer-
tile area of methodological research, as illustrated by the
reference section of this paper. Despite this, the uptake
of RAR in clinical trial practice remains disproportion-
ately low in comparison with the theoretical interest it has
generated since first proposed by Thompson (1933). Its
value in clinical trials remains a subject of active debate
within biostatistics, especially during health care crises
such as the Ebola outbreak (Brittain and Proschan, 2016,
Berry et al., 2016) or the COVID-19 pandemic (Proschan
and Evans, 2020, Magaret et al., 2020, Villar, Robertson
and Rosenberger, 2021).

This continued conversation has been enriching, but is
also often presented in papers geared towards arguing ei-
ther in favor or against its use in clinical trials, which has
given RAR a controversial flavour. As well, some of these
debates have been somewhat repetitive, as seen by how
many of the points raised by Armitage (1985) over 35
years ago continue to be revisited. Examples of possibly
conflicting views on the use of RAR are given below.
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If you are planning a randomized comparative
clinical trial and someone proposes that you
use outcome adaptive randomization, Just Say
No (Thall, 2020).

. . . optimal [RAR] designs allow implementa-
tion of complex optimal allocations in multi-
ple-objective clinical trials and provide valid
tools to inference in the end of the trial. In
many instances they prove superior over tradi-
tional balanced randomization designs in terms
of both statistical efficiency and ethical criteria
(Rosenberger, Sverdlov and Hu, 2012).

RAR is a noble attempt to increase the like-
lihood that patients receive better performing
treatments, but it causes numerous problems
that more than offset any potential benefits. We
discourage the use of RAR in clinical trials
(Proschan and Evans, 2020).

The above examples help explain why the use of RAR in
clinical trials remains rare and debated. Given the many
different classes of RAR that exist, making general state-
ments around the relative merits of RAR may well be an
elusive goal. This paper therefore aims to give a balanced
and fresh perspective. Instead of conveying a position in
favor or against the use of RAR in clinical trials in gen-
eral, we emphasize the less commonly known arguments
(which also tend to be ones that are more positive towards
the use of RAR).

In parallel and in stark contrast to this discussion, in
machine learning the uptake and popularity of Bayesian
RAR (BRAR), also referred to as Thompson Sampling
(TS), has been incredibly high (Kaufmann and Gariv-
ier, 2017, Kaibel and Biemann, 2021, Lattimore and
Szepesvári, 2020). Their use in practice has been driven
by substantial gains in system performances. Meanwhile,
in the clinical trial community, a crucial development was
the use of BRAR in some well-known biomarker led trials
such as I-SPY 2 (Barker et al., 2009) and BATTLE (Kim
et al., 2011). The goal of these trials was to learn which
subgroups (if any) benefit from a therapy and to change
the randomization to favor patient allocation in that di-
rection. While these trials include other elements besides
RAR, they have set a precedent that RAR is feasible (at
least in oncology), and have set expectations which, con-
trary to what the ECMO trials did in the 1980s (see Sec-
tion 2), are driving investigators towards RAR in other
contexts. Both in the machine learning literature and in
these trials, the BRAR methodology used is a subclass of
the larger family of RAR methods.

After an extensive review of the literature, we recog-
nized the need for an updated and broad discussion aimed

at reconciling apparently conflicting arguments. We be-
lieve this is important because some of these (mostly neg-
ative) positions on RAR persist, despite recent method-
ological developments over the past 10 years directly ad-
dressing past criticisms (see, e.g., Section 3.4). We com-
pare recently proposed RAR procedures and use a new
simulation study (in Section 3.1) to illustrate how some
viewpoints can tell only part of the story while a broad
look can change conclusions. Additionally, we hope this
paper will drive methodological research towards areas
that are less developed and help those considering the use
of RAR in a specific experiment to navigate the relevant
literature in light of recent opposing views (Proschan and
Evans, 2020, Villar, Robertson and Rosenberger, 2021,
Magaret et al., 2020). Overall, our ultimate message is a
call for careful thinking about how to best deliver exper-
imental goals through the appropriate use of trial adapta-
tions including (but not limited to) RAR.

We end this section by providing some general nota-
tion, basic concepts and metrics to assess RAR. We give
a historical overview of RAR in Section 2, including a
summary of classification criteria of different procedures
(Section 2.3). We subsequently explore some key estab-
lished views about RAR in Section 3. We conclude with
final considerations and a discussion in Section 4.

1.1 Some Notation and Basic Concepts

We first describe the setting and notation necessary for
a rigorous presentation of the debate around RAR. Note
that Table 2 in the Appendix provides a summary of all the
acronyms used in this paper. Our focus is on clinical trials
in which a fixed number of experimental treatments (la-
beled 1, . . . ,K with K ≥ 1) are compared against a con-
trol or standard of care treatment (labeled 0) in a sample
of n patients. The sample size n is also assumed fixed.
This can, in principle, be relaxed to allow for early stop-
ping of the trial, but for the purposes of this paper we
consider early stopping as a distinct type of adaptation.
Treatment k ∈ {0,1, . . . ,K} is assigned to patient i (for
i ∈ {1, . . . , n}), generating a random response variable
Yk,i , which represents the potential outcome of patient i

under treatment k (where the outcome is the primary out-
come measure of the clinical trial).

We let ak,i be a binary indicator variable denoting the
observed treatment allocation for patient i, with ak,i = 1
if patient i is allocated to treatment k and ak,i = 0 other-
wise. Each patient is allocated to one treatment only, and
hence

∑K
k=0 ak,i = 1. Typically, patients enter the trial and

are treated sequentially, either individually or in groups.
In most of the RAR literature, patients are assumed to
be randomized and treated one after another, with each
patient’s outcome being available before the next patient
needs to be treated. This assumption can be relaxed and
incorporate delayed patient outcomes (e.g., for time-to-
event data).
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We assume Yk,i depends on a treatment-specific param-
eter of interest θk . For notational convenience, we let Yi

denote the realised outcome of patient i, i.e., Yi = Yk∗,i
where k∗ is the realised treatment assignment for patient
i with ak∗,i = 1. We assume a parametric model for the
primary outcome, ignoring nuisance parameters and other
parameters of secondary interest for the final analysis. For
example, one could have a Bernoulli model for binary re-
sponses, where θk = pk (the probability of a successful
outcome for a patient on treatment k):

Pr(Yk,i = y | ak,i = 1) = p
y
k (1 − pk)

(1−y) for y = 0,1.

Other examples include a normal or exponential model
for continuous outcome variables.

As a general way to represent treatment allocation
rules, we let πk,i = P(ak,i = 1) denote the probability
that patient i is allocated treatment k. Note that we require∑K

k=0 πk,i = 1 and πk,i > 0 ∀i. Also note that our defini-
tion excludes nonrandomized response-adaptive methods
like the Gittins Index (Villar, Bowden and Wason, 2015).
Traditional (fixed) randomization has πk,i = ck for all i,
and for implementing Equal Randomization (ER) we set
ck = 1/(K + 1) for all k. Finally, we let Nk denote the
total number of patients that are allocated to treatment k

by the end of the trial. In general, Nk = ∑n
i=1 ak,i is a

random variable, with the constraint
∑K

k=0 Nk = n.
In a RAR procedure, the allocation probabilities that

define the sampling strategy are adapted based on the
past treatment allocations and response data. More for-
mally, let ai = (a0,i , a1,i , . . . , aK,i) denote the allocation
vector for patient i. We also let a(j) = {a1, . . . ,aj } and
y(j) = {y1, . . . , yj } denote the sequence of allocations and
responses observed for the first j patients (where both a(0)

and y(0) are defined as the empty set). RAR defines the al-
location probability πk,i conditional on a(i−1) and y(i−1),
that is,

(1) πk,i = Pr
(
ak,i = 1 | a(i−1),y(i−1)).

Note that for a procedure to be response-adaptive, the
πk,i must depend on both a(i−1) and y(i−1). This frame-
work is flexible enough to allow for the RAR procedure to
also depend on covariates that may affect the primary out-
come. Letting x(j) = {x1, . . . ,xj } be a vector of observed
covariates, we define a Covariate-Adjusted Response-
Adaptive (CARA) procedure by letting πk,i = Pr(ak,i =
1 | a(i−1),y(i−1),x(i)). With the increasing interest in
‘precision medicine’, the role of covariates is crucial in
developing targeted therapies for patient subgroups. Many
of the issues we discuss here for RAR are directly appli-
cable (to some degree) to CARA. However, we do not
include a specific discussion for CARA to preserve the
focus of our work on RAR. We instead refer the reader
to the review by Rosenberger and Sverdlov (2008), more
recent papers by Atkinson, Biswas and Pronzato (2011),

Baldi Antognini and Zagoraiou (2011, 2012), Metelkina
and Pronzato (2017) and the book by Sverdlov (2016).
Zagoraiou (2017) discusses how to choose a CARA pro-
cedure in practice.

A final concept to introduce is that of hypothesis test-
ing. We focus on the case where there is a global null
hypothesis H0 : θk = θ0 ∀k versus one-sided alternatives
H1,k : θk > θ0 for some k (assuming a larger value of θk

represents a desirable outcome). At the end of the trial, a
test statistic denoted Tn = t (a(n),y(n)) is computed based
on the observed data. The specific form of the test statis-
tic depends on the outcome model and the hypothesis of
interest. For example, if the primary outcome is binary,
the Maximum Likelihood Estimator (MLE) of the success

rate on treatment k is p̂k =
∑n

i=1 ai,kyi,k∑n
i=1 ai,k

. In a two-arm trial,

one could use a Z-test based on the MLE of the success
rates:

(2) Zn = p̂1 − p̂0√
p̂0(1 − p̂0)/N0 + p̂1(1 − p̂1)/N1

.

1.2 Assessing the Performance of RAR Procedures

In the literature, many ways of assessing RAR have
been considered. Most metrics used in the clinical trial
setting focus on inferential goals. Terms such as ‘power’
and ‘patient benefit’ can have very different meanings de-
pending on the trial context. Here, rather than providing
an exhaustive list of all possible metrics for comparing
variants of RAR, we present some of the most relevant
ones in three categories: testing, estimation and patient
benefit.

Testing metrics: Type I error and power. For confirma-
tory trials, the control of frequentist errors is especially
important from a regulatory perspective. A type I error is
defined as falsely rejecting a null hypothesis H0. For a
trial with a single null hypothesis H0 : θ = θ0, the type I
error rate is defined as α = Pr(rejecting H0 | θ = θ0), and
for confirmatory trials this is controlled below some fixed
level (typically 0.05 or 0.025). When there are multiple
null hypotheses, various generalizations can be consid-
ered, the most common being the family-wise error rate,
which is the probability of making at least one type I error.
This reflects the inherent multiplicity problem and type I
error rate inflation that can occur if multiple hypotheses
are tested without adjustment.

In contrast, a type II error is failing to reject H0 when
it is in fact false. For a trial with a single null hypoth-
esis H0 and corresponding point alternative hypothesis
H1 : θ = θ1, the power of the trial is defined as 1 −
β = Pr(rejecting H0 | θ = θ1). However, when there are
multiple hypotheses (e.g., in the multi-arm setting with
K > 1), the ‘power’ of the trial admits various defini-
tions. For instance, marginal power (the probability of re-
jecting a particular nonnull hypothesis), disjunctive power
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(the probability of rejecting at least one nonnull hypoth-
esis) and conjunctive power (the probability of reject-
ing all nonnull hypotheses) are all used as definitions of
‘power’ (Vickerstaff, Omar and Ambler, 2019). Addition-
ally, some authors define power as the probability of sat-
isfying a criterion that reflects the goal of the trial. For
example, power could be defined as the probability of se-
lecting the best experimental treatment at the end of the
trial, or as a Bayesian concept such as posterior predictive
power. A RAR procedure can have a high power accord-
ing to one definition but not according to another.

Estimation metrics. There are metrics related to estima-
tion and the information gained after a trial. A key consid-
eration (particularly for adaptive designs, see Robertson
et al., 2023a, Robertson et al., 2023b) is bias, defined
as a systematic tendency for the estimate of the treat-
ment effect to deviate from its true value. More formally,
the mean bias of an estimator θ̂k for θk is defined as
E(θ̂k) − θk . An estimator may be biased due to the trial
adaptations affecting its sampling distribution, or due to
heterogeneity in the observed data (i.e., where the data
does not come from the same underlying distribution,
such as when there is a time trend in the response variable
as considered in Section 3.4). Apart from bias, another
important consideration is the variance var(θ̂k) or mean
squared error of an estimator E[(θ̂k − θk)

2], reflecting the
classical bias-variance trade-off. Although precision of
estimators is less often reported in the literature, this can
be compared using estimation efficiency measures; see,
for example, Flournoy, Haines and Rosenberger (2013),
Sverdlov and Rosenberger (2013a).

Patient benefit metrics. Different metrics to capture the
“ethical” or patient benefit properties of RAR have been
considered. These are less frequently reported than test-
ing and estimation metrics, which is somewhat counter-
intuitive given the most common motivation to use RAR
is to better treat more patients in a trial. Nevertheless, this
lack of reporting is consistent with inferential goals be-
ing paramount. Some examples of patient benefit metrics
include:

• The number of treatment successes (for binary out-
comes) or the total response (for continuous outcomes)
in the trial:

∑n
i=1 Yi . When averaged for binary out-

comes, this is referred to as the Expected Number of
Successes (ENS). Alternatively, some authors focus on
the number of treatment failures (

∑n
i=1(1 − Yi) for bi-

nary outcomes) and report the Expected Number of
Failures (ENF).

• The proportion of patients allocated to the best arm:
p∗ = ∑n

i=1 ai,k∗/n, where k∗ = argmaxkθk (if k∗ is not
unique then one option is to sum over all arms that are
‘best’).

The above metrics are concerned with the individual
ethics of the n patients within the trial, which is distinct

from the collective ethics of the overall population (which
is related to testing and estimation metrics). We return to
this issue of patient horizon in Section 3.6. A related met-
ric is the ‘time to reach a conclusion’ in a clinical trial. In
the setting where there is a large patient population out-
side of the trial, enabling a successful therapy to be found
quickly (and hence rolled out more widely) can be an im-
portant consideration.

Other metrics. Aside from the three categories of met-
rics described above, there are also metrics focusing on
the level of imbalance in the number of patients in each
treatment arm at the end of the trial. One way of defin-
ing the imbalance in arm k is (Nk/n− 1/(K + 1)), which
makes a comparison between the observed allocation ratio
and a completely balanced allocation between the arms.
See Section 3.1 for other examples of imbalance metrics.

A final metric is the total sample size of the trial. Typ-
ically, this is defined as the minimum number of patients
required to achieve a target power (given type I error con-
straints) under some pre-specified point alternative hy-
pothesis. This is closely linked with testing metrics but
there are patient benefit considerations as well. For ex-
ample, suppose one out of the (K + 1) treatment options
is substantially better than the rest. Using ER means that
Kn/(K + 1) of the patients within the trial will be al-
located to suboptimal treatments. Hence, minimizing the
sample size n has patient benefit advantages as well. In
contrast (as discussed in Berry and Eick, 1995), increas-
ing the sample size to maintain power when using RAR
may deliver higher overall patient benefit across the tar-
get population (i.e., including future patients), suggest-
ing trade-offs between benefit for patients in the trial and
those outside of it; see also Section 3.6.

2. A HISTORICAL PERSPECTIVE ON RAR

“Those who cannot remember the past are con-
demned to repeat it”. (George Santayana)

We now give an overview of the historical development
of RAR, which naturally motivates how we classify RAR
procedures in Section 2.3. A distinguishing feature of this
history is that a large amount of high quality theoreti-
cal work is paired with few highly influential examples
of RAR in practice. We thus present the history of RAR
in two distinct areas: theory (Section 2.1) and practice
(Section 2.2). A timeline summarizing some key devel-
opments is given in Figure 1.

2.1 RAR Methodology

The origins of RAR date back to Thompson (1933),
who suggested allocating patients to the more promising
treatment arm via a posterior probability computed us-
ing interim data. RAR seems to have been the first form
of an adaptive design ever proposed. Another influential
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FIG. 1. Timeline summarizing some of the key developments around the theory and practice of RAR in clinical trials. J&T = Jennison and Turnbull
(2000), RSIHR = Rosenberger et al. (2001).

early procedure was the play-the-winner rule, proposed
by Robbins (1952) and then Zelen (1969). Although par-
tially motivated by Thompson’s idea, this is a nonrandom-
ized (deterministic) rule, where a success on one treat-
ment leads to the subsequent patient being assigned to that
treatment, while a failure leads to the subsequent patient
being assigned to the other treatment.

RAR also has roots in the methodology for sequen-
tial stopping problems (where the sample size is ran-
dom), as well as bandit problems (where resources are
allocated to maximize the expected reward). Since most
of the earlier work in these areas is nonrandomized (i.e.,
concerns deterministic solutions), we do not review them
here. Rosenberger and Lachin (2016, Section 10.2) gives
a brief summary of the history of both of these areas, and
an overview of multi-arm bandit models is presented in
Villar, Bowden and Wason (2015). For a review of non-
randomized algorithms for the two-arm bandit problem,
see Jacko (2019).

An important development for the clinical trials setting
was the introduction of randomization to otherwise deter-
ministic response-adaptive procedures. Randomization is
essential for mitigating biases and ensuring comparabil-
ity of treatment groups and is the default patient alloca-
tion mode in confirmatory clinical trials (Rosenberger and
Lachin, 2016). An example is the Randomized Play-the-
Winner (RPW) rule proposed by Wei and Durham (1978).
The RPW rule can be viewed as an urn model: each treat-
ment allocation is made by drawing a ball from an urn
(with replacement) and the composition of the urn is up-
dated based on the responses. In the following decades,
many RAR rules based on urn models were proposed,
with a focus on generalizing the RPW rule. We refer to
Hu and Rosenberger (2006, Chapter 4) and Rosenberger
and Lachin (2016, Section 10.5) for a detailed description.

Urn-based RAR procedures are intuitive, but are not op-
timal designs in a formal mathematical sense (see Sec-
tion 2.3). From the early 2000s, a perspective on RAR
emerged based on optimal allocation targets, which are
derived as a solution to a formal optimization problem.
For two-arm group sequential trials, a general optimiza-
tion approach was proposed by Jennison and Turnbull
(2000, 2001), which minimizes the expected value of a
loss function, which is an arbitrary weighted average of

N0 and N1. This led to the development of a whole class
of optimal RAR designs. An early example for two-arm
trials with binary outcomes is Rosenberger et al. (2001).
More examples are given in Section 3.2. In order to im-
plement optimal allocation targets, a key development
was the modification by Hu and Zhang (2004a) of the
Doubly-adaptive Biased Coin Design (DBCD) originally
described by Eisele (1994). Subsequent theoretical work
by Hu and Rosenberger (2006) focused on asymptotically
best RAR procedures, that is, those with the minimum
asymptotic allocation variances for any target allocation
ratio (which typically depends on unknown parameters
that need to be estimated using the response data, see the
equations in Section 3.2). This led to the development of
the class of efficient RAR designs known as ERADE (Ef-
ficient Response-Adaptive Randomization Designs) for
two-arm trials proposed by Hu, Zhang and He (2009).

All the RAR procedures above are myopic, in that they
use past responses Yk,i and past allocations ak,i to deter-
mine the allocation probabilities πk,i , without consider-
ing future patients to be recruited into the trial and the
information they could provide. A recent development
is nonmyopic or forward-looking RAR based on solu-
tions to the multi-bandit problem. The first such proce-
dure was by Villar, Wason and Bowden (2015) for binary
responses, with subsequent work by Williamson et al.
(2017) accounting for a finite time-horizon (for normally-
distributed outcomes, see Williamson and Villar, 2020).

2.2 RAR in Clinical Practice

One of the earliest uses of RAR in clinical practice was
the ECMO trial (Bartlett et al., 1985). This trial used the
RPW rule on a study of critically ill babies randomized
either to ECMO or to the conventional treatment. In to-
tal, 12 patients were observed: one in the control group,
who died and 11 in the ECMO group, who all survived.
This extreme imbalance in sample sizes was a motivation
for running a second randomized ECMO trial, using fixed
randomization (Ware, 1989).

These ECMO trials have been the focus of much de-
bate, with these two papers accruing over 1000 citations.
Indeed, to this day the first ECMO trial is regarded as a
key reason not to use RAR in clinical practice, due to the



190 ROBERTSON, LEE, LÓPEZ-KOLKOVSKA AND VILLAR

extreme treatment imbalance and highly controversial in-
terpretation (Burton, Gurrina and Hussey, 1997). Most re-
cently, Proschan and Evans (2020) states “[RAR] had an
inauspicious debut in the aforementioned ECMO trial”.
Largely due to the controversy around these trials, there
was little use of RAR in clinical trials for the subsequent
20 years. The pace of methodological work on RAR and
adaptive designs more generally was negatively impacted
as well (Rosenberger, 2015). One exception was the Flu-
oxetine trial (Tamura et al., 1994), which again used the
RPW rule, but with a burn-in period to avoid large im-
balances in treatment groups. For an in-depth discussion
of both trials, we refer to Grieve (2017), which also dis-
cusses two BRAR trials from the early 2000s.

More recently, there have been high-profile clinical tri-
als that use BRAR as a key (but not the only) part of their
adaptive design. Some examples in oncology include the
BATTLE trials and the I-SPY 2 trial. The BATTLE tri-
als (Kim et al., 2011, Papadimitrakopoulou et al., 2016)
used RAR based on a Bayesian hierarchical model, where
the randomization probabilities are proportional to the ob-
served efficacy based on the individual biomarker pro-
files. Similarly, the I-SPY 2 trial (Barker et al., 2009) used
RAR based on Bayesian posterior probabilities specific
to different biomarker signatures. These trials have gen-
erated valuable discussions about the benefits and draw-
backs of using RAR in clinical trials (Das and Lo, 2017,
Korn and Freidlin, 2017, Siu et al., 2017). Meanwhile,
the REMAP-CAP platform trial (Angus et al., 2020) also
incorporated BRAR as part of its design, in the context
of community-acquired pneumonia. This trial was subse-
quently tailored to respond to the COVID-19 pandemic
(REMAP-CAP Investigators, 2021).

Although the BATTLE and I-SPY 2 trials use RAR as
part of their designs, their primary focus was to select op-
timal treatments for particular biomarker signatures, and
can more precisely be described as master protocol tri-
als (Woodcock and LaVange, 2017). Arguably the main
feature of I-SPY 2 was the mechanism to ‘graduate’ or
drop treatments and to add new ones as they arise. For re-
cent examples of clinical trials using BRAR in a ‘vanilla’
fashion (although still including early stopping rules), we
refer to Faseru et al. (2017), O’Brien et al. (2019), Barohn
et al. (2021).

2.3 Classifying Procedures: A Taxonomy of RAR

Some papers (perhaps unintentionally) criticize the use
of RAR in general or make broad conclusions using ar-
guments that only apply to a specific class of procedures,
as is (still) the case for the RPW rule and the ECMO trial
(Proschan and Evans, 2020). In reality, RPW is just one
example of a RAR procedure out of many, and hence the
value of other RAR procedures that are markedly different
is harder to see. The vast number of different RAR pro-
cedures is a challenge that nonexperts and experts alike

face with when exploring the literature, which has accu-
mulated (and continues to quickly evolve).

We now define several families of RAR procedures
and discuss how they fit different classification criteria.
This discussion illustrates the wealth and breadth of RAR
methodology and its importance when assessing its value
for a specific application. However, the criteria are not ex-
haustive or able to completely differentiate all types of
RAR. As discussed next, we expect most classifications
to require frequent revisiting given the current pace of de-
velopment in the area (Villar, Robertson and Rosenberger,
2021). Nevertheless, these classifications can allow a bet-
ter understanding of the many existing approaches and
how they compare. We note that the number of references
of each RAR family throughout the paper is a reflection of
the attention each method received in the past rather than
an intended focus.

Optimal and design-driven RAR. An important broad
distinction first described by Rosenberger and Lachin
(2002), Hu and Zhang (2004a) is between ‘optimal’ and
‘design-driven’ RAR. In their works, this is defined as the
following:

1. ‘optimal’ RAR is based on deriving an optimal al-
location target (or a sampling ratio), by optimizing a spe-
cific criterion based on a population response model.

For example, in Rosenberger et al. (2001) an optimal
RAR is defined for a two-arm trial based on the popula-
tion model for binary responses. The power at the end of
the trial (using a Z-test as given in equation (2)) is fixed,
while the ENF is minimized. Formally, using the notation
in Section 1.1 and defining ρ = N1/n, the optimization
problem is as follows:

(3)

min
ρ

{
(1 − p0)N0 + (1 − p1)N1

}

subject to
p0(1 − p0)

N0
+ p1(1 − p1)

N1
= C.

The solution ρ∗ =
√

p1√
p0+√

p1
is then the optimal target ra-

tio (given the above optimization criteria). To implement
this in practice, it is necessary to sequentially estimate the
parameters p0 and p1 and use a RAR procedure such as
DBCD or ERADE to update the allocation probabilities
to converge towards the (current estimated) target ratio.

2. ‘design-driven’ RAR is based on rules, which are
established with intuitive motivation, but are not optimal
in a formal sense.

An example is the RPW rule for binary responses. The
rules for computing and choosing the allocation probabil-
ity can be formulated using an intuitive urn-based model
(see Section 2.1 and Wei and Durham, 1978 for details).

A key difference for these two RAR classes is the com-
putation of allocation probabilities. While approaches in
family (1) rely on optimizing some objective function that
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describes aspects of the population model explicitly, those
belonging to family (2) typically have an intuitive mo-
tivation that is not defined analytically from a popula-
tion model. However, while classifying approaches into
these two families is useful, there are some important
caveats. First, an intuitive design may eventually be for-
mally shown optimal in some sense. Second, some proce-
dures are harder to classify into the above criteria. Con-
sider bandit-based designs, such as the Forward-Looking
Gittins Index (FLGI) rule in Villar, Wason and Bowden
(2015) or the design by Williamson et al. (2017). These
are based on an optimization approach but do not ex-
plicitly target a pre-specified optimal allocation ratio like
in family (1). In certain cases (like for FLGI), these are
heuristic approximations and can be viewed as having a
more intuitive motivation.

An final caveat is that there are different optimality no-
tions to consider. Asymptotic optimality, for example, was
first introduced by Robbins (1952). For example, TS is
asymptotically optimal in terms of minimizing cumulative
regret (see, e.g., Kaufmann, Korda and Munos, 2012). So
for large trials, one could consider it as belonging to fam-
ily (1). However, in small samples, if TS (and its general-
ization proposed by Thall and Wathen (2007)) is used for
assigning more patients to the better arm, then this would
be closer an intuitive motivation (as in family 2), as only
dynamic programming achieves ENS optimality in a finite
sample.

Parametric and nonparametric RAR. A classification
that follows naturally from the previous one is that of
parametric and nonparametric (or distribution free) RAR.
This classification captures some of the spirit of the opti-
mal versus design-driven while being possibly less sub-
ject to caveats. Parametric RAR procedures rely on as-
sumptions that the response data are drawn from a given
parametric probability distribution to compute and update
the allocation probabilities πk,i .

For example, the optimal RAR procedure pro-
posed in Rosenberger et al. (2001) and defined
above requires estimates of p0 and p1 in order
to determine πk,i .

In contrast, nonparametric RAR procedures do not ex-
plicitly rely on a parametric probability distribution nor
on the corresponding parameter estimates to compute and
update πk,i .

For example, the RPW rule (and urn designs)
are nonparametric designs that can be used for
any binary data, regardless of the underlying
probability distribution.

Bayesian and frequentist RAR. The distinction of RAR
based on the frequentist or Bayesian approach to statis-
tics may apply to the inference procedure used for the fi-
nal analysis and/or to the design of the RAR itself. In our

opinion, the inferential classification may not be helpful,
since the choice of inference procedure depends on the
experimental goals and regulators’ preferences between
these approaches. Moreover, some innovative approaches
have Bayesian design aspects but the inference focuses
on the frequentist operating characteristics; see, for ex-
ample, Ventz, Parmigiani and Trippa (2017). Arguably a
more relevant element to consider is the objective(s) of
RAR (see the subsection ‘RAR with different objectives’
below). Readers interested in understanding the pros and
cons of frequentist and Bayesian inference are referred to
Wagenmakers et al. (2008), Samaniego (2010) as this is
outside the scope of our review. For references on the use
of Bayesian designs in the clinical trial context, we re-
fer to Chow and Chang (2007), Chevret (2012), Rosner
(2020), Stallard and Rosenberger (2020).

A common definition of a Bayesian design is that a
prior distribution is explicitly incorporated into the design
criteria/optimization problem and/or into the calculation
of the allocation probabilities. However, the use of a prior
distribution is not the defining element of BRAR as one
can sometimes find equivalent frequentist designs using
penalized MLEs or a specific prior distribution. For exam-
ple, where the posterior mode with a uniform prior coin-
cides with the MLE in a RAR procedure then an update of
probabilities is the same from a frequentist and Bayesian
perspective (see also a hybrid formulation for the RPW
rule given in Atkinson and Biswas, 2014, p. 271).

Hence, in the context of RAR, we define a Bayesian
design as “a design rule that depends recursively on the
posterior probability of the parameters” (Atkinson and
Biswas, 2014), where the recursive updating of the allo-
cation probabilities is done via Bayes theorem. The prior
information itself can be updated at time points when ac-
crued trial data is available; see Sabo (2014). Such designs
are called “fully Bayesian” in Ryan et al. (2016), and al-
low the full probabilistic description of all uncertainties,
including future outcomes (i.e., predictive probabilities).

For example, in TS with K = 1 and binary re-
sponses, the randomization probability is the
posterior probability that p1 > p0 (given the
prior information and available trial data), that
is, π1,i = P(p1 > p0 | ai−1,yi−1).

A RAR procedure is frequentist if a frequentist approach
is used for both estimating the unknown parameter(s) and,
more importantly, for updating the allocation probabili-
ties.

For example, the DBCD or ERADE can be
used to target different allocations (see Sec-
tion 3.2), where the πk,i are given as functions
of the MLE.
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RAR methodological families. RAR procedures can be
classified in terms of the broad methodological ‘families’
they belong to: RAR based on TS (e.g., those suggested
by Thall and Wathen, 2007), RAR based on urn models
(e.g., RPW), RAR that target a pre-specified (optimal) al-
location ratio (e.g., the DBCD) or bandit-based RAR pro-
cedures (e.g., the FLGI). This classification naturally fol-
lows from the historical developments in the area. How-
ever, RAR procedures could conceivably belong to more
than one family and new types of RAR are continuously
being developed.

RAR with different objectives. RAR procedures differ
in the goal they are designed to achieve, either formally
or intuitively. While some consider competing objectives
such as both power and patient benefit (see Section 1.2
for definitions), others prioritize one over the other. Addi-
tionally, procedures can be nonmyopic or myopic in their
objective formulation. For some RAR procedures, such
as those targeting an optimal allocation, the optimiza-
tion problem can account for multiple objectives; see,
for example, Hu, Zhu and Hu (2015), Baldi Antognini
and Giovagnoli (2010, 2015). More generally, within a
Bayesian framework there is scope for composite utili-
ties for multi-objective experiments (McGree et al., 2012,
Baldi Antognini and Giovagnoli, 2015, Metelkina and
Pronzato, 2017). The selection of an objective may also
require computational considerations.

Therefore, one classification for comparing RAR pro-
cedures is that of single objective procedures versus those
that have composite objectives (reflecting trade-offs and
constraints between possibly competing goals of an ex-
periment).

For example, FLGI in Villar, Wason and Bow-
den (2015) has a nonmyopic patient bene-
fit goal, while Neyman allocation (see Sec-
tion 3.2) has a power goal.

For example, the design in Williamson et al.
(2017) has a nonmyopic patient benefit goal
subject to a power constraint, while the ‘op-
timal’ allocation of Rosenberger et al. (2001)
has a myopic patient benefit goal also subject
to a power constraint.

3. ESTABLISHED VIEWS ON RAR

In this section, we critically examine some published
views on RAR. We present them labeled as questions be-
cause we have received them as such during informal ex-
changes with trial statisticians. We provide a complemen-
tary view of the use of RAR procedures, which acknowl-
edges problems and disadvantages, but also emphasizes
the solutions and advantages.

In what follows, we base our discussion on specific ex-
amples of RAR procedures only as a way to illustrate how

some established views on RAR do not hold in general.
The examples used below are by no means presented as
the ‘best’ RAR procedures, or even necessarily recom-
mended for use in practice—such judgments critically de-
pend on the context and goals of the specific trial under
consideration. We defer the reader to Section 4 for dis-
cussion on the latter point.

3.1 Does RAR Lead to a Substantial Chance of
Allocating More Patients to an Inferior Treatment?

Thall, Fox and Wathen (2016) give a number of unde-
sirable properties of RAR, including the following:

. . . there may be a surprisingly high probabil-
ity of a sample size imbalance in the wrong di-
rection, with a much larger number of patients
assigned to the inferior treatment arm, so that
[RAR] has an effect that is the opposite of what
was intended.

In simulation studies of two-arm trials with a binary out-
come in Thall, Fox and Wathen (2015, 2016), TS is shown
to have a substantial chance (up to 43% for the parameter
values considered) of producing sample size imbalances
in the wrong direction (i.e., the inferior arm) of more than
20 patients out of a maximum of 200. While this result
holds for the specific BRAR procedure in the scenarios
under consideration in that work, these conclusions do not
hold for all types of RAR. These authors were among the
first to compute this metric of sample size imbalance, and
most of the RAR literature does not report it (or related
ones). Hence it is unclear how other families of RAR pro-
cedures perform in this regard. To address this, we per-
form a new simulation study in the two-arm trial setting
with a binary outcome. We compare the following range
of RAR procedures:

• Permuted block randomization [PBR]: patients are ran-
domized in blocks to the treatments so that exact bal-
ance is achieved for each block (and hence at the end
of the trial).

• Thall and Wathen [TW(c)]: randomizes patient i to
treatment k = 1 with probability

π1,i = qc

qc + (1 − q)c
.

Here, q = P(p1 > p0 | ai−1,Y i−1) is the posterior
probability that the experimental treatment has a higher
success rate than the control treatment. The parameter
c controls the variability of the procedure. Setting c = 0
gives ER, while setting c = 1 gives TS as described in
Section 2.3. Thall and Wathen (2007) suggest setting c

equal to 1/2 or i/(2n).
• Randomized Play-the-Winner Rule [RPW]: see Sec-

tion 2.1 and Wei and Durham (1978).
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• Drop-The-Loser rule [DTL]: a generalization of the
RPW proposed by Ivanova (2003).

• Doubly-adaptive Biased Coin Design [DBCD]: a res-
ponse-adaptive procedure that we use to target the op-
timal ratio of Rosenberger et al. (2001). For details, see
Hu and Zhang (2004a).

• Efficient Response-Adaptive Randomization Designs
[ERADE]: a response-adaptive procedure that we use
to target the optimal allocation ratio of Rosenberger
et al. (2001). It attains the lower bound of the alloca-
tion variances; see Hu, Zhang and He (2009) for further
details.

• Forward-looking Gittins Index [FLGI(b)]: a RAR pro-
cedure with near-optimal patient benefit properties pro-
posed in Villar, Wason and Bowden (2015). This de-
pends on a block size b.

• Oracle: hypothetical nonrandomized rule that assigns
all patients to the true best-performing arm (i.e., πk∗,i =
1 for k∗ = maxk pk and πk,i = 0 otherwise for all i).

In our simulations, we initially set p0 = 0.25 and vary
the values of p1 (with p1 > p0) and n. Unlike in Thall,
Fox and Wathen (2016), we do not include early stop-
ping in order to isolate the effects of using RAR proce-
dures. We evaluate performance in terms of several im-
balance metrics including E(N1 − N0) and the (2.5 per-
centile, 97.5 percentile) of (N1 − N0); the probability of
a imbalance of more than 10% of the total sample size in
the wrong direction (i.e., allocating more patients to the
inferior arm), denoted Ŝ0.1 = Pr(N0 > N1 + 0.1n) when
p1 > p0; the ENS and its standard deviation. Note that our
measure of Ŝ0.1 coincides with the single imbalance mea-
sure used in Thall, Fox and Wathen (2016) when n = 200.

Table 1 shows the results for p1 = 0.35 and n ∈
{200,654}. When n = 200, TS has a substantial probabil-
ity (Ŝ0.1 ≈ 14%) of an undesirable imbalance in the wrong
direction, while using the Thall and Wathen (TW) proce-
dure reduces this probability, which (as expected) agrees
with Thall, Fox and Wathen (2016). Unsurprisingly, the
bandit-based procedures (i.e., FLGI) also has relatively
large values of Ŝ0.1, although interestingly these are still
smaller than for TS which could be due to their nonmy-
opic nature. Meanwhile, ER has Ŝ0.1 ≈ 0.07, which pro-
vides a simple theoretical baseline (although in practice,
for larger trials a form of PBR would be most suitable). In
contrast, the RPW, DBCD, ERADE and DTL procedures
all have values of Ŝ0.1 of 0.01 or less, which is also re-
flected in the ranges for the sample size imbalance. These
procedures are hence comparable to PBR in terms of this
imbalance metric.

The total sample size (in comparison to the treatment
effect) can have a large impact on these imbalance met-
rics. When n = 200, the trial has low power to declare the
experimental treatment superior to the control. If the sam-
ple size is chosen so that ER yields a power of at least

TABLE 1
Properties of various patient allocation procedures, where p0 = 0.25

and p1 = 0.35. Results are from 104 trial replicates

n Procedure N1 − N0 Ŝ0.1 ENS

200 ER 0 (−28, 28) 0.069 60 (6.4)
(Low power) PBR 0 0 60 (6.4)

Oracle 200 0 70 (6.7)
TS 95 (−182, 190) 0.137 65 (8.5)
FLGI(b = 5) 114 (−176, 190) 0.111 66 (8.3)
FLGI(b = 10) 115 (−172, 190) 0.100 66 (8.2)
TW(1/2) 74 (−90, 174) 0.085 64 (7.5)
TW(i/2n) 50 (−28, 122) 0.038 63 (6.8)
RPW 14 (−16, 44) 0.011 61 (6.5)
DBCD 17 (−10, 46) 0.003 61 (6.4)
ERADE 16 (−6, 42) 0.000 61 (6.4)
DTL 14 (−4, 32) 0.000 61 (6.6)

654 ER 0 (−50, 50) 0.005 196 (11.7)
(High power) PBR 0 0 196 (11.6)

Oracle 654 0 229 (12.2)
TS 461 (−356, 640) 0.042 220 (17.0)
FLGI(b = 5) 511 (−619, 645) 0.054 222 (18.5)
FLGI(b = 10) 511 (−617, 645) 0.051 222 (18.0)
TW(1/2) 384 (44, 594) 0.011 215 (14.2)
TW(i/2n) 272 (54, 456) 0.010 210 (13.0)
RPW 46 (−8, 100) 0.000 199 (11.8)
DBCD 55 (8, 106) 0.000 199 (11.8)
ERADE 54 (16, 96) 0.000 199 (11.7)
DTL 46 (14, 80) 0.000 198 (11.7)

80% (when using the standard Z-test), then we require
n ≥ 654. For n = 654, Table 1 shows that the values of
Ŝ0.1 are substantially reduced for TS, the TW procedure
and the bandit-based procedures. The ranges for N1 − N0
suggest that TS and the bandit-based procedures still have
a small risk of getting ‘stuck’ on the wrong treatment.

Another important factor is the magnitude of the dif-
ference between p0 and p1 or the treatment effect. The
scenario considered above with p0 = 0.25 and p1 = 0.35
is a relatively small difference (as shown by the large
sample size required to achieve a power of 80%), and
the more patient-benefit oriented rules would not perform
well in terms of sample size imbalance in this case. Ta-
ble 3 (in the Appendix) shows the results when p1 = 0.45
and n = 200. The values of Ŝ0.1 are substantially reduced
for TS as well as for the TW and bandit-based proce-
dures, being much less than for ER and not substantially
greater than using PBR. In terms of the mean and ranges
for N1 −N0, these are now especially appealing for FLGI.
Figure 2 extends this analysis by considering the value of
Ŝ0.1 for a range of values of p1 from 0.25 to 0.85 when
n = 200 to illustrate how this issue evolves as we move
away from the null hypothesis scenario (while recognis-
ing that small differences of p1 from p0 may not be practi-
cally important). For p1 greater than about 0.4, the prob-
ability of a substantial imbalance in the wrong direction
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FIG. 2. Plot of Ŝ0.1 for various RAR procedures as a function of p1, where p0 = 0.25 and n = 200. Each data point is the mean of 104 trial
replicates.

is higher for a simple ER design than for all of the other
RAR procedures considered.

Figure 2 demonstrates another issue of Ŝ0.1 as a perfor-
mance measure. This probability of imbalance increases
for the RAR procedures considered as the difference
p1 − p0 decreases, but as this difference decreases, so
do the consequences of assigning patients to the inferior
treatment. Table 1 depicts trade-offs between sample size
imbalance (as measured by N1 − N0 and Ŝ0.1) and the
ENS. The most patient-benefit oriented RAR procedures
(TS and FLGI) have the highest ENS, which are in fact
close to the highest possible ENS (the ‘Oracle’ proce-
dure). However, these procedures also perform the worst
in terms of sample size imbalance. This demonstrates our
general point that careful consideration is needed by look-
ing at a variety of performance measures instead of focus-
ing on a single measure such as Ŝ0.1.

Summary. In summary, RAR procedures do not neces-
sarily have a high probability of a substantial sample size
imbalance in the wrong direction, when compared with
using ER or PBR. This probability crucially depends on
the true treatment effect, as well as the planned sample
size of the trial. These results suggest that sample size
imbalance may be larger when the effect size is smaller
(i.e., being close to the null), and we hypothesize that this
may generalize beyond the binary context.

If sample size imbalance is of particular concern in a
specific trial context, an option is to consider the use of
constraints to avoid imbalance, such as the constrained

optimization approach of Williamson et al. (2017). Re-
cently, Lee and Lee (2021) also proposed an adaptive clip
method (i.e., having a lower bound on the allocation prob-
abilities) that can be used in conjunction with BRAR to
reduce the chance of imbalance. Potential sample size im-
balances need to be carefully evaluated in light of other
performance metrics: restricting imbalance limits the po-
tential for the patient benefit gains RAR can attain. Of
course, if sample size imbalance needs to be strictly con-
trolled in a trial, a restricted randomization scheme (such
as PBR) may be more appropriate than using RAR.

3.2 Does the Use of RAR Reduce Statistical Power?

Perhaps one of the most well-established views about
RAR procedures is that their use reduces statistical power,
as stated in Thall, Fox and Wathen (2015):

Compared with an ER design, [RAR] . . . [has]
smaller power to detect treatment differences.

Similar statements appear in Korn and Freidlin (2011a)
and Thall, Fox and Wathen (2016). Through simulation
studies, these papers (all focused on the two-arm setting
with binary outcomes) show that ER can have a higher
power than BRAR for a fixed sample size, or equivalently
that a larger sample size is needed for BRAR to achieve
the same power and type I error rate as an ER design.

These papers only consider the BRAR procedure pro-
posed by Thall and Wathen (2007) (see Section 3.1 for
a formal definition). As shown in Hu and Rosenberger
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FIG. 3. Plot of the optimal allocation ratios ρ∗
Neyman and ρ∗

R as a function of p1, for p0 ∈ {0.3,0.5,0.7}.

(2006), RAR procedures will have additional variability
introduced by the correlation between the outcome Yk,i

and allocation ak,i , and this in turn translates into a higher
variability var(Tn) of a statistical test Tn (hence reducing
power). Yet, as we discuss, there exist RAR procedures
that account for this, so that their use does not necessarily
reduce power. In this section, we focus solely on power
considerations and assume the use of standard (frequen-
tist) inferential tests to make power comparisons, which
we return to in Section 3.3. Finally, we present the two-
arm and multi-arm trial settings in distinct subsections be-
low, since (as discussed in Section 1.2) the definition of
‘power’ becomes more complex in the latter setting.

Two-arm trials. Some RAR procedures formally tar-
get optimality criteria as a reflection of the trial’s objec-
tives, including power. In a binary outcome setting, as in
Rosenberger and Hu (2004) with the Z-test given in equa-
tion (2) and defining ρ = N1/n, one strategy is to fix the
power of the trial and find (N0,N1) to minimize the total
sample size n. This is equivalent to fixing n and finding
(N0,N1) to maximize the power. This gives the optimal
ratio known as Neyman allocation, ρ∗

Neyman:

(4) ρ∗
Neyman =

√
p1(1 − p1)√

p0(1 − p0) + √
p1(1 − p1)

.

In general, ρ∗
Neyman �= 1/2, and hence ER does not maxi-

mize the power for a given n when responses are binary.
The notion that ER maximises power in general is an es-
tablished belief that appears in many papers (see, e.g.,
Torgerson and Campbell, 2000) but it only holds in spe-
cific settings (e.g., if comparing means of two normally-
distributed outcomes with a common variance).

An ethical problem with this allocation maximising
power is that if p0 + p1 > 1, more patients will be as-
signed to the treatment with the smaller success rate.
This shows the potential trade-off between power and pa-
tient benefit and motivated the alternative approach by
Rosenberger et al. (2001) as in Section 2.3; see equation

(3). The optimal solution ρ∗
R is as follows:

(5) ρ∗
R =

√
p1√

p0 + √
p1

.

Figure 3 shows the optimal allocation ratios ρ∗
Neyman

and ρ∗
R as a function of p1 for different values of p0.

Both coincide with ER only when p1 = p0 while ρ∗
R al-

ways allocates more patients to the treatment that has the
higher success rate. Looking at ρ∗

Neyman, for p1 +p0 < 1 a
higher allocation to the treatment with the higher success
rate will be more powerful than ER.

For many types of endpoints, such as binomial and sur-
vival outcomes, the model parameters in the optimization
problem are unknown and need to be estimated from the
accrued data. These estimates can then be used (for exam-
ple) with DBCD (Hu and Zhang, 2004a) or ERADE (Hu,
Zhang and He, 2009) to target the optimal allocation ra-
tio. Using the DBCD in this manner, Rosenberger and Hu
(2004) found in their simulation studies that it was

. . . as powerful or slightly more powerful than
complete randomization in every case and ex-
pected treatment failures were always less.

Similar theoretical results are in Yuan and Yin (2011).
This is consistent with general guidelines given by Hu
and Rosenberger (2006) for using RAR procedures in a
clinical trial, one of which is that power should be pre-
served. RAR procedures that achieve this aim have been
derived (in a similar spirit to the optimal allocation above)
for continuous (Zhang and Rosenberger, 2006) and sur-
vival (Zhang and Rosenberger, 2007) outcomes. Another
line of work by Baldi Antognini, Vagheggini and Zago-
raiou (2018), Baldi Antognini et al. (2018) has looked
at modifying the classical Wald test statistic for normally
distributed outcomes in order to simultaneously improve
power and patient benefit.

Multi-arm trials. Similar concerns about ‘power’ for
multi-arm RAR procedures have been discussed. For ex-
ample, Wathen and Thall (2017) simulate a variety of five-
arm trial scenarios and conclude:
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In multi-arm trials, compared to ER, several
commonly used adaptive randomization meth-
ods give much lower probability of selecting
superior treatments.

Similarly, Korn and Freidlin (2011b) simulate a four-arm
trial and find that a larger average sample size is needed
when using a RAR procedure instead of ER in order to
achieve the same marginal power. As discussed in Sec-
tion 1.2, there are different power definitions in this case.
Lee, Chen and Yin (2012) reach similar conclusions in the
three-arm setting for disjunctive power. However, all of
these papers only consider variants of the TW procedure
(the “commonly used adaptive randomization methods”
quoted above) for multi-arm trials, and these conclusions
may not hold for RAR procedures in general.

The optimal allocation in Rosenberger et al. (2001) can
be generalized for multi-arm trials, assuming a global null
hypothesis. The allocation is optimal in that it fixes the
power to reject the global null and minimizes the ENF.
This was first derived by Tymofyeyev, Rosenberger and
Hu (2007), who showed through simulation that for three
treatment arms, using the DBCD to target the optimal al-
location

. . . provides increases in power along the lines
of 2–4% [in absolute terms]. The increase in
power contradicts the conclusions of other au-
thors who have explored other randomization
procedures [for two-arm trials].

Similar conclusions are given in Jeon and Hu (2010),
Sverdlov and Rosenberger (2013a) and Bello and Sabo
(2016).

These optimal allocation procedures maintain (or in-
crease) the power of the test to reject the global null,
but may have low marginal powers compared with ER in
some scenarios, as shown in Villar, Wason and Bowden
(2015). However, even considering the marginal power
to reject the null hypothesis H0,k∗ : θk∗ = θ0 for the best
treatment k∗, Villar, Wason and Bowden (2015) propose
nonmyopic RAR procedures (i.e., the “controlled” FLGI
rules) that in some scenarios have both a higher marginal
power and a higher ENS when compared with ER with
the same sample size.

Finally, the power comparisons made throughout this
section have been against ER. A different comparison
would be against group-sequential and Multi-Arm Multi-
Stage (MAMS) designs using ER in each stage. Both
Wason and Trippa (2014) and Lin and Bunn (2017) show
that BRAR can have a higher power than MAMS designs
when there is a single effective treatment. More recently,
Viele et al. (2020a) show that the control allocation plays
a part in achieving the power of a study when a variant of
the TW procedure is implemented. These authors also ex-
plore other design aspects in conjunction with the control
allocation, and find that RAR can have acceptable power
in some (Viele et al., 2020b).

Summary. In conclusion, if RAR is used to improve pa-
tient benefit properties (in terms of ENF or ENS), then
the power compared to ER can be preserved through an
appropriate choice of the RAR procedure for the trial set-
ting. Of course, this needs to be made with the objectives
of the trial in mind (see Section 4). If maximizing power
is a key objective, then using ER (instead of RAR) may
not necessarily achieve this, even for two-arm trials. As
discussed above, the nature of the response distribution
plays an important role in these considerations, with much
of the RAR literature focusing on binary responses.

3.3 Does RAR Make Valid Statistical Inference (More)
Challenging?

The Bayesian approach to statistical inference allows
the seamless analysis of results of a trial that uses RAR.
However, as noted in Proschan and Evans (2020),

The frequentist approach faces great difficul-
ties in the setting of RAR . . . Use of RAR
eliminates the great majority of standard anal-
ysis methods . . .

Rosenberger and Lachin (2016) comment on the reason
for this:

Inference for [RAR] is very complicated be-
cause both the treatment assignments and re-
sponses are correlated.

This raises a key question: how can an investigator validly
analyze a trial using RAR in a frequentist framework? In
terms of the notation in Section 1.1, this can be formalized
as determining whether standard test statistics Tn can be
relied on for hypothesis testing (i.e., without inflation of
type I error rates), and whether standard estimators θ̂k are
biased (and if so, by how much). Such questions are im-
portant for adaptive trial designs in general and not only
for those using RAR. The challenge of statistical infer-
ence (within the frequentist framework) is naturally still
seen as a key barrier to the use of RAR in clinical prac-
tice. We next discuss how valid statistical inference, es-
pecially in terms of type I error rate control and unbiased
estimation, is possible for a wide variety of RAR proce-
dures. Note that in what follows, we do not consider time
trends and patient drift, as a separate discussion is given
in Section 3.4.

Asymptotic inference. A straightforward approach to
frequentist inference for a trial using RAR is to use stan-
dard statistical tests and estimators without adjustment.
This is justified by asymptotic properties that hold for a
large class of RAR procedures, including in the multi-arm
setting. First, Melfi and Page (2000) prove that an estima-
tor θ̂k that is consistent (i.e., θ̂k → θk as the sample size
n → ∞) when Yk,i are independent and identically dis-
tributed will also be consistent for any RAR procedure
for which Nk → ∞.
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Second, Hu and Rosenberger (2006) show that when
responses Yk,i follow an exponential family, simple con-
ditions on the RAR procedure ensure the asymptotic nor-
mality of the MLE. The condition is that the allocation
proportions for each arm

∑n
i=1 1{ai,k = 1}/n → ρ, where

ρ ∈ (0,1). This implies that the RAR procedure cannot
‘select’ a treatment during the trial by having allocation
probabilities tending to 1 or 0. Since many test statis-
tics are functions of the MLE, this also implies that the
asymptotic null distribution of such test statistics is not
affected by the RAR. Furthermore, if a given RAR proce-
dure does not have this property, then (as pointed out to us
by Alessandra Giovagnoli) there is a modification to en-
sure it holds by shrinking the (target) allocation probabil-
ities towards 1/2; see Baldi Antognini, Novelli and Zago-
raiou (2022a). Asymptotic results are the justification for
the first guideline given by Hu and Rosenberger (2006)
on RAR procedures, which states that “Standard inferen-
tial tests can be used at the conclusion of the trial”.

Finite sample inference. The validity of asymptotic re-
sults to use standard tests and estimators requires a suffi-
ciently large sample size, and the effect of a smaller sam-
ple size on inference is greater the more imbalanced the
RAR procedure is (e.g., see the results in Williamson and
Villar, 2020). As noted by Rosenberger, Sverdlov and Hu
(2012), for some RAR procedures in a two-arm setting,
there is extensive literature on the accuracy of asymp-
totic approximations under moderate sample sizes using
simulations (Hu and Rosenberger, 2003, Rosenberger and
Hu, 2004, Zhang and Rosenberger, 2006). For the DBCD,
sample sizes of n = 50 to 100 are sufficient, while for urn
models reasonable convergence is achieved for n = 100.
For these procedures, Gu and Lee (2010) explore which
asymptotic test statistic to use for a clinical trial with a
small to medium sample size and binary responses.

When the asymptotic results above cannot be used, ei-
ther because of small sample sizes or because the condi-
tions on the RAR procedures are not met, then alternative
methods for testing and estimation have been proposed.
We summarize the main methods below, concentrating on
type I error rate control and unbiased estimation.

A common method for controlling the type I error rate,
particularly for BRAR procedures, is a simulation-based
calibration approach; for example, see the FDA guidance
on simulations for adaptive design planning (U.S. Food
and Drug Administration, 2019, Section VI.A). Given a
trial design that uses RAR and an analysis strategy, a
large number of trials are simulated under the null. Ap-
plying the analysis strategy to each of these trial realiza-
tions gives a Monte Carlo approximation of the relevant
error rates (see Section 1.2). If necessary, the analysis
strategy can be adjusted to satisfy type I error constraints.
Variations of this approach have been used in Wason and
Trippa (2014), Wathen and Thall (2017), Baldi Antognini,

Novelli and Zagoraiou (2022b). These approaches can be
computationally intensive, and there are no guarantees be-
yond the parametric space explored in the simulations.

A related approach is to use a randomization test, also
known as randomization-based inference. In such a test,
the outcomes y(n) are taken as fixed, but the allocations
a(n) are regenerated many times using the RAR proce-
dure under the null hypothesis. For each replicate, the test
statistic Tn is recalculated, and a consistent estimator of
the p-value is given by the proportion of test statistics that
are at least as extreme as the value actually observed. In-
tuitively, this is valid because under the null hypothesis
of no treatment differences, y(n) and a(n) are indepen-
dent. Simon and Simon (2011) give general conditions
under which the randomization test guarantees type I er-
ror rate control for RAR procedures. Galbete and Rosen-
berger (2016) show that 15,000 replicates are sufficient
to accurately estimate even very small p-values. An ad-
vantage of randomization tests is that they protect against
unknown time trends (see Section 3.4). However, random-
ization tests can suffer from a lower power compared with
using standard tests (Villar, Bowden and Wason, 2018),
particularly if the RAR procedure has allocation probabil-
ities that are highly variable (Proschan and Dodd, 2019).

The implementation of these methods may lead to com-
putational cost and Monte Carlo error concerns. There
have been a few proposals that do not rely on simula-
tions. Robertson and Wason (2019), Glimm and Robert-
son (2022) propose a re-weighting of the usual Z-test
that guarantees family-wise error control for a large class
of RAR procedures for multi-arm trials with normally-
distributed outcomes, although with a potential loss of
power. Galbete, Moler and Plo (2016) derive the exact dis-
tribution of a test statistic for a family of RAR procedures
in the context of a two-arm trial with binary outcomes,
and hence show how to obtain exact p-values.

Turning now to estimation bias, the MLEs for the pa-
rameters of interest for a trial using RAR will typically be
biased in small samples. This is illustrated for a number
of RAR procedures for binary outcomes through simula-
tion in Villar, Bowden and Wason (2015), Thall, Fox and
Wathen (2015). However, the latter point out that in their
setting, which incorporates early stopping,

. . . most of the bias appears to be due to contin-
uous treatment comparison, rather than [R]AR
per se.

Hence, it is important to distinguish bias induced by early
stopping from that induced by the RAR procedure. In a
binary setting and for multi-arm RAR procedures without
early stopping, the bias of the MLE p̂k is given in Bowden
and Trippa (2017):

(6) bias(p̂k) = E(p̂k) − pk = −Cov(Nk, p̂k)

E(Nk)
.
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In a typical RAR procedure that assigns more patients to
treatment arms that appear superior (i.e., Cov(Nk, p̂k) >

0), equation (6) shows the bias of the MLE is negative.
The magnitude of this bias is decreasing with the ex-
pected number of patients assigned to the treatment (i.e.,
as E(Nk) → ∞). When estimating the treatment differ-
ence, however, the bias can be either negative or positive,
which agrees with the results in Thall, Fox and Wathen
(2015).

Bowden and Trippa (2017) show that if there is no
early stopping, the magnitude of the bias tends to be small
for the RPW rule and the BRAR procedure proposed by
Trippa et al. (2012). For more imbalanced RAR proce-
dures, the bias can be larger; for example, see Williamson
and Villar (2020). As a solution, Bowden and Trippa
(2017) propose using inverse probability weighting and
Rao–Blackwellization to produce unbiased MLEs, al-
though these can be computationally intensive. For urn-
based RAR procedures, Coad and Ivanova (2001) also
proposed bias-corrected estimators. For sequential max-
imum likelihood procedures and the DBCD, Wang, Zhu
and Lee (2020) evaluate the bias issue and propose a so-
lution. Meanwhile, Marschner (2021) proposes a general
framework for analysing adaptive experiments, included
trials using RAR, and explores the merits of both condi-
tional and unconditional estimation.

Finally, adjusted confidence intervals for RAR pro-
cedures have received less attention in the literature.
Rosenberger and Hu (1999) propose a bootstrap pro-
cedure for multi-arm RAR procedures with binary re-
sponses, while Coad and Govindarajulu (2000) propose
corrected confidence intervals for a sequential adaptive
design in a two-arm trial with binary responses. Re-
cently, Hadad et al. (2021) proposed a strategy to con-
struct asymptotically valid confidence intervals for a large
class of adaptive experiments (including RAR).

Summary. For trials with sufficiently large sample
sizes, asymptotic results justify the use of standard tests
and frequentist inference procedures when using many
types of RAR. When asymptotic results do not hold, in-
ference does become more challenging compared with
using ER but it is possible. There is a growing body of lit-
erature demonstrating how a trial using RAR, if designed
and analyzed appropriately, can control the type I error
rate and correct for the bias of the MLE. All this should
give increased confidence that the results from a trial us-
ing RAR can be both valid and convincing. We reiterate
that from a Bayesian viewpoint, the use of RAR does not
pose additional inferential challenges.

3.4 Does Using RAR Make Robust Inference Difficult
If There Is Potential for Time Trends?

The occurrence of time trends caused by changes in the
standard of care or by patient drift (i.e., changes in the
characteristics of recruited patients over time) is seen as a
major barrier to the use of RAR in practice:

One of the most prominent arguments against
the use of [RAR] is that it can lead to biased
estimates in the presence of parameter drift
(Thall, Fox and Wathen, 2015).

A more fundamental concern with adaptive
randomization, which was noted when it was
first proposed, is the potential for bias if there
are any time trends in the prognostic mix of
the patients accruing to the trial. In fact, time
trends associated with the outcome due to any
cause can lead to problems with straightfor-
ward implementations of adaptive randomiza-
tion (Korn and Freidlin, 2011a).

Both papers cited above show (for BRAR procedures)
that time trends can substantially inflate the type I error
rate when using standard analysis methods, and induce
bias into the MLE. Further simulation results are given in
Jiang, Zhao and Durkalski-Mauldin (2020). Villar, Bow-
den and Wason (2018) present a simulation study for dif-
ferent time trend assumptions and a variety of RAR proce-
dures in trials with binary outcomes including the multi-
arm setting.

As an illustrative numeric example from Villar, Bowden
and Wason (2018), consider a two-arm trial with binary
outcomes, where n = 100 and patients are randomized in
groups of size 10. Suppose there is a linear upward trend
in p0, so that the overall time trend within the trial

D = Pr(Y0,i = 1 | 90 < i ≤ 100)

− Pr(Y0,i = 1 | 0 < i ≤ 10)

varies with D ∈ {0,0.01,0.02,0.04,0.08,0.16,0.24}. In
this case, under the null scenario where p0 = p1 at all
time points, the optimal allocation of Rosenberger et al.
(2001) has an almost constant type I error rate, just above
the nominal 0.05 level. The TW procedure (Thall and Wa-
then, 2007) has an inflated type I error rate (about 0.09)
even without any time trend (i.e., D = 0), which increased
to almost 0.15 when D = 0.24. Finally, the patient-benefit
oriented FLGI rule (Villar, Wason and Bowden, 2015) has
a type I error rate going from 0.05 to almost 0.25 as D in-
creased from 0 to 0.24. These results show that for RAR
procedures, even changes in just p0 (or p1) over time can
have a considerable impact on operating characteristics.
Hence time trends in the treatment effect (however de-
fined) will also be expected to have similar impacts.

Although time trends can inflate the type I error rate
when using RAR procedures, there are two important
caveats given in Villar, Bowden and Wason (2018). First,
certain power-oriented RAR procedures appear to be ef-
fectively immune to the time trends considered in their pa-
per. In particular, RAR procedures that protect the alloca-
tion to the control arm are particularly robust. A possible
explanation is that those rules have a smaller imbalance,
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as suggested in Baldi Antognini, Novelli and Zagoraiou
(2022a). Second, as discussed in Villar, Bowden and Wa-
son (2018), a largely ignored but highly relevant issue is
the size of the trend and its likelihood of occurrence in a
specific trial:

. . . the magnitude of the temporal trend neces-
sary to seriously inflate the type I error of the
patient benefit-oriented RAR rules need to be
of an important magnitude (i.e., change larger
than 25% in its outcome probability) to be a
source of concern.

A more general issue around time trends is that they
can invalidate the key assumption that observations about
treatments are exchangeable (i.e., that subjects receiving
the same treatment arm have the same probability of suc-
cess). This, in turn, invalidates commonly used frequentist
and Bayesian models, and hence the inference of the trial
data. Type I error inflation and estimation bias can be seen
as examples of this wider issue.

As Proschan and Evans (2020) put it, temporal trends
are likely to occur in two settings:

. . . 1) trials of long duration, such as platform
trials in which treatments may continually be
added over many years and 2) trials in infec-
tious diseases such as MERS, Ebola virus and
coronavirus.

Despite this, little work has looked at estimating these
trends, especially to inform trial design in the midst of an
epidemic. Investigating these points is essential to make
a sound assessment of the value of using RAR. A recent
exception is in Johnson et al. (2022), where a two-arm
vaccine trial for COVID-19 using RAR is studied using a
model to simulate the epidemic (including linear trends).

As mentioned in Section 3.2, a robust method to pre-
vent type I error inflation is to use a randomization test.
Simulation studies illustrating the use of this test can be
found in Galbete, Moler and Plo (2016), Villar, Bowden
and Wason (2018), Johnson et al. (2022). However, this
can come at the cost of a considerably reduced power
compared with using an unadjusted testing strategy. More
recently, Wang and Rosenberger (2020) showed how to
construct confidence intervals for randomization tests that
are robust (in terms of coverage) to time trends.

An alternative to randomization-based inference is to
use a stratified analysis. This was first proposed by
Jennison and Turnbull (2000) for group-sequential de-
signs, with subsequent work by Karrison, Huo and Chap-
pell (2003), Korn and Freidlin (2011a). These papers
show that a stratified analysis can eliminate the type I er-
ror inflation induced through time trends. However, Korn
and Freidlin (2011a) also show that this strategy can re-
duce the trial efficiency (see also Korn and Freidlin, 2022

for similar arguments), both in terms of increasing the
required sample size and the chance of patients being as-
signed to the inferior treatment.

Another approach is to explicitly incorporate time-trend
information into the regression analysis. Jennison and
Turnbull (2001) develop theory that allows the incorpo-
ration of polynomial time trends as covariates in a gen-
eral normal linear regression model for group sequential
designs, while Coad (1991) modify a class of sequen-
tial tests to incorporate a linear time trend for normally-
distributed outcomes. Meanwhile, Villar, Bowden and
Wason (2018) assess incorporating the time trend into a
logistic regression (for binary responses), and show that
this can alleviate type I error inflation if the trend is cor-
rectly specified. However, this leads to a loss of power
and complicates estimation (due to the technical problem
of separation).

Finally, it is possible to try to control the impact of
a time-trend during randomization. Rosenberger, Vidy-
ashankar and Agarwal (2001) propose a CARA procedure
for a two-armed trial that can take a specific time trend
as a covariate. More recently, Jiang, Zhao and Durkalski-
Mauldin (2020) proposed a BRAR procedure that in-
cludes a time trend in a logistic regression model, and
uses the resulting posterior probabilities as the basis for
the randomization probabilities. This model-based proce-
dure controls the type I error rate and mitigates estimation
bias, but at the cost of reduced power.

Summary. Large time trends can inflate the type I error
rate when using RAR, and this inflation becomes worse
the more imbalanced the RAR procedure. However, RAR
procedures that protect the allocation to the control arm or
impose restrictions to avoid extreme allocation probabil-
ities are particularly robust. For other RAR procedures,
analysis methods can mitigate the type I error inflation,
although with a loss in power. Finally, we note that time
trends can affect inference in all types of adaptive clinical
trials, and not just those using RAR.

3.5 Is RAR More Challenging to Implement in
Practice?

In addition to the statistical aspects discussed in Sec-
tions 3.1–3.4, there are practical questions to consider to
best implement RAR in the context of the study at hand.
Most of these practical issues apply to other randomized
designs (both adaptive and nonadaptive), so we focus here
on a few that merit a specific discussion for RAR.

Measurement/classification error and missing data.
Measurement error (for continuous variables) or classi-
fication error (for binary variables) and missing data are
common in medical research. There are many approaches
proposed to reduce the impact of these on statistical in-
ference (see, e.g., Guolo, 2008, Little and Rubin, 2002,
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Blackwell, Honaker and King, 2017) but very little liter-
ature on this in the context of RAR. The distinctive con-
cern is that the sequentially updated allocation probabil-
ities may be biased, and hence the design will not have
its expected properties, for example, in terms of patient
benefit.

A few articles looking at classification (or measure-
ment) error in RAR include Li and Wang (2012), who
derive optimal allocation targets under constant misclas-
sification probabilities that differ between the arms, and
Li and Wang (2013), who explore through simulation the
effect of misclassification (in the two-arm setting) on op-
timal allocation designs.

As for missing data, Chen et al. (2022) consider the per-
formance of BRAR procedures under the assumption of
missing at random (see Rubin, 1976) and with a single im-
putation for the missing responses. They found that these
procedures encourage more assignments in the arm with
missing data, and that simple mean imputation can largely
mitigate this effect. Williamson and Villar (2020) propose
an imputation method for a bandit-based RAR when the
outcome is undefined. Incomplete data for such extreme
cases is imputed with random samples drawn from the
tails of the distribution. Simulations suggest that imputing
in this way is better than ignoring missingness in terms of
patient benefit and other metrics. More complex scenar-
ios, for example, data not missing at random, remain un-
explored, but this is the case for adaptive trials in general
except for some simple settings (see, e.g., Lee, Mitra and
Biedermann, 2018).

Delayed responses and recruitment rate. The use of
RAR is not feasible if the patient outcomes are only ob-
served after all patients have been recruited and random-
ized. This is rare but may happen if the recruitment period
is short (e.g., due to a high recruitment rate), or when the
outcome of interest takes a long time to observe. One way
to address the latter is to use a surrogate outcome that is
more quickly observed as for example in Tamura et al.
(1994). Another possibility is to use a randomization plan
that is implemented in stages as more data becomes avail-
able (like for FLGI).

In general, as stated in Hu and Rosenberger (2006,
p. 105):

From a practical perspective, there is no lo-
gistical difficulty in incorporating delayed re-
sponses into the RAR procedures, provided
some responses become available during the
recruitment and randomization period.

However, statistical inferences at the end of the trial can
be affected. This is explored theoretically for urn models
(Bai, Hu and Rosenberger, 2002, Hu and Zhang, 2004b,
Zhang et al., 2007) as well as the DBCD (Hu et al.,
2008). These papers show that the asymptotic properties

of these RAR procedures are preserved under widely ap-
plicable conditions. In particular, when more than 60%
of responses are available by the end of the recruitment
period, simulations show that the power of the trial is es-
sentially unaffected.

Patient consent to be randomized. Patient consent pro-
tects patients’ autonomy, and requires an appropriate bal-
ance between information disclosure and understanding
(Beauchamp, 1997). There is evidence that the basic ele-
ments to ensure informed consent (recall and understand-
ing) can be difficult to ensure even for nonadaptive studies
(Sugarman et al., 1999, Dawson, 2009). The added com-
plexity of allocation probabilities that may change in re-
sponse to accumulated data only makes achieving patient
consent more challenging. Moreover, since these novel
adaptive procedures are still rarely used, there is little
practical experience to draw upon.

Implementing randomization changes during a study.
Randomization of patients, whether adaptive or not, must
be done in accordance with standards of good clinical
practice. As such, in most clinical trials randomization is
done through a dedicated and secure web-based system
that is available 24/7. In the UK, for example, most clin-
ical trials units will outsource their randomization to ex-
ternal companies. This outsourcing is practical but costly,
and limits the ways in which randomization can be imple-
mented to those currently offered by such companies. To
the best of the authors’ knowledge, in the UK common
providers treat every change in a randomization ratio as
a trial change (which is charged as such), rather than be-
ing considered an integral part of the trial design. Beyond
the extra costs and limitations to the use of RAR that this
brings, it also introduces unnecessary delays as random-
ization is stopped while the change is implemented.

A related issue is that of preserving treatment blinding,
which is key to the integrity of clinical trials. This is par-
ticularly important when using RAR, as if an investiga-
tor knows which treatment is more likely to be allocated
next, selection bias is more likely to occur. In most cases,
preserving blindness will require an independent statisti-
cian (which requires extra resources) to handle the interim
data and implement the randomization, or a data manager
can provide data to an external randomization provider
who can then update the randomization probabilities in-
dependently of the clinical and statistical team. Further
discussion on these issues can be found in Sverdlov and
Rosenberger (2013b).

3.6 Is Using RAR in Clinical Trials (More) Ethical?

Ethical reasons are the most cited arguments in favor of
using RAR to design clinical trials.

Our explicit goal is to treat patients more effec-
tively, but a happy side effect is that we learn
efficiently (Berry, 2004).
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Research in [RAR] developed as a response
to a classical ethical dilemma in clinical trials
(Hu and Rosenberger, 2006).

Nevertheless, there are also arguments that RAR may not
be ethically preferred.

For RCTs [Randomised Controlled Trials]
where treatment comparison is the primary sci-
entific goal, it appears that in most cases de-
signs with fixed randomization probabilities
and group sequential decision rules are prefer-
able to AR [RAR] scientifically, ethically and
logistically (Thall, Fox and Wathen, 2016).

Clinical research poses several ethical challenges.
There is an inevitable tension between clinical research
and clinical practice, as the latter is concerned with best
treating an individual patient while the former is focused
on ‘future’ patients. Clinical research is associated with a
clinical trial whose main aims are the testing and estima-
tion goals as in Section 1.2. Clinical practice is directly
concerned with patient benefit goals which are, at best,
secondary aims in traditional clinical trials. Such ethical
questions are becoming more discussed as personalized
treatment becomes more embedded into research, as is
the case for oncology (London, 2018).

Although treating patients in the trial “more effec-
tively” using RAR appears to be ethically attractive, par-
ticularly from the recruited patients’ perspective, the ex-
tent to which these and other adaptive designs are more
“ethical” than traditional designs is only starting to be ad-
dressed by ethicists. Thus, we do not aim to answer the
question whether RAR is (more) ethical or not, as this re-
quires a specific answer for each method and trial context.
Instead, we review key concepts that could affect this an-
swer and that come from formal discussions by ethicists.

The “equipoise” concept and the ethical grounds for
randomizing patients. Equipoise is typically defined as
a state of uncertainty of the individual investigator re-
garding the relative merits of interventions for a popu-
lation of patients. Such uncertainty justifies randomiz-
ing patients to treatments as this does not imply know-
ingly disadvantaging patients. This concept may extend
to include “honest, professional disagreement among ex-
pert clinicians” about the relative merits of interven-
tions (Freedman, 1987). This broader definition is known
as ‘clinical equipoise’ while the former is ‘theoretical
equipoise’.

An argument against the use of RAR is that it vio-
lates the principle of equipoise on which clinical trials is
based upon (Laage et al., 2017). Changing the random-
ization probabilities in light of patients’ responses may be
viewed as breaking equipoise, because the updated allo-
cation weights reflect the relative performance of the in-
terventions in question. Once the randomization weights

become unbalanced, the study has a preferred treatment
and allocating participants to treatments regarded as in-
ferior could be considered unethical. However, this argu-
ment that RAR is unethical because it breaks equipoise
is based on two assumptions: 1) randomization ratios re-
flect a single agent’s beliefs about the relative merits of
the interventions being tested; and 2) equipoise is a state
of belief in which the relevant probabilities are assumed
to be equally balanced. Neither of these two assumptions
are consistent with the definition of ‘clinical equipoise’ as
the clinical community is multi-agent and disagreement
among these agents will not necessarily correspond to a
50%–50% split of opinions.

Patient horizon (individual and collective ethics). The
ethical value of RAR (and of other trial designs) depends
directly on the trial’s specific aim in relation to its con-
text. For example, a feature that considerably affects com-
parisons of design options is disease prevalence (a con-
cept linked to that of patient horizon (Anscombe, 1963,
Colton, 1963)). Suppose a clinical trial is being planned
where T denotes the “patient horizon” for that study, that
is, those patients within and outside of the trial who will
benefit from its conclusions. The exact value of T is never
known but its order of magnitude considerably impacts
the relative merits of competing trial goals. A trial rele-
vant to patients with coronary artery disease will have the
vast majority of the patient horizon outside of the trial,
making the inferential goals of the study of paramount
importance. On the other hand, a rare pediatric cancer is
likely to have a large proportion of the patient population
in the trial, heightening the tension between patient bene-
fit and inferential goals. Similar considerations apply for
emerging life-threatening diseases (e.g., Ebola outbreaks
or the COVID-19 pandemic), where the patient horizon
can be short for reasons other than prevalence. When the
choice of design is based only on inferential considera-
tions, there will be many instances in which a design may
be considered inferior from a patient benefit viewpoint.

The impact of T on the ethical comparison of designs
depends on considerations around individual and collec-
tive ethics and potential conflicts between these two. As
Tamura et al. (1994, p. 775) express it, RAR “represents
a middle ground between the community benefit and the
individual patient benefit” and because of this “it is sub-
ject to attack from either side”. This point has been well
discussed and formally studied in the statistical literature
(see Berry and Eick, 1995, Cheng, Su and Berry, 2003,
Berry, 2004). Despite this, prevalence of a disease is al-
most never taken into account, neither in practice when
designing trials nor in many methodological articles com-
paring RAR from an ethical point of view. See Lee and
Lee (2021), Metelkina and Pronzato (2017) for recent at-
tempts to address this.
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Summary. We believe that the ethics of RAR needs
more attention from ethicists, including collaborations be-
tween ethicists and statisticians to address the caveats and
complexities of this broad family of methods. Positions
based purely on statistical or ethical arguments in isola-
tion are likely to be inadequate and arguments that in-
volve ethical metrics should ideally be jointly discussed
with multiple stakeholders. It is important to bear in mind
that compromises between statistical and ethical objec-
tives have very different implications under different set-
tings. For example, the trade-offs between these two ob-
jectives may look very different in a two-arm trial setting
compared to a multi-arm trial.

Ideally, how this interaction between ethics and statis-
tics can proceed is as follows (as suggested by an anony-
mous reviewer). Ethics informs the relative importance of
a trial’s goals, in particular the balance between individual
and collective benefit. Once these priorities are in place,
a statistical design that achieves these goals can be pro-
posed. The ethical aspects can be revisited in light of the
resulting properties of the statistical design. For example,
suppose RAR is chosen to deliver a certain level of bene-
fit to patients in the trial. This may require an increase in
the trial size to preserve the inferential properties for fu-
ture patients to be “ethical”. In that case, depending on the
prevalence of the disease and the general context, a larger
trial using the original RAR procedure may still deliver
the most benefit to all patients and remain the preferred
option. If this is not the case, then the ethics-design choice
can be revisited.

4. FINAL CONSIDERATIONS AND DISCUSSION

The pace of methodological work on RAR and the de-
bate over its use has sped up in recent years, driven by
the response to challenges during health crises like the
COVID-19 pandemic and the increase uptake of these
methods in machine learning and data science more gen-
erally. However, to some extent, the debate and method-
ological progress remain disconnected from each other. It
is important to bear in mind that generalizations within
such a large class of methods run the risk of being par-
tial and misleading. Even for a single RAR procedure, its
performance may vary considerably across the parameter
space of interest. In this paper, we have aimed to illustrate
the breadth of RAR procedures by presenting a critical
(but balanced) appraisal of well established views about
RAR, and to help guide future research efforts towards
areas that have received less attention.

We emphasize that this paper does not advocate for the
use of RAR in all trial settings (but we also do not intend
to discourage trialists from considering its use in general).
There are contexts where other trial adaptations or even
a fixed randomization design may be preferable for both
methodological or practical reasons. This is important

to consider with adaptive trials in general—sometimes it
may be better to ‘keep it simple’ and use traditional non-
adaptive designs instead (Wason, Brocklehurst and Yap,
2019). However, when the use of RAR is considered, it is
helpful to remember that RAR encompasses a large set of
possible design (and analysis) options, rather than being a
homogeneous technique to either include or not. Indeed,
many of the recent general criticisms and praise for RAR
in clinical trials have been driven by arguments that apply
to the particular subclass of BRAR, but may well not be
as relevant for other RAR procedures.

Trade-offs in terms of different metrics are ubiquitous
and in many cases unavoidable in clinical trials, as RAR
procedures can address a specific need at the expense of
a cost in a different area. Hence, a RAR procedure should
be chosen carefully according to the specific context and
goals of a trial, in light of the practical challenges and con-
straints that implementing RAR poses. Indeed, as noted
by an anonymous reviewer, the approach of starting with
a set of different RAR procedures and then choosing one
based on comparing their performance as measured by
different metrics is arguably going in the wrong direc-
tion. Instead, a preferable approach is to explicitly start
by defining the type of trial and the investigators’ priori-
ties in setting goals for the trial, and to then select a RAR
design suited to these goals (see Pitt, 2021).

Starting with the type of trial, factors such as the phase
of clinical development, the number of treatment arms
and the clinical endpoint will naturally influence the aims
of the trial and the appropriateness of a design includ-
ing RAR. Some types of clinical trial may be particularly
suited to the use of a well-chosen RAR procedure—for
example, in multi-arm trials it is natural to consider drop-
ping poorly performing treatment arms, and RAR offers
an intermediate option of reducing numbers on such treat-
ments. Given a particular type of trial, the aims of the trial
can then be considered. Broadly speaking, these aims fall
into two categories:

(1) Determine how best to treat future patients after the
trial concludes while avoiding (or minimizing) harm to
patients in the trial;

(2) Optimize treatment of patients in the trial itself
(i.e., treat patients in the trial as effectively as possible).

Depending on the relative importance of these two, differ-
ent RAR rules may be appropriate.

Once the aims of a study, their relative importance, and
the corresponding metrics have all been agreed upon, the
question of what an optimal RAR procedure is in terms
of those metrics can be addressed. Ideally (as suggested
by an anonymous editor), an optimal trial design can be
found within this framework, rather than proposing ad
hoc procedures and testing them against different met-
rics. However, in the literature reviewed we found the
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term ‘optimal’ in relation to RAR procedures can have
many different meanings. A broader definition of opti-
mality may be beneficial to consider, not only including
optimal allocation targets but also RAR families that have
some other form of optimality (or near optimality). In any
case, it is important to explicit say in what sense a proce-
dure is ‘optimal’ when using this terminology.

As a general point (and one we more fully appreci-
ate following recent discussions with applied trial statis-
ticians), it is crucial to not consider statistical or method-
ological issues in isolation of practical issues. This may
be key for the design of any experiment, but is more im-
portant for RAR and adaptive designs in general. For ex-
ample, selection bias may be a big issue in some contexts,
and if blinding is not possible, then the use of RAR may
be less appropriate. Hence, greater collaboration and dis-
cussion between methodologists and applied trialists is
useful to ensure that methods are developed with practical
considerations in mind.

We would like to end with a short summary as to what
we feel the future for RAR methods research should bring
to improve its usefulness in clinical practice. We wrote
this paper in an attempt to reconcile conflicting perspec-
tives as much as to motivate researchers to address the is-
sues mentioned here with new ideas. New work is needed
to realise the potential advantages of RAR with fewer of
its downsides while taking the trial context into account.
With the increasing use of response-adaptive procedures
in machine learning and data science more generally, this
presents a golden opportunity for biostatisticians to em-
brace and lead the development of this wide adaptive class
in both theory and practice.

As a general point, our hope is that any contribution to
RAR methodology should be well contextualised within
the ongoing debate in order to achieve practical impact
and to avoid repeating common arguments that are al-
ready well represented in the literature. When develop-
ing new proposals, it can be helpful to define terminology
carefully, report a wide range of metrics and to be explicit
about the potential limits of the conclusions made. First,
we encourage the explicit definition and clear reporting of
the metrics used to evaluate RAR procedures, as well as
a broad look at multiple metrics (not just standard oper-
ating characteristics). For example, estimation and sam-
ple size imbalance metrics are relatively under-reported
in the literature. Similarly, since many RAR procedures
impact patient benefit, including at least one such metric
(see Section 1.2 for examples) is useful when comparing
procedures.

Exploring a wide parametric space in simulations (and
not only subsets of interest) can also be key. For example,
Neyman allocation maximizes power, but for p0 +p1 > 1
assigns more patients to the inferior arm (see Section 3.2).
Similarly, for the RPW rule the limiting distribution of the

allocation proportion depends on whether p0 + p1 > 3/2
(Rosenberger and Lachin, 2016). Given the above, it is
also important to discuss when certain properties may not
apply to other RAR families. This reduces the possibil-
ity of readers misunderstanding the scope of conclusions
about a specific family of RAR procedures. More gener-
ally, definitive statements based only on simulation results
should be regarded with an appropriate degree of caution.
There are no universal set of rules on how to conduct sim-
ulation studies (although useful guidelines are proposed
by Morris, White and Crowther, 2019).

In terms of specific methodological research areas, a
key open area is that of efficient and valid inference
methods for RAR. As discussed in Section 3.3, a sim-
ple asymptotic approach for inference is valid in many
case but it does not apply to all RAR procedures. On
the other hand, valid methods for small samples (or
time trends) such as randomization-based inference suf-
fer from low power. Hence, the development of new in-
ferential procedures for finite samples that do not suffer
from a large loss in power would be very useful (as re-
cent examples along these lines; see Barnett et al., 2021,
Deliu, Williams and Villar, 2021). For time trends in par-
ticular, there has been little work estimating the likeli-
hood and magnitude of such trends in practice, especially
in contexts such as emerging epidemics. More research
would help to determine whether RAR would be appro-
priate for specific trial contexts.

Another open research question is how to account for
missing data or measurement error when using RAR. Ad-
justed confidence intervals have also received little at-
tention in the literature. More generally, further work is
needed to expand the comparison of multi-arm RAR pro-
cedures (particularly in terms of different power defini-
tions) beyond BRAR. In terms of design aspects, RAR has
the under-explored potential for addressing delicate issues
when designing studies with composite or complex end-
points. Another consideration is that block-randomized
versions of RAR methods are much more likely to be
applied in practice than fully sequential schemes, but
open questions remain about how these implementations
compare in terms of metrics such as power and patient
benefit. As well, it is still unclear in general how trial
designs incorporating RAR compare with well-chosen
group sequential and/or MAMS designs that incorporate
early stopping rules. Finally, regardless of methodological
considerations and future development, the use of RAR
in practice would still require the availability of user-
friendly software (for the implementation of RAR algo-
rithms, as well as the analysis approaches that were men-
tioned in Section 3).

DATA AVAILABILITY

Code to implement some of the RAR algorithms eval-
uated in the simulation study in Section 3.1 can be found
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linked to papers by Sofía S. Villar at https://www.mrc-
bsu.cam.ac.uk/software/miscellaneous-software/.

APPENDIX

TABLE 2
Table of acronyms used in the paper

Acronym Definition

BRAR Bayesian Response-Adaptive
Randomization

CARA Covariate-Adjusted Response-Adaptive
DBCD Doubly-adaptive Biased Coin Design
DTL Drop-The-Loser
ENF Expected Number of Failures
ENS Expected Number of Successes
ER Equal Randomization
ERADE Efficient Response-Adaptive

Randomization Designs
FLGI Forward-Looking Gittins Index
MAMS Multi-arm Multistage
MLE Maximum Likelihood Estimator
PBR Permuted Block Randomization
RAR Response-Adaptive Randomization
RCT Randomized Controlled Trial
RPW Randomized Play-the-Winner
TS Thompson Sampling
TW Thall and Wathen

TABLE 3
Properties of various patient allocation procedures, where p0 = 0.25

and p1 = 0.45. Results are from 104 trial replicates

Patient Benefit Metrics

n Procedure N1 − N0 Ŝ0.1 ENS

200 ER 0 (−28, 28) 0.069 70 (6.8)
PBR 0 0 70 (6.6)
Oracle 200 0 90 (7.0)
TS 147 (−54, 194) 0.032 85 (9.5)
FLGI(b = 5) 165 (48, 194) 0.014 86 (8.6)
FLGI(b = 10) 164 (56, 192) 0.014 86 (8.6)
TW(1/2) 124 (24, 182) 0.008 82 (8.2)
TW(i/2n) 88 (20, 148) 0.001 79 (7.6)
RPW 30 (−2, 64) 0.000 73 (7.1)
DBCD 30 (6, 58) 0.000 73 (6.6)
ERADE 29 (8, 52) 0.000 73 (6.6)
DTL 30 (10, 50) 0.000 73 (7.1)
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