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Additive Bayesian Variable Selection under
Censoring and Misspecification
David Rossell and Francisco Javier Rubio

Abstract. We discuss the role of misspecification and censoring on
Bayesian model selection in the contexts of right-censored survival and con-
cave log-likelihood regression. Misspecification includes wrongly assuming
the censoring mechanism to be noninformative. Emphasis is placed on ad-
ditive accelerated failure time, Cox proportional hazards and probit models.
We offer a theoretical treatment that includes local and nonlocal priors, and
a general nonlinear effect decomposition to improve power-sparsity trade-
offs. We discuss a fundamental question: what solution can one hope to
obtain when (inevitably) models are misspecified, and how to interpret it?
Asymptotically, covariates that do not have predictive power for neither the
outcome nor (for survival data) censoring times, in the sense of reducing
a likelihood-associated loss, are discarded. Misspecification and censoring
have an asymptotically negligible effect on false positives, but their impact
on power is exponential. We show that it can be advantageous to consider
simple models that are computationally practical yet attain good power to de-
tect potentially complex effects, including the use of finite-dimensional basis
to detect truly nonparametric effects. We also discuss algorithms to capitalize
on sufficient statistics and fast likelihood approximations for Gaussian-based
survival and binary models.

Key words and phrases: Additive regression, generalized additive model,
misspecification, model selection, survival.

1. INTRODUCTION

Determining what covariates have an effect on a sur-
vival (time-to-event) outcome is an important task in
many fields, including Biomedicine, Economics and En-
gineering. For interpretability and computational conve-
nience it is common to use parametric and semiparametric
models such as Cox proportional hazards [8] or acceler-
ated failure time (AFT) regression for survival outcomes,
possibly with nonlinear additive effects. The proportional
hazards model assumes that covariates have a multiplica-
tive effect on the baseline hazard, whereas in AFT mod-
els covariates drive the mean of the logarithmic (or other
monotonic transform) times-to-event. These models can
be combined with Bayesian model selection to provide
a powerful mechanism to select variables, enforce spar-
sity and quantify uncertainty. However, the precise con-
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sequences of model misspecification and censoring are
not sufficiently understood. By misspecification we mean
that the data are truly generated by a distribution outside
the considered class. For instance, one may fail to record
truly relevant covariates or represent their effects imper-
fectly, for example, when using a Cox model but the true
covariate effects on the hazard are nonproportional. This
issue can be addressed by enriching the model, for exam-
ple, via nonparametric or time-dependent effects. Then,
the potential concerns are that the larger number of pa-
rameters can adversely affect inference, unless the sample
size is large enough, and that computation can be costlier.
Censoring is also important. First, it reduces the effec-
tive sample size. Second, wrongly assuming the censor-
ing mechanism to be noninformative, that is, independent
of the outcome conditionally on covariates, may affect the
selected model, even asymptotically.

Our goal is to help understand the consequences of
three important issues on model selection: misspecifica-
tion, censoring, and trade-offs when including nonlinear
effects. We first consider that the data analyst assumed a
nonlinear additive AFT model, or an additive Cox model,
but data are truly generated by a different probability dis-
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tribution F0. We also consider probit regression, which
can be formulated as a particular case of the Normal AFT
model, and more general concave log-likelihood regres-
sion, which provides a unifying framework for the models
we consider here.

There are many data analysis methods for survival out-
comes, along with theory for well-specified models and
empirical results suggesting potential issues under mis-
specification, but their implications for model selection
have not been described in sufficient detail. We first re-
view results on the behavior of misspecified AFT and pro-
portional hazard models, and subsequently discuss some
model selection methods for survival data. Although both
models have similar asymptotic properties, and which
model is more appropriate depends on the data at hand,
AFT inference has been argued to be more robust and
to better preserve interpretability under misspecification.
More precisely, the maximum likelihood estimators un-
der misspecified Cox and AFT models have comparable
limiting distributions if censoring is absent or indepen-
dent of covariates [51, 58], but not so under covariate-
dependent censoring [49]. Covariate-dependent censoring
also affects frequentist hypothesis tests. In misspecified
Cox models, it can lead to a substantial type I error in-
flation [9]. In misspecified AFT models, the power of the
tests may be affected, but simple strategies to control the
type I error are available [16, 21, 49].

Another situation where both models behave differently
is when omitting truly active covariates, for example, be-
cause these were not recorded. A proportional hazards
model with omitted variables tends to underestimate co-
variate effects, even for a treatment of interest that is un-
correlated with other covariates [25, 51]. Further, even
if the data-generating truth has proportional hazards, the
marginal model conditioning only on the observed covari-
ates does not (except in positive stable distributions, [19]).
In contrast, if the data-generating truth is an AFT model
and one omits relevant covariates, the unaccounted vari-
ability is subsumed into the error term, and regression pa-
rameters remain interpretable as averaged effects across
the population [21]. Note that omitting covariates is in-
timately connected to incorporating a covariate but mis-
specifying its effect: using a linear or finite-dimensional
effect can be seen as omitting a subset of the columns of
the basis defining a truly nonparametric effect. Thus our
discussion on omitted variables applies directly to mis-
specifying covariate effects. To summarize, censoring and
misspecification have nontrivial effects on estimation and
hypothesis testing.

We now review some model selection methods for sur-
vival data, discussing the extent to which they consid-
ered misspecification. [20, 26, 48] proposed likelihood
penalties for Cox and semiparametric AFT models, and
[53] for broader generalized hazards models. Most of this

work focused on linear covariate effects, computation and
proving consistency under covariate-independent censor-
ing. There are however empirical results on the effect of
misspecification, for example, [60] showed in simulations
an increase in false positives of the Cox–LASSO method
[52] when data truly arise from an AFT model. There are
also many Bayesian variable selection methods for sur-
vival data. [11] and [46] proposed shrinkage priors for the
Cox and AFT models and assessed performance via sim-
ulations where the model was well specified. [22] stud-
ied Bayesian model selection for the Cox model, [10]
for the so-called additive hazards model, and [33] for the
Cox model under nonlocal priors [23, 24]. See [28] for
a review, with a focus on the Cox model. While interest-
ing, these Bayesian proposals do not consider misspeci-
fication. [39] did study misspecified Bayesian linear re-
gression, showing that misspecification often reduces the
power to detect active variables, but did not consider cen-
soring.

We summarize our main messages. We show that, un-
der mild assumptions, Bayesian model selection asymp-
totically discards covariates that do not predict neither the
outcome nor the censoring times. By predict, we refer
to increasing the expectation of the log-likelihood func-
tion. For any fully specified model, said expectation is a
weighted average of a reward for assigning a high prob-
ability to the observed censoring time in individuals that
are censored, and a reward for predicting survival times
accurately in uncensored individuals (e.g., mean squared
error, for Normal AFT models). For the partially specified
Cox model, the reward is for assigning a high hazard to
individuals who experienced the event, relative to other
individuals at risk. We discuss that both censoring and
wrongly specifying covariate effects have an exponential
effect in power, but that asymptotically neither leads to
false positive inflation. We also develop a novel nonlin-
ear effect decomposition to ameliorate the power drop,
and study the consequences of using finite basis to de-
scribe covariate effects, a practical strategy to speed up
computations when one considers many models. For con-
creteness, we outline a formulation based on a novel com-
bination of nonlocal priors [23] and group-Zellner priors
that induce group-level sparsity for nonlinear effects. As
a technical contribution, we prove the asymptotic validity
of Laplace approximations to Bayes factors for concave
log-likelihoods under minimal conditions, allowing for
misspecification, which provides a simple basis to study
Bayes factors that covers all models considered in this pa-
per. We also provide software (R package mombf).

The outline is as follows. Section 2 discusses the like-
lihood for AFT and Cox models, priors and a nonlin-
ear effect decomposition aimed at improving power. Sec-
tion 3 discusses known and novel results on asymptotic
normality and Bayes factor rates, and how to interpret
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the Bayesian model selection solution under misspecifi-
cation. Similar results are obtained for general concave
log-likelihoods; see the Supplementary Material [40]. See
also there for a known but seemingly unexploited result
in the literature, that probit models are a particular case
of the Normal AFT model. Section 4 discusses the rela-
tive computational convenience of AFT vs. Cox models
related to the use of sufficient statistics. It also discusses
an approximation to the Normal log-distribution func-
tion and derivatives that significantly increases speed and
accuracy, and may have some independent interest, and
simple model exploration strategies. Section 5 illustrates
the effect of misspecification and censoring in simula-
tions and cancer datasets, practical power-sparsity trade-
offs, and the use of finite-dimensional nonlinear basis.
Section 6 concludes. The Supplementary Material con-
tains derivations related to the likelihood, priors and their
derivatives, and prior elicitation. It also offers detailed dis-
cussions on computational algorithms, including a novel
approximation to Normal log-distribution functions that
may have some independent interest. Finally, it contains
all proofs for our main results, additional propositions for
the AFT model with Laplace errors and probit models,
the asymptotic validity of Laplace approximations to inte-
grated likelihoods, and empirical results that supplement
those in the main paper.

2. FORMULATION

Our discussion focuses on survival data, but see the
Supplementary Material for binary regression and more
general concave log-likelihoods. Section 2.1 sets notation,
reviews the AFT and proportional hazards models, their
being a particular cases of the generalized hazards struc-
ture, and a nonlinear effects decomposition to improve
interpretability and power. Section 2.2 embeds the prob-
lem within a Bayesian model selection framework. Sec-
tion 2.3 introduces prior distributions that can accommo-
date group and hierarchical constraints, and Section 2.4
suggests default prior parameter values.

2.1 Likelihood

Let us introduce the notation. Suppose that one is inter-
ested in studying the dependence of a survival (or time-
to-event) outcome oi ∈ R+ on a covariate vector xi =
(xi1, . . . , xip)� ∈ R

p , for individuals i = 1, . . . , n. Sup-
pose that there are right-censoring times ci ∈ R+, such
that one only observes the outcome for uncensored in-
dividuals, that is, those for which oi ≤ ci . Denote by
ui = I(oi < ci) the indicator that observation i is uncen-
sored, yi = min{log(oi), log(ci)} the observed log-times,
y = (y1, . . . , yn), u = (u1, . . . , un), and the number of un-
censored individuals no = ∑n

i=1 ui .

We review two popular models for survival data, the
AFT and Cox models, and discuss a strategy to decom-
pose nonlinear effects. The AFT model postulates

log(oi) =
p∑

j=1

gj (xij ) + εi,

where gj : R → R and εi are independent across i =
1, . . . , n with mean E(εi) = 0 and variance V (εi) = σ 2

(assumed finite). Typically, gj is expressed in terms of
an r-dimensional basis, for example, splines or wavelets
[55]. For interpretability and to gain power (see Sec-
tion 3.2) it is convenient to decompose gj into a linear
and a deviation-from-linearity components. To fix ideas,
the cubic splines used in our examples consider

(1) log(oi) = x�
i β + s�

i δ + εi,

where β = (β1, . . . , βp)� ∈ R
p , δ� = (δ�

1 , . . . , δ�
p ) ∈R

rp

and s�
i = (s�

i1, . . . , s
�
ip), where sij ∈ R

r is the projection
of xij onto a cubic spline basis orthogonalized to xij (and
the intercept). The idea is that x�

i β captures linear effects,
whereas s�

i δ captures deviations from linearity. Even if a
covariate truly has a nonlinear effect, the linear term often
captures a fraction of that effect using a single parameter,
hence one can gain in power to detect its presence. Specif-
ically we built sij , the ith row of the n × r matrix Sj , as
follows. Let Xj and S̃j have row i equal to (1, xij ) and
the cubic spline projection of xij (equi-distant knots), then
Sj = (I − Xj(X

�
j Xj )

−1X�
j )S̃j is orthogonal to Xj . De-

note by (X,S) the design matrix with (x�
i , s�

i ) in its ith
row, and by (Xo,So) and (Xc, Sc) the submatrices with
the rows for uncensored and censored individuals (respec-
tively). This formulation contains partially linear models
as particular cases, that is, when only some of the covari-
ates are assumed to have a nonlinear effect). We denote
the parameter space by � ⊂ R

p(r+1) ×R
+.

In survival analysis it is common to pose a model only
for the survival times, such as (1). This is because the
censoring is assumed to be noninformative given the co-
variates, and then the censoring distribution factors out
of the likelihood function (Supplementary Material). The
likelihood and partial likelihood used by the AFT and
Cox models, which we review next, embed such a non-
informativeness assumption. See Section 3 for a discus-
sion on the consequences of this assumption not hold-
ing.

Regarding the likelihood associated to (1), consider the
particular case where the errors are Gaussian. It is conve-
nient to reparameterize α = β/σ , κ = δ/σ and τ = 1/σ ,
as then the log-likelihood is concave, provided the num-
ber of uncensored individuals is greater than the number
of model parameters (no ≥ p + rp) and that (Xo,So) has
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full column rank [3, 47]. The log-likelihood is


(α, κ, τ )

= −no

2
log

(
2π

τ 2

)
− 1

2

∑
ui=1

(
τyi − x�

i α − s�
i κ

)2

+ ∑
ui=0

log
{
�

(
x�
i α + s�

i κ − τyi

)};
(2)

see the Supplementary Material for its gradient and hes-
sian.

The Cox model instead assumes that the hazard func-
tion at time t takes the form

hPH (t | xi) = h0(t) exp
{
x�
i β + s�

i δ
}
,

where h0(·) is a baseline hazard, typically estimated non-
parametrically, and (β, δ) are estimated using the log par-
tial likelihood [8]

(3) 
p(β, δ) = ∑
ui=1

log
(

exp{x�
i β + s�

i δ}∑
k∈R(oi)

exp{x�
k β + s�

k δ}
)
,

where R(t) = {i : oi ≥ t} denotes the set of individuals at
risk at time t .

To relate both models, (1) can be formulated in terms
of the hazard function

hAFT (t) = h0
(
t exp

{
x�
i β + s�

i δ
})

exp
{
x�
i β + s�

i δ
}
.

Both models are special cases of the generalized hazards
structure [6]

(4) hGH(t) = h0
(
t exp

{
x�
i β + s�

i δ
})

exp
{
x�
i θ + s�

i ξ
}
,

which we use in our examples to portray the behaviour of
misspecified AFT and Cox models. Clearly, (4) contains
the AFT model for (β, δ) = (θ, ξ) and the proportional
hazards model for (β, δ) = 0.

2.2 Model Selection

Our goal is model selection, which we formalize as
choosing among three possibilities

γj =

⎧⎪⎪⎨
⎪⎪⎩

0, if βj = 0, δj = 0,

1, if βj �= 0, δj = 0,

2, if βj �= 0, δj �= 0,

corresponding to no effect, a linear and a nonlinear effect
of each covariate j = 1, . . . , p. That is, γ = (γ1, . . . , γp)

determines what covariates enter the model and their ef-
fect, and there are 3p total models to consider. We re-
mark that by nonlinear effect we refer to the specific effect
coded by the chosen basis, for example, B-splines in our
examples. One could extend the exercise by considering
other types of nonlinear effects, for example, by adding
a fourth possibility γj = 3 associated to a wavelet basis.
Such basis would be orthogonalized to the linear term, as
described after (1).

This formulation has two key ingredients. First, it de-
composes effects into linear and deviation from linearity
components, enforcing the hierarchical desiderata that the
latter are only included if the linear terms are present.
This decomposition is similar to the structured additive
regression of [44], the main difference is that they do
not test for exact βj = 0, δj = 0 and that they rely on a
spectral decomposition that is less general than our sim-
pler orthogonalization of (Xj , Sj ). Our theory and results
show that such decompositions improve the power to de-
tect truly active effects. As discussed, this is because the
option γj = 1 captures part of the effect of a variable with
a single parameter. The second ingredient is considering
the group inclusion of all nonlinear coefficients δj ∈ R

r .
The motivation is that including individual entries in δj

increases the probability of false positives, for example, if
j truly had no effect there would be 2r − 1 subsets of Sj

leading to including j .
Bayesian model selection proceeds as follows. Let

pγ = ∑p
j=1 I(γj �= 0) be the number of active variables

according to model γ , sγ = ∑p
j=1 I(γj = 2) the num-

ber of nonlinear effects, and dγ = pγ + rsγ + 1 the
total number of parameters in γ for AFT models, and
dγ = pγ + rsγ for Cox and probit models. (Xγ ,Sγ ) and
(βγ , δγ ) are the corresponding submatrices of (X,S) and
subvectors of (β, δ), and (Xo,γ , So,γ ) and (Xc,γ , Sc,γ )

the submatrices of the observed (Xo,So) and censored
(Xc, Sc) design matrices. One then obtains posterior
model probabilities

π(γ | y) = p(y | γ )π(γ )∑
γ p(y | γ )π(γ )

=
(

1 + ∑
γ ′ �=γ

Bγ ′,γ
π(γ ′)
π(γ )

)−1
,

(5)

where π(γ ) is the model prior probability, Bγ ′,γ = p(y |
γ ′)/p(y | γ ) the Bayes factor between (γ ′, γ ) and

p(y | γ ) =
∫

p(y | αγ , κγ , τ )

× π(αγ , κγ , τ | γ )dαγ dκγ dτ,

the integrated likelihood p(y | αγ , κγ , τ ) with respect to a
prior density π(αγ , κγ , τ | γ ). One may choose the model
with highest π(γ | y), variables with high marginal pos-
terior probabilities π(γj �= 0 | y) and, when the interest is
in prediction, use Bayesian model averaging where mod-
els are weighted according to π(γ | y), or alternatively
choosing a sparse model giving similar predictions [14].
Either way π(γ | y) are critical for inference, hence the
importance to understand their behavior.

To conclude, we comment upon a practically relevant
computational issue. In additive models, it is common to
either let the basis dimension r grow with n and add a
regularization term (e.g., P-splines), or to learn r from the
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data (e.g., knot selection). Letting r grow with n is inter-
esting theoretically and in prediction problems where one
fits a single model, but less so when one considers many
models. Large r increases the computational cost (e.g.,
matrix determinants require r3/3 operations) and is often
unneeded when the goal is just to detect if a covariate has
an effect. Instead one may use a moderate r , for exam-
ple, misspecify the predictive-optimal model. The ques-
tion is then, what answer can one hope to obtain and what
are its properties. Our theory and software allow learning
r among several fixed values, but in our examples a small
r = 5 provided better inference at lower cost (particularly
for small n, e.g., Figure S3, bottom).

2.3 Prior Distributions

Although our discussion applies to a wide class of pri-
ors, we present three concrete options:

πL(αγ , κγ , τ ) = π(τ)
∏

γj≥1

N
(
αj ;0, gLn/

(
x�
j xj

))

× ∏
γj=2

N
(
κj ;0, gSn

(
S�

j Sj

)−1)

πM(αγ , κγ , τ ) = π(τ)
∏

γj≥1

α2
j

gM

N(αj ;0, gM)

× ∏
γj=2

N
(
κj ;0, gSn

(
S�

j Sj

)−1)

πE(αγ , κγ , τ ) = π(τ)
∏

γj≥1

e

√
2−gE/α2

j N(αj ;0, gE)

× ∏
γj=2

N
(
κj ;0, gSn

(
S�

j Sj

)−1)
,

where π(τ) = 2τ−3IG(τ−2;aτ /2, bτ /2), and IG denotes
the inverse gamma density, and gL,gS, gM,gE, aγ , bτ ∈
R+ are given dispersion parameters, for which we pro-
pose default values in Section 2.4.

These choices include a standard Normal prior and two
variations of nonlocal priors. The use of nonlocal priors
can be argued from a foundational viewpoint, where one
wishes to assign prior beliefs that are coherent with the
parameters assumed nonzero by a given model [23]. For
our purposes, however, their main role is that they lead
to faster Bayes factor rates to discard spurious parame-
ters. See [41] for further discussion. We refer to πL as
group-Zellner prior. It is a product of Zellner priors across
groups of linear and nonlinear terms for each covariate.
This prior is local, that is, it assigns nonzero density to αγ

having zeroes. The Zellner structure is chosen for simplic-
ity, our theory can be easily extended to other local priors,
provided they are continuous and positive at the asymp-
totically optimal parameter values (Section 3, [23]). The

priors πM and πE are nonlocal with respect to αγ , the so-
called product MOM and eMOM priors introduced in [24,
42], and a group-Zellner prior on κγ .

Regarding the prior on the models π(γ ), we consider
joint group inclusion of nonlinear coefficients δj and the
hierarchical restriction that their inclusion requires that
of the corresponding linear coefficient βj . Letting π(γ )

depend only on the number of nonzero parameters in
(βγ , δγ ), as customarily done when only linear effects
are considered, would ignore such structure and hence be
inadequate. Instead, we let π(γ ) depend on the number
of variables having linear and nonlinear effects, (pγ , sγ ).
By default, we consider independent Beta-Binomial pri-
ors [45]

π(γ ) = 1

C
BetaBin(pγ ;p,a1, b1)

(
p

pγ

)−1

× BetaBin(sγ ; s, a2, b2)

(
s

sγ

)−1

,

(6)

where BetaBin(z;p,a, b) is the probability of z successes
under a Beta-Binomial distribution with p trials and pa-
rameters (a, b) and C a normalizing constant that does
not need to be computed explicitly. Any model such that
the number of parameters is pγ + rsγ > n is assigned
π(γ ) = 0, as it would result in data interpolation. By de-
fault, we let a1 = b1 = a2 = b2 = 1 akin to [45], for ex-
ample, in the p = 1 case these give π(γ1 = 0) = π(γ1 =
1) = π(γ1 = 2) = 1/3. As alternatives to (6), one can also
consider Binomial priors where BetaBin(z;p,aj , bj ) is
replaced by Bin(z;p,aj ) for a given success probability
aj ∈ [0,1] and Complexity priors [5] where it is replaced
by 1/paj z for some constant aj > 0. These two alterna-
tives are implemented in our software and covered by our
theory in Section 3, but for simplicity our examples focus
on (6).

2.4 Prior Elicitation

The prior dispersion parameters (gL, gM,gE,gS) are
important for variable selection. For instance, setting large
dispersions helps induces sparsity, particularly when they
are allowed to grow with the sample size n [32]. However,
such large values also reduce power (see [37] and our
Propositions 3, 4 and S5) and are harder to justify from
the point of view that the expected effect sizes a priori
should not depend on n. We briefly discuss default values
that do not depend on n, and refer the reader to Section
S3 for details.

Specifying prior parameters provides an opportunity to
define what effects are practically relevant. Importantly, in
what follows we assume that continuous covariates were
standardized to unit variance, else the parameter inter-
pretation and default values change. Basic considerations
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give a fairly narrow range of values that we deem reason-
able in applications. For example, in AFT and Cox mod-
els e|βj | define the effect size, when these are say < 15%
(i.e., e|βj | < 1.15) they are typically practically irrelevant.
Based on these considerations, our recommended defaults
for AFT and Cox models are gM = 0.192, gE = 0.091,
gL = 1, gS = 1/r and aτ = bτ = 3, whereas for pro-
bit regression they are gM = 0.139 and gE = 0.048. One
should not take these defaults at their exact value, rather
as defining a range of reasonable values. These ranges are
discussed in Section S3. In our examples, results were ro-
bust to the prior dispersions, provided they stay within our
recommended range.

We remark that if one were to change the prior disper-
sion arbitrarily then results would be affected, in a similar
manner to how regularization parameters affect penalized
likelihood results. However, in our view the prior beliefs
implied by arbitrary prior dispersions would be unreason-
able in most applications. We also note that there is a wide
objective Bayes literature on using the data to set the prior
parameters; see [7] for an excellent review. We do not ar-
gue against such strategies, but we focus on our defaults
as a simple strategy that attains a fairly competitive per-
formance in practice.

3. THEORY

This section describes the asymptotic solution returned
by Bayesian model selection, when the observed data
(oi, ci, zi) ∼ F0 are independent realizations from some
F0, where zi ∈ R

p(r+1)+q for q ≥ 0 contains the observed
covariates (xi, si) ∈ R

p(r+1), and potentially also q ad-
ditional columns. These columns may contain covariates
that were not recorded but are truly relevant for the out-
come or the censoring, or nonlinear effects and interac-
tions missed by (xi, si). We do not assume F0 to be para-
metric, rather it can be quite general, and the whole model
structure assumed by the analyst (e.g., accelerated times,
proportional hazards) may be wrong.

Section 3.1 shows that when one assumes the Normal
AFT model (1) but truly (oi, ci, zi) ∼ F0, the maximum
likelihood estimator under each model γ converges to an
optimal (α∗

γ , κ∗
γ , τ ∗

γ ) and is asymptotically normally dis-
tributed. See [17] and [18] for related asymptotic results,
and Section S8 for analogous results for the Laplace AFT
model. Section 3.2 shows that Bayesian model selection
in the AFT model asymptotically returns the smallest γ ∗
such that all effects in (α∗

γ , κ∗
γ ) are nonzero. Equivalently,

γ ∗ is defined by the zeroes in (α∗, κ∗), the optimal value
under the full model including all parameters. Section 3.3
gives analogous results for Cox models. These results are
extended to probit models in Section S9, and in Section
S10 to more general concave log-likelihood models. It is
possible to derive similar results beyond the concave case,

however, this class encompasses all the models we con-
sider here and allows simplifying the proofs and technical
conditions.

Throughout we help interpret the solution and certain
Bayes factors properties. Of particular relevance, Sec-
tion 3.1 discusses that the asymptotic solution γ ∗ ex-
cludes covariates that do not help predict the outcome
nor the censoring times, and offers some examples. Sec-
tion 3.2 comments on potential advantages of using low-
dimensional basis and nonlinear decompositions to detect
covariate effects.

3.1 Asymptotic Solution in AFT Models

As the sample size grows, Bayesian model selection
recovers a model γ ∗ that excludes parameters that are
asymptotically estimated to be zero. Under mild regular-
ity conditions, this limiting parameter is the value maxi-
mizing the expected log-likelihood under F0. We start by
defining the expected log-likelihood, then state the limit-
ing result, and finally interpret its meaning and implica-
tions for model selection.

Let ηγ = (αγ , κγ , τ ) ∈ �γ be the vector with pγ +
rsγ regression parameters under a given model γ (Sec-
tion 2.2) plus the error variance, where �γ = R

pγ +rsγ ×
R

+ is the corresponding parameter space. Let

m(ηγ ) = (1 − u1)
[
log�

(
x�

1 αγ + s�
1 κγ − τ log(c1)

)]
+ u1

[
log(τ ) − 1

2
log(2π)

− 1

2

(
τ log(o1) − x�

1 αγ − s�
1 κγ

)2
]
,

the contribution of one observation to the log-likelihood
(2), and

M(ηγ ) = EF0

(
m(ηγ )

)
= PF0(u1 = 0)

×EF0

[
log�

(
x�

1γ αγ + s�
1γ κγ

− τ log(c1)
) | u1 = 0

]
+ PF0(u1 = 1)

(
log(τ ) − 1

2
log(2π)

− 1

2
EF0

[(
τ log(o1) − x�

1γ αγ

− s�
1γ κγ

)2 | u1 = 1
])

(7)

its expectation under the data-generating F0. Under min-
imal conditions, M(ηγ ) has a unique maximizer, denoted
by η∗

γ = (α∗
γ , κ∗

γ , τ ∗
γ ). Below we focus our interpreta-

tion on viewing (7) as the expectation of a likelihood-
associated reward, and η∗

γ as the associated minimizer,
but η∗

γ can also be viewed as minimizing the Kullback–
Leibler divergence to F0(y, u) (also called generalized
Kullback–Leibler divergence; see [17]).
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Proposition 1 proves that the maximum likelihood es-
timator η̂γ converges to η∗

γ , and Proposition 2 its asymp-
totic normality with a sandwich covariance that is stan-
dard in misspecified models, and corresponds to the
smallest possible covariance for unbiased estimators un-
der model misspecification. Such variance alteration does
not affect consistency but can alter finite n false positives
and asymptotic power (see Section 3.2). See also Proposi-
tions S1–S2 for analogous results on the AFT model with
Laplace errors. Mild technical conditions, denoted A1–
A5, that suffice for the proposition to hold are discussed in
S7. We remark that A3 assumes the existence and finite-
ness of η∗

γ and η̂γ (the latter for large enough n), which
implies that these optima cannot occur at the boundary of
�γ and must be unique (by concavity). For example, this
rules out situations where η∗

γ contains infinite regression
parameters or variance, or zero variance, which we view
as pathological cases that we exclude from consideration.
Similar assumptions were made by [2] (Assumption M in
Section 3; see also references therein), although those au-
thors allowed for the maximum to occur on the boundary
of �γ .

PROPOSITION 1. Assume A1–A3. Then η∗
γ =

argmax�γ
M(ηγ ) is unique and η̂γ

P→ η∗
γ as n → ∞.

PROPOSITION 2. Assume A1–A5. Then
√

n
(
η̂γ − η∗

γ

)
D−→ N

(
0,V −1

η∗
γ
EF0

[∇m
(
η∗

γ

)∇m
(
η∗

γ

)�]
V −1

η∗
γ

)
,

where Vη∗
γ

is the Hessian matrix of M(ηγ ) evaluated at
η∗

γ , and m(η∗
γ ) = logp(y1 | η∗

γ ).

Proposition 1 has important implications for model se-
lection. Let (α∗, κ∗) be the optimal parameter under the
full model that includes all linear and nonlinear terms.
Asymptotically, one obtains the model γ ∗ of smallest di-
mension maximizing (7) (see Section 3.2), which is de-
fined by zeroes in (α∗, κ∗). Specifically, γ ∗

j = 0 if both
linear and nonlinear coefficients (α∗

j , κ∗
j ) are zero, γ ∗

j = 1
if α∗

j �= 0 and κ∗
j = 0, and γ ∗

j = 2 if κ∗
j �= 0.

To interpret this asymptotic solution, we turn attention
to (7). If a covariate does not contribute to improving
neither of the two terms in (7), then its corresponding
entry in (α∗, κ∗) is zero. The first term is the expected
log-probability, as predicted by the model, that the indi-
vidual is censored at the observed log(c1) (conditional
on being censored). Therefore, any covariate that helps
the model predict more accurately the occurrence of cen-
soring events contributes to this first term. The second
term is the mean squared error in predicting the observed
time log(o1), conditional on the time being uncensored.
Expression (7) is an average of these two components
weighted by the true censoring probability PF0(u1 = 0),

and averaged across covariate values under F0. Hence, γ ∗
drops covariates that do not predict survival neither cen-
soring times, but may include those that, even if truly un-
related to survival, help explain the censoring. This inter-
pretation extends to working models other than the Nor-
mal AFT. For any other fully specified model, the first
term in (7) features the model log-predicted probability of
censoring, and the second term the usual log-likelihood
for uncensored data. For example, under a AFT model
with Laplace errors the asymptotic solution is defined by
the mean absolute error and the Laplace survival function
(see Section S8).

We present some simple examples to illustrate our dis-
cussion.

EXAMPLE. Suppose that under F0, truly logoi | ci ∼
N(xi1 +θ log ci, σ

2) and log ci ∼ N(xi2, σ
2). The analyst

adopts the model logoi ∼ N(β1xi1 +β2xi2,1/τ 2), which,
as discussed, assumes noninformative censoring. If θ = 0,
the censoring under F0 is noninformative, and then α∗

2 =
β∗

2 = 0, hence xi2 is discarded asymptotically.
However, if θ �= 0 then truly logoi = xi1 + θxi2 + εi ,

where εi ∼ N(0, (1 + θ2)σ 2). Plugging this expression
into (7), it is easy to show that then α∗

2 �= 0. That is, the
presence of informative censoring causes xi2 to be asymp-
totically selected.

EXAMPLE. Suppose that there is a fixed administra-
tive censoring at log ci = a for all individuals (so it is
truly noninformative under F0), a single covariate xi ∈ R,
and that the analyst adopts the model logoi ∼ N(β1 +
β2xi,1/τ 2). Suppose that xi truly has an effect on the out-
come under F0, but that said effect only occurs at a time
b > a. Then the effect cannot be detected from the ob-
served data, since all individuals are censored at a. The
issue is that the covariate has an effect that deviates from
the assumed AFT structure. For example, suppose that un-
der F0,

logoi = zi + θxiI(zi > b),

where xi ∈ {0,1} indicates that individual i received a
treatment, zi ∼ N(0,1) is the survival time for untreated
individuals, and θ > 0 quantifies the treatment effect.

Here the effect is only present among individuals that
live longer than b and, since censoring occurs before b,
for all uncensored individuals one observes logoi = zi .
Plugging this expression and log ci = a into (7), and not-
ing that the conditioning on u1 can be removed from the
expectations, one can show that α∗

2 = β∗
2 = 0. This is

an extreme example where one cannot detect an effect
that strongly deviates from the assumed mean structure,
even though the censoring is noninformative. One could
conceive related examples where a covariate has a time-
varying effect that is first positive and then negative, be-
fore administrative censoring occurs, so that the average
effect is near-zero.
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EXAMPLE. Suppose that a potentially informative
censoring occurs early, so that PF0(u1 = 0) ≈ 1. Then
(7) under the full model is approximately equal to

EF0

[
log�

(
x�

1 α + s�
1 κ − τ log(c1)

)]
.

As discussed, this term is the log-probability that the out-
come occurs after the observed censoring time, as pre-
dicted by the Normal AFT model. Hence, (α∗, κ∗) are
essentially chosen to predict censoring times. If the cen-
soring is informative and depends on a set of covariates,
then (α∗, κ∗) will in general assign nonzero coefficients
to these covariates, which will be asymptotically selected.
A similar argument can be made for late censoring where
PF0(u1 = 1) ≈ 1, then (α∗, κ∗) is approximately the usual
(population) least-squares solution. If the outcome de-
pends on the censoring, which in turn depends on a set
of covariates, then least-squares will assign a nonzero co-
efficient to the latter.

3.2 Bayes Factor Rates for Misspecified AFT Models

This section proves that the posterior probability of the
optimal model γ ∗ converges to 1, under mild conditions.
Recall that the posterior probability of γ ∗ is

π
(
γ ∗ | y) = p(y | γ ∗)π(γ ∗)∑

γ p(y | γ )π(γ )

=
(

1 + ∑
γ �=γ ∗

Bγ,γ ∗
π(γ )

π(γ ∗)

)−1
.

Proposition 3 gives the rate at which each Bγ,γ ∗ con-
verges to 0 (in probability), when ones assumes a po-
tentially misspecified AFT model. Provided that each
Bγ,γ ∗π(γ )/π(γ ∗) converges to 0 (this follows immedi-
ately in the standard case where prior model probabil-

ities are bounded, e.g.) it follows that π(γ ∗ | y)
P−→ 1.

This implies that the highest posterior probability model
consistently selects γ ∗, and that including covariates with
marginal posterior probability π(γ ∗

j | y) > t , for any fixed
threshold t , also leads to consistent selection.

Proposition 3 clarifies the role of censoring and mis-
specification. The result is stated for Laplace approxima-
tions to Bayes factors, a computationally convenient al-
ternative to obtaining exact marginal likelihoods, but in
our setting both are asymptotically equivalent (Proposi-
tion S6). Specifically, we consider

Bγ,γ ∗ = p̂(y | γ )

p̂(y | γ ∗)
,(8)

where p̂(y | γ ) is obtained via a Laplace approximation:

p̂(y | γ ) = exp{
(η̃γ ) + logπ(η̃γ )}(2π)dγ /2

|H(η̃γ ) + ∇2 logπ(η̃γ )|1/2 ,

where η̃γ = arg maxηγ 
(ηγ )+ logπ(ηγ ) is the maximum
a posteriori under prior π(ηγ ). See Section S4 for details
on computing this approximation.

Proposition 3 treats separately overfitted models (con-
taining γ ∗) and nonoverfitted models (not containing γ ∗).
Overfitted models contain all truly relevant plus a few
spurious parameters, a situation where the challenge is to
enforce sparsity. Nonoverfitted models are missing some
truly relevant parameters, there the challenge is also to
have high power to detect the missing signal. By truly
relevant we mean improving M(η∗

γ ), that is, the predic-
tion of either observed or censored times; see Section 3.1.
Recall that dγ = dim(ηγ ) = pγ + rsγ + 1. Intuitively
the proof of Proposition 3 is based on establishing the
asymptotic distribution of the likelihood-ratio test statis-
tic 2[
(η̃γ ) − 
(η̃γ ∗)], which is bounded by central chi-
squares in the overfitted case and noncentral chi-squares
in the nonoverfitted case, and then finding an asymp-
totic approximation to the other quantities featuring in
p̂(y | γ ).

PROPOSITION 3. Let Bγ,γ ∗ be the Bayes factor in (8)
under either πL, πM or πE , where γ ∗ is the AFT model
with smallest dγ ∗ minimizing (7), and γ �= γ ∗ another
AFT model. Assume that both γ ∗ and γ satisfy Conditions
A1–A5. Suppose that (gM,gE,gL, gS) are nondecreasing
in n.

(i) Overfitted models. If γ ∗ ⊂ γ , then

logBγγ ∗ = log(an)+ r

2
(sγ ∗ − sγ ) log(ngS)+Op(1),

where an = (ngL)
pγ ∗−pγ

2 under πL, an = (n ×
gM)3(pγ ∗−pγ )/2 under πM , and an = (ngE ×
e2gE

√
n)(pγ ∗−pγ )/2 under πE .

(ii) Nonoverfitted models. If γ ∗ �⊂ γ , then

log(Bγγ ∗) = −n
[
M

(
η∗

γ ∗
) − M

(
η∗

γ

)]
+ log(bn) + r

2
(sγ ∗ − sγ ) log(ngS)

+Op(1)

where bn = (ngL)
pγ ∗−pγ

2 under πL, bn = (n ×
g3

M)(pγ ∗−pγ )/2 under πM , and bn = (gEn)pγ ∗−pγ ×
e−gEc under πE , for finite c ∈R.

By Proposition 3(i) the rates to discard overfitted
models are unaffected by misspecification and censor-
ing (but certain constants can affect finite n behaviour;
see the proof). These sparsity rates are improved by
nonlocal priors and by setting large prior dispersions
(gL, gM,gE,gS), extending previous results [24, 32, 39,
41] to misspecified survival models. By Proposition 3(ii)
the rate to detect nonspurious effects is exponential in n

with a coefficient M(η∗
γ ∗)−M(η∗

γ ) > 0 that measures the
drop of predictive ability in γ relative to γ ∗, and is hence
affected by misspecification and censoring. Recall that
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predictive ability can be understood as a weighted aver-
age of forecasting the outcome to occur after the censor-
ing time (for censored individuals) and the actual outcome
time (for uncensored individuals).

When one misspecifies the model family, M(η∗
γ ∗) −

M(η∗
γ ) is driven by the projection of F0 onto the assumed

family. Interpreting the geometry of such projections is
beyond our scope, but intuitively projections usually re-
duce distances and hence make M(η∗

γ ∗) − M(η∗
γ ) smaller

than if one were to assume the correct model class. By
Part (ii), this would decrease the power to detect nonzero
effects in η∗

γ .
To facilitate interpretation suppose there is no censor-

ing. Then simple algebra shows that M(η∗
γ ∗) − M(η∗

γ ) =
EF0[log(τ ∗

γ ∗/τ ∗
γ )], which measures the difference in mean

squared prediction errors from using model γ instead
of the optimal γ ∗ (given by 1/(τ ∗

γ )2 and 1/(τ ∗
γ ∗)2, re-

spectively). For instance, omitting covariates increases
τ ∗
γ ∗/τ ∗

γ , causing an exponential drop in power; see our ex-
amples in Sections 5.1-5.2 for an illustration.

Proposition 3 also highlights trade-offs in model-
ing nonlinear covariate effects. Including a truly active
nonlinear term is rewarded by an improved model fit
M(η∗

γ ∗) − M(η∗
γ ), but runs into an r log(ngS) penalty.

In contrast, including a linear effect leads to a smaller
improvement in fit, but also incurs a smaller log(ngS)

penalty. Hence, decomposing effects into a linear and
nonlinear components can improve power.

A similar observation illustrates that for model selec-
tion purposes, the advantages of using fully nonparamet-
ric effects over a finite-dimensional basis may be small.
Suppose one replaced the basis dimension r by a larger
r∗ maximizing M(η∗

γ ∗) − M(η∗
γ ). For m-degree splines

with equi-spaced knots and sufficiently smooth M() the
improvement in M(η∗

γ ∗) − M(η∗
γ ) associated to increas-

ing r to r∗ is at most of order 1/rm [36]. For said in-
crease to offset the complexity penalty it needs to hold
that rm+1(r∗−r)/2 is of a smaller order than n/ log(ngS).
Hence, by letting rm+1r∗ grow sub-linearly with n could
improve power relative to r . However, for even moderate
r and cubic splines (m = 3) the required n > r∗r4 can be
impractically large; see, for example, the examples in Sec-
tion 5.1 with r ∈ {5,10,15}. Further, the computational
cost of using a large r∗ for each considered model γ is
impractical when one wishes to consider many models.

In summary, using a small basis dimension r (e.g.,
r = 5, in our examples) within the nonlinear effect de-
composition in Section 2.1 may be practically preferable
to a nonparametric basis where r grows with n, for the
purpose of detecting the effect.

3.3 Bayes Factor Rates for Misspecified Additive Cox
Models

Our Bayes factor results under misspecified Cox mod-
els are similar to Section 3.2, but here the optimal model

γ ∗ is defined by zeroes in the parameter η∗ = (β∗, δ∗)
maximizing the expected partial likelihood (3) under F0;
see S7.11 for its expression and some discussion. The in-
terpretation of η∗ is also analogous, though here (3) re-
wards predicting a higher risk for individuals who expe-
rienced the event (uncensored) than for other individuals
at risk. An alternative interpretation is possible by not-
ing that (3) can be approximated by a Poisson regression
log-likelihood [27], where one models the mean number
of uncensored events in infinitesimal intervals. Intuitively,
any covariate that helps predict this mean, which depends
on the distribution of the censoring and survival times,
is asymptotically selected. Covariates that are unrelated
both to survival and censoring are hence discarded.

We consider Bayes factors obtained by a Laplace ap-
proximation to the integrated partial likelihood

p(y | γ ) =
∫

exp
{

p(βγ , δγ )

}
× π(βγ , δγ | γ )dβγ dδγ

(9)

these can be viewed as the integrated likelihood under a
limiting noninformative nonparametric Gamma process
prior on h0; see [28] and [33] for a discussion. We ob-
tain Bayes factor rates analogous to Section 3.2, the proof
builds upon [54] and [30] who proved that η̄γ = (β̄γ , δ̄γ )

maximizing (3) are consistent and asymptotically normal
under misspecification, under Conditions B1–B4 listed in
Section S7.4.

PROPOSITION 4. Let Bγ,γ ∗ be the Bayes factor based
on (9) under πL, πM or πE , γ ∗ the Cox model with
smallest dγ ∗ minimizing the expected log partial likeli-
hood Mp in (S7.10) and γ �= γ ∗ another Cox model.
Assume that (γ ∗, γ ) satisfy Conditions B1–B4, and that
(gM,gE,gL, gS) are nondecreasing in n.

(i) Let an be as in Proposition 3. If γ ∗ ⊂ γ , then

logBγγ ∗ = log(an) + r

2
(sγ ∗ − sγ ) log(ngS) +Op(1),

(ii) Let bn be as in Proposition 3. If γ ∗ �⊂ γ , then

log(Bγγ ∗) = −n
[
Mp

(
η∗

γ ∗
) − Mp

(
η∗

γ

)]
+ log(bn) + r

2
(sγ ∗ − sγ ) log(ngS)

+Op(1).

That is, the Bayes factors under an assumed Cox model
have similar asymptotic behavior as under an assumed
AFT model, hence the conclusions stated in Section 3.2
also apply to the Cox model.

4. COMPUTATION

The two main computational challenges are exploring
the model space γ ∈ {0,1,2}p , and approximating the in-
tegrated likelihood p(y | γ ) in (5) for each model. We



22 D. ROSSELL AND F. J. RUBIO

first discuss relative advantages of the Normal AFT and
Cox models for computing p(y | γ ), and how they relate
to the amount of censored data in Section 4.1. We also
discuss an approximation to the Normal log-distribution
function derivatives that dramatically speeds up computa-
tion for the AFT and probit models. Section 4.2 discusses
the model search, when one cannot enumerate all 3p mod-
els.

4.1 Within-Model Calculations

When the log-likelihood is concave (or locally concave
around η∗

γ , as in asymptotically Normal models), Laplace
approximations to p(y | γ ) are one of the fastest and more
accurate methods available. A practical limitation is that,
when one wishes to consider many models or the sam-
ple size is large, solving the required optimization prob-
lems can still be cumbersome. This cost can be signifi-
cantly ameliorated by combining convex optimization al-
gorithms that use warm initializations; see Section S4. See
also [38] for an approach based on approximate Laplace
approximations that bypasses the optimization exercise
altogether.

Within survival analysis, an advantage of exponential-
family AFT models is admitting sufficient statistics for
the uncensored part of the likelihood, for example, (y�

o yo,

X�
o y,X�

o Xo) for (2). These can be computed upfront in
no(1 +p +p(p + 1)/2) operations and re-used whenever
a new model γ is considered at no extra cost, but for large
p such pre-computation has significant cost and memory
requirements. Since one typically visits only a small sub-
set of models, many elements in X�

o Xo are never used
and it would be wasteful to compute them all upfront. It
is more convenient to compute the entries in X�

o Xo when
first required by any given γ and storing them for later
use. Our software follows this strategy by using sparse
matrices in the C++ Armadillo library [43].

Given these sufficient statistics the log-likelihood in (2)
requires min{ndγ , (nc +1)dγ +dγ (dγ +1)/2} operations,
and each entry in its gradient and hessian require nc + 1
further operations. In contrast the Cox model’s partial
likelihood has a minimum cost of nodγ +no(no−1)/2 op-
erations when censored times precede all observed times
(max ci < minoi ), and a maximum cost ndγ + [n(n +
1) − nc(nc − 1)]/2 when observed times precede all cen-
sored times. That is, the AFT likelihood has a significantly
lower cost than the Cox model when nc < no (moderate
censoring) or n > dγ (sparse settings).

A caveat of the Normal AFT model, however, is requir-
ing the extensive evaluation of the log-cumulative distri-
bution log� and its derivatives. Each likelihood evalu-
ation requires nc terms featuring � and, although these
terms can be re-used when computing r(z) = φ(z)/�(z)

and D(z) = r(−z)2 − zr(−z) in the gradient and hessian,

evaluating �(z) is costly. Briefly, the problem of approx-
imating the inverse Mill’s ratio r(z) has been well stud-
ied [12]. There are many algorithms to approximate �(z),
but r(z) is harder, for example, Expression 26.2.16 in [1]
(page 932) has maximum absolute error < 7.5 × 10−8 for
�(z) but unbounded absolute error for r(z) as z → −∞.
By combining existing proposals we built a fast approxi-
mation that guarantees the small relative errors. One may
combine the Taylor series and asymptotic expansions in
[1] (page 932, Expressions 26.2.16 and 26.2.12) for �(z)

with an optimized Laplace continued fraction in [29] (Ex-
pression (5.3)) for r(z) as z → −∞. The resulting r̂(z)

has maximum absolute and relative errors < 0.000185
and < 0.000102 respectively, and for D̂(z) = r̂(−z)2 −
ẑr(−z) they are < 0.000424 and < 0.000505. See Section
S5 for further details. As an empirical check, the posterior
model probabilities obtained in Section 5.3 when replac-
ing (r(z),D(z)) by (̂r(z), D̂(z)) remained identical to the
third decimal place.

This approximation also facilitates evaluating the log-
likelihood and derivatives for probit and other models in-
volving log�, and may have some independent interest.
Using this approximation and the warm initializations in
Section S4 is practically meaningful, for the TGFB data
(Section 5.3, 868 parameters) they reduced the cost of
1,000 Gibbs iterations from >4 hours to 38 seconds.

4.2 Model Exploration

Recent advances in Markov chain Monte Carlo provide
model exploration strategies that perform fairly well in
practice; see [59] for a tempering approach that is partic-
ularly helpful when there are multimodalities in p(γ | y),
or [13] for adaptive methods that reduce the effort in ex-
ploring low posterior probability models. Further, as n

grows and posterior probabilities concentrate on a single
model, it is possible to prove quick convergence [57]. In-
tuitively, if p(γ ∗ | y) ≈ 1 and the chain converges quickly,
there is high probability that γ ∗ will be visited after a few
iterations. Most iterations are spent on models with high
π(γ | y) which, from Proposition 3, are models with di-
mension close to dγ ∗ . The main burden arises from ob-
taining p(y | γ ), which only needs to be computed the
first time that γ is visited and can be stored for subse-
quent iterations. Hence, if dγ ∗ is not too large (sparse
data-generating truths) or π(γ | y) is concentrated on rel-
atively few models, the cost is manageable.

Here for simplicity we describe Algorithm 1, a Gibbs
algorithm that builds upon earlier proposals [24, 39],
with the novelty that it adds a latent augmentation to en-
force hierarchical restrictions (nonlinear terms in S are
only added if the corresponding linear term in X is in
the model) in a computationally efficient manner. The
algorithm obtains B samples γ (1), . . . , γ (B) from π(γ |
y). It is not a naive Gibbs algorithm that sequentially



ADDITIVE BAYESIAN VARIABLE SELECTION 23

Algorithm 1 Augmented-space Gibbs sampling

1: Set b = 0, γ̃ (0) = (0, . . . ,0).
2: For j = 1, . . . ,2p, update γ̃

(0)
j = arg maxk p(γ̃j = k | y, γ̃

(b)
−j ). If an update was made across j = 1, . . . ,2p go back

to Step 2, else set γ
(0)
j = max{γ (0)

j , γ
(0)
j+p} for j = 1, . . . , p and go to Step 3.

3: Set b = b + 1. For j = 1, . . . , p set γ̃
(b)
j = 1 with probability

P
(
γ̃j = 1 | y, γ̃

(b)
−j

) =

⎧⎪⎪⎨
⎪⎪⎩

1, if γ̃j+p = 1,

p(y | γ̃j = 1, γ̃
(b)
−j )p(γ̃j = 1, γ̃

(b)
−j )

p(y | γ̃j = 0, γ̃
(b)
−j )p(γ̃j = 0, γ̃

(b)
−j ) + p(y | γ̃j = 1, γ̃

(b)
−j )p(γ̃j = 1, γ̃

(b)
−j )

, if γ̃j+p = 0,

and otherwise set γ̃
(b)
j = 0.

4: For j = p + 1, . . . ,2p set γ̃
(b)
j = 1 with probability

P
(
γ̃j = 1 | y, γ̃

(b)
−j

) =

⎧⎪⎪⎨
⎪⎪⎩

0, if γ̃j+p = 0,

p(y | γ̃j = 1, γ̃
(b)
−j )p(γ̃j = 1, γ̃

(b)
−j )

p(y | γ̃j = 0, γ̃
(b)
−j )p(γ̃j = 0, γ̃

(b)
−j ) + p(y | γ̃j = 1, γ̃

(b)
−j )p(γ̃j = 1, γ̃

(b)
−j )

, if γ̃j+p = 1,

and otherwise set γ̃
(b)
j = 0. If b = B stop, else go back to Step 3.

samples p trinary indicators, that is, sets γ
(b)
j = k with

probability π(γj = k | y, γ1, . . . , γj−1, γj+1, . . . , γp) for
k ∈ {0,1,2}. Instead, it is more convenient to run an
augmented-space Gibbs on 2p binary indicators. Specif-
ically let γ̃j = I(γj = 1) for j = 1, . . . , p denote that co-
variate j only has a linear effect, and γ̃j = I(γj−p = 2) for
j = p + 1, . . . ,2p a nonlinear effect. Algorithm 1 sam-
ples γ̃j individually but prevents (γ̃j , γ̃j+p) = (0,1), that
is, enforces that having a nonlinear effect when βj = 0
has zero posterior probability. The greedy initialization of
γ̃ (0) is analogous to that in [24] and to the heuristic opti-
mization in [35].

We remark that Algorithm 1 may suffer from worse
mixing than naive Gibbs sampling of γj ∈ {0,1,2}, but is
advantageous in sparse settings. If covariate j has a small
posterior probability π(γj �= 0 | y) then π(γ̃j = 1 | y) is
small and in most iterations γ̃j+p is set to zero without the
need to perform any calculation. In contrast when sam-
pling γj ∈ {0,1,2} one must obtain the integrated likeli-
hood for γj = 2, which can be costly due to adding the
r extra parameters needed to capture the nonlinear effect.
As an example, in Section 5.3 sampling γj ∈ {0,1,2} took
over 5 times longer to run than Algorithm 1, but provided
the same effective sample size up to 2 decimal places.

5. EMPIRICAL RESULTS

We illustrate via examples the effect of censoring, mis-
specification and the use of nonlinear effect decomposi-
tions on model selection. Section 5.1 considers a simple
simulation study with p = 2 variables, which Section 5.2
extends to p = 50. We consider different data-generating

truths where the covariates have a monotone or nonmono-
tone effect, and where the truth follows an AFT, propor-
tional hazards, or generalized hazards structure. In Sec-
tion 5.3, we analyze the effect of gene TGFB on colon
cancer. Given that the data-generating truth is unknown,
in Section 5.4 we study the number of false positives via
a permutation exercise. See also Section S11.3, where we
analyze the effect of the estrogen receptor on breast can-
cer survival.

We consider five model selection methods combining
the AFT and Cox models with local and nonlocal priors
and with LASSO. For all Bayesian methods we took the
highest posterior probability model γ̂ = arg maxπ(γ | y)

as the selected model. We refer to the first three meth-
ods as AFT–Zellner, AFT–pMOMZ and AFT–LASSO.
They all assume an AFT model and use either the block-
Zellner prior πL, the nonlocal pMOM–Zellner prior πM

(Section 2.3), or LASSO penalties as proposed by [26].
AFT–Zellner and AFT–pMOMZ assume the Normal AFT
model in (1), whereas AFT–LASSO uses a semiparamet-
ric AFT model. The remaining two methods combine the
Cox model with piMOM priors (Cox–piMOM, [33]) and
LASSO (Cox–LASSO, [48]). For AFT–Zellner and AFT–
pMOMZ we used the function modelSelection in the
R package mombf with the default prior parameters, the
Beta-Binomial prior π(γ ) in (6) and B = 10,000 itera-
tions in Algorithm 1. For Cox–piMOM we the used func-
tion cov_bvs in the R package BMSNLP with default
parameters and prior dispersion 0.25 as recommended by
[33]. For AFT–LASSO and Cox–LASSO we used the
functions AEnet.aft and glmnet in the R packages
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AdapEnetClass and glmnet, and we set the penal-
ization parameter via 10-fold cross-validation.

5.1 Censoring, Model Complexity and
Misspecification with p = 2

We consider sample sizes n ∈ {100,500}, as well
as censored and uncensored data. We present results
for AFT–pMOMZ, as those for AFT–Zellner and Cox–
piMOM were largely analogous. These methods are com-
pared to Cox–LASSO and AFT–LASSO in Section 5.2.
We consider six simulation scenarios. Scenarios 1–2 have
a data-generating AFT model, Scenarios 3–4 a general-
ized hazard model and Scenarios 5–6 a proportional haz-
ards model. The first covariate has a linear effect in all
scenarios, whereas the second covariate has a nonlinear
effect. In Scenarios 1, 3 and 5 this effect is strongly non-
linear and nonmonotone, whereas in Scenarios 2, 4 and
6 it is monotone and can be roughly approximated by a
linear trend; see Figure 1.

SCENARIO 1. AFT structure with logoi = xi1 +
0.5 log(|xi2|) + εi and ci = 0.5, where xi ∼ N(0,A),
A11 = A22 = 1, A12 = 0.5, εi ∼ N(0, σ = 0.5).

SCENARIO 2. AFT structure with logoi = xi1 +
0.5 log(1 + xi2) + εi and ci = 1, where xi = (x̃i1, |x̃i2|),
x̃i ∼ N(0,A) and A, εi as in Scenario 1.

SCENARIO 3. Generalized hazards structure with

hGH(t) = h0
(
t exp

{−xi1/3 + 0.5 log
(|xi2|)})

× exp
{−xi1/3 + 0.75 log

(|xi2|)},
ci = 0.5, h0 being the Log-Normal(0,0.5) baseline hazard
and xi as in Scenario 1.

SCENARIO 4. Generalized hazards structure with

hGH(t) = h0
(
t exp

{−xi1/3 + 0.5 log(1 + xi2)
})

× exp
{−xi1/3 + 0.75 log(1 + xi2)

}
,

ci = 1, and h0 and xi as in Scenario 3.

SCENARIO 5. Proportional hazards with h(t) =
h0(t) exp{3xi1/4 − 5 log(|xi2|)/4}, ci = 0.55, h0 being
the Log-Normal(0,0.5) baseline hazard and xi as in Sce-
nario 1.

SCENARIO 6. Proportional hazards with h(t) =
h0(t) exp{3xi1/4 − 5 log(|xi2|)/4}, ci = 0.95, and h0 and
xi as in Scenario 5.

In all scenarios, we first consider that there is no cen-
soring, and then a strong administrative censoring, giving
censoring probabilities PF0(ui = 0) ≈ 0.7.

We first discuss Scenarios 1–2 and illustrate the advan-
tage of using our nonlinear effect decomposition. We first
only considered the selection of nonlinear effects, that

is, γj ∈ {0,2}. In such case, the power to detect the ef-
fects (Figure S3, top) was significantly lower than when
decomposing them into linear and nonlinear parts (Figure
S3, middle). These findings align with Proposition 3, in
the sense that the improvement in model fit needs to over-
come the penalty for using a nonlinear basis. By consid-
ering γj ∈ {0,1,2}, one can capture part of the effect with
a single linear term. Figure S3 also shows that censoring
tends to reduce the power for both covariates.

Second, we illustrate the effect of the nonlinear basis
dimension r . We compared the earlier results, where r

was part of the model selection, to those obtained under
a single fixed r = 5, 10 or 15 (Figure S3, bottom). Inter-
estingly, in Scenario 1 the best performance was observed
for r = 5, despite the data-generating truth being strongly
nonlinear (Figure 1). In Scenario 2, the results were highly
robust to r , as one might expect from the true effect be-
ing near-linear. That is, the smaller r = 5 gave a good
compromise between inference and computation, we thus
used r = 5 from now on.

The results for Scenarios 3–4 are in Figure S4, and
for Scenarios 5–6 in Figure S5. The effect of censor-
ing, model complexity and misspecifiying covariate ef-
fects were largely analogous to Scenarios 1–2. To ex-
plore further the effects of misspecification, we repeated
the simulations in Scenarios 1–2 but now setting F0 to
have asymmetric Laplace errors εi ∼ ALaplace(0, s, a),
where a = −0.5 is the asymmetry and s the scale in
the parameterization of [39]. We set s such that the er-
ror variance was equal to the Normal simulations, that is,
s = σ 2/[2(1 + a2)] = 0.1. Figure S6 shows the results.
These are similar to Figure S3 except for a slight drop in
the power to include active covariates.

Finally, we explored the effect of omitting covariates
by analyzing the data from Scenarios 1–2 but considering
that only xi1 was actually observed, that is, removing xi2
from the analysis. Figure S7 shows the results. Relative to
Figure S3, under Scenario 1 there was a reduction in the
posterior evidence for including xi1. Such reduction was
not observed in Scenario 2, presumably due to xi1 being
correlated with log(1 + xi2) and hence picking up part of
its predictive power.

5.2 Censoring, Model Complexity and
Misspecification with p = 50

We extended Scenarios 1–6 from Section 5.1 by adding
48 spurious covariates. We generated covariates xi ∼
N(0,A) where A is a 50 × 50 matrix with unit diagonal
and all off-diagonal Aij = 0.5, and otherwise simulated
data as in Section 5.1. Figure 2 shows the proportion of
correct model selections by each model selection method
in Scenarios 1–2, across 250 independent simulations.
Figure S8 reports these results for Scenarios 3–4, and
Figure S9 for Scenarios 5–6. Tables S1–S6 also display
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FIG. 1. Simulation truth and a simulated dataset for Scenarios 1 (left) and 2 (right).

the posterior probability assigned to the optimal model
γ ∗ and the average number of truly active and truly inac-
tive selected covariates. All Bayesian methods exhibited a
good ability to select γ ∗ that improved with larger n and
uncensored data (as predicted by Proposition 3), and they
all provided significant improvements over Cox–LASSO
and AFT–LASSO, particularly in reducing the number
of false positives. As expected AFT–Zellner and AFT–
pMOM tended to slightly outperform Cox–piMOM under
truly AFT data (Scenarios 1—2), and conversely under
truly proportional hazards data (Scenarios 5—6), though
the differences were relatively minor. Interestingly, un-
der the generalized hazards model (Scenarios 3–4) again
AFT–Zellner and AFT–pMOMZ achieved higher correct
selection rates, presumably due to these generalized haz-
ard settings being closer to an AFT than to an proportional
hazards model.

5.3 Effect of TGFB and Fibroblasts in Colon Cancer
Metastasis

[4] studied the effect of 172 genes related to fibroblasts
(f-TBRS signature), a cell type producing the structural
framework in animals, and a growth factor (TGFB) as-
sociated with lower colon cancer survival (time until re-
currence). The authors obtained 172 genes responsive to
TGFB in mice fibroblasts. They then used independent
gene expression data from human patients, with tumor
stages 1-3, to show that an overall high mean expression
of these 172 genes was strongly associated with metasta-
sis. We analyzed their data to provide a more detailed de-
scription of the role of TGFB and f-TBRS on survival. We
used the n = 260 patients with available survival times,

and used tumor stage (two dummy indicators), TGFB
and the 172 f-TBRS genes as covariates, for a total of
p = 175. We first performed model selection via AFT–
pMOMZ only for staging and TGFB. The top model had
0.976 posterior probability and included stage and a lin-
ear effect of TGFB, confirming that TGFB is associated
with metastasis. The posterior marginal inclusion proba-
bility for a nonlinear effect of TGFB was only 0.009. As
an additional check, the maximum likelihood estimator
under the top model gave P-values< 0.001 for stage and
the linear TGFB effect. The estimated time accelerations
associated to TGFB are substantial (Figure S12, left).

Next, we extended the exercise to all 175 variables, only
considering linear effects. The top model contained gene
FLT1 and the second top model genes ESM1 and GAS1,
with respective posterior model probabilities 0.088 and
0.081. These were also the genes with highest inclusion
probabilities (0.208, 0.699 and 0.567 respectively). There
is plausible biology connecting FLT1, ESM1 and GAS1
to metastasis. From genecards.org [50], FLT1 is a growth
and permeability factor in cell proliferation and cancer in-
vasion. ESM1 is related to endothelium disorders, growth
factor receptor binding and gastric cancer networks, and
GAS1 plays a role in growth and tumor suppression. In-
terestingly the marginal inclusion probability for TGFB
was only 0.107, that is, after accounting for the top 3
genes TGFB did not show a significant effect on survival.
For confirmation, we fitted via maximum likelihood the
model with FLT1, ESM1, GAS1, stage and TGFB. The
P-value for TGFB was 0.281 and its estimated effect was
substantially reduced (Figure S12, right). Finally, we con-
sidered both linear and nonlinear effects (p(1+r) = 1050

http://genecards.org
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FIG. 2. Scenarios 1–2, p = 50. Correct model selection proportion in uncensored (left) and censored (right) data.

columns in (X,S)). All nonlinear effects had inclusion
probabilities below 0.5 and the top 2 models contained
FLT1, ESM1 and GAS1, as before. For comparison we
run Cox–piMOM, AFT—LASSO and Cox–LASSO on
the linear effects (p = 175). Stage and FLT1 were again
selected by the top model under Cox–piMOM and by
Cox–LASSO. Cox–LASSO selected 9 other genes, but
only 4 had a significant P-value upon fitting a Cox model
via maximum likelihood. Finally AFT–LASSO selected

stage and six genes, two of which were also selected by
Cox–LASSO. See Section S11.3 for a similar analysis of
the estrogen receptor ESR1 effect on breast cancer.

Since this is a real-data application with an unknown
ground truth, it is hard to assess which method performed
best. As a first check, Table S7 reports the estimated pre-
dictive accuracy of each method via the leave-one-out
cross-validated concordance index [15]. Cox–LASSO and
AFT–pMOMZ achieved the highest concordance indexes,
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with the former selecting more variables than the latter
on average across the cross-validation (13.6 vs. 3.9 for
p = 175 and 11.7 vs. 4.9 for p(1 + r) = 1050). We re-
mark that predictive accuracy is not our primary goal, but
if a method were to miss truly active covariates then one
would expect accuracy to decrease, hence it serves as a
rough proxy for statistical power. To complete the exer-
cise, we next evaluate false positive probabilities.

5.4 False Positive Assessment Under Colon Cancer
Data

We did a permutation exercise to assess false positive
findings in the colon cancer data. We randomly permuted
the recurrence times and left the covariates unpermuted.
We obtained 100 independent permutations and recorded
the model selected by each method. We first included only
stage, a linear and nonlinear term for TGFB as covariates,
for a total of p(r + 1) = 8 columns in (X,S). Next, we
repeated the exercise considering linear effects for staging
and the 173 genes, for a total of p = 175 columns.

The results are in Table 1 and Figure S10. AFT–
pMOMZ achieved an excellent false positive control, it
selected the null model in all permutations and assigned
an average posterior probability π(γ = 0 | y) = 0.846 and
0.844 to the null model in the exercises with eight and
175 columns (respectively). That is, AFT–pMOMZ not
only selected the null model but also assigned a high con-
fidence to that selection. All competing methods selected
the null model significantly less frequently. They also
showed inflated false positive percentages for the anal-
ysis with 8 columns, though interestingly these percent-
ages were lower in the analysis with 175 columns. Fig-
ure S10 reveals an interesting pattern for Cox–piMOM,
in > 97% of the permutations only one covariate was in-
cluded. That is, although the mean false positives percent-
age for Cox–piMOM was similar to AFT–LASSO and
Cox–LASSO, the selected model was always very close
to the null model, as expected from the strong sparsity-
inducing properties of nonlocal priors.

TABLE 1
Percentage of false positives and correct model selections (γ̂ = 0) in
permuted colon cancer data (100 permutations) when the design had
eight columns (stage, linear and nonlinear effect of TGFB) and 175

columns (stage and linear effect of 173 genes)

Stage + TGFB Stage + all genes
(p(r + 1) = 8) (p = 175)

False positives γ̂ = 0 False positives γ̂ = 0

AFT–pMOMZ 0.0 100.0 0.0 100.0
Cox–piMOM 12.1 3.0 0.6 1.0
AFT–LASSO 35.9 31.0 2.2 45.0
Cox–LASSO 12.6 68.0 1.5 61.0

6. DISCUSSION

Our main contributions are describing a generic
Bayesian model selection framework to incorporate non-
linear effects in a data-driven fashion to balance power
and sparsity and, perhaps more importantly, helping un-
derstand the interplay between censoring, misspecifi-
cation and model complexity. In survival models, we
showed that one asymptotically discards covariates that
do not help predict the outcome neither censoring times
(conditionally on other covariates), whereas in probit
regression one keeps those that help reduce the pro-
bit loss function, and similarly for other concave log-
likelihoods. We showed that censoring and misspecifica-
tion can reduce power significantly. Understanding this
phenomenon can be useful in the design of experiments,
where one may increase the follow-up length to gain
power. Enriching the model class, by considering semi-
and nonparametric terms, to alleviate model misspecifica-
tion requires some care as these additional terms can incur
computational and statistical power losses. Our recom-
mendation is to use Bayesian model selection to decide
their inclusion in a data-adaptive manner, as in the pro-
posed linear plus deviation from linearity decomposition.
Although not discussed here for simplicity, one can also
easily incorporate interactions between covariates into the
proposed theory and computational methods.

From a technical point of view we used standard
asymptotic arguments which, for concave log-likelihoods,
lead to simpler proofs and technical conditions. It should
be possible to extend our results, with some care, to non-
concave and nonasymptotic settings (e.g., using the high-
dimensional framework in [34]), interval and left cen-
sored data, as well as to cure rate, recurrence or excess
hazards models. We focused on fixed p to provide sim-
pler results and intuition, under less restrictive technical
conditions. While, in theory, it can be potentially inter-
esting to allow the nonlinear basis dimension r to grow
with n, for actual methodology this often implies an im-
practical computational cost. This is critical in structural
learning, where one wishes to consider many models. For
this reason, in applied settings, it is common to use a finite
basis.

Regarding high-dimensional settings, from recent re-
sults on misspecified penalized nonconcave likelihood
[31] Bayesian model selection [37, 56], we speculate
that our main findings should remain valid. We remark,
however, that high-dimensional formulations often incor-
porate stronger sparsity via the prior distribution, hence
the power drop caused by censoring and misspecification
could be more problematic than in our fixed p case.

We focused on model selection within additive mod-
els, but our results extend directly when one wishes to
consider interactions, by adding the corresponding basis
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to our formulation. Our theory is valid for any given ba-
sis and also when performing selection on the basis itself,
however, admittedly our examples focused on spline basis
with fixed knots. We feel that a detailed study of basis se-
lection would obscure the high-level intuition of our main
results, but it represents an interesting aspect for future
research.
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