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Testing Randomness Online
Vladimir Vovk

Abstract. The hypothesis of randomness is fundamental in statistical ma-
chine learning and in many areas of nonparametric statistics; it says that the
observations are assumed to be independent and coming from the same un-
known probability distribution. This hypothesis is close, in certain respects,
to the hypothesis of exchangeability, which postulates that the distribution of
the observations is invariant with respect to their permutations. This paper
reviews known methods of testing the two hypotheses concentrating on the
online mode of testing, when the observations arrive sequentially. All known
online methods for testing these hypotheses are based on conformal martin-
gales, which are defined and studied in detail. An important variety of online
testing is change detection, where the use of conformal martingales leads to
conformal versions of the CUSUM and Shiryaev–Roberts procedures; these
versions work in the nonparametric setting where the data is assumed IID
according to a completely unknown distribution before the change. The pa-
per emphasizes conceptual and practical aspects and states two kinds of re-
sults. Validity results limit the probability of a false alarm or, in the case of
change detection, the frequency of false alarms for various procedures based
on conformal martingales. Efficiency results establish connections between
randomness, exchangeability, and conformal martingales.

Key words and phrases: Change detection, conformal prediction, ex-
changeability, martingale, online setting, testing randomness.

1. INTRODUCTION

A standard assumption in several areas of data science
has been the assumption that the data is generated in the
IID fashion, that is, independently from the same distribu-
tion. This assumption is also known as the assumption of
randomness (see, e.g., [57], [24], Section 7.1, and [51]).
In this paper, we are interested in testing this assumption.

The notion of randomness has been at the centre of
discussions of the foundations of probability for at least
100 years, since Richard von Mises’s 1919 article [48].
For von Mises, random sequences (collectives in his ter-
minology) served as the basis for probability theory and
statistics, and other notions, such as probability, were de-
fined in terms of collectives. Random sequences have
been eclipsed in the foundations of mathematical proba-
bility theory by measure theory since Kolmogorov’s 1933
Grundbegriffe [18], but the conceptual side of random-
ness has been explored in the algorithmic theory of ran-
domness (also initiated by Kolmogorov). We will discuss
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the conceptual side in Section 5 and then in the Appendix,
but we start the main part of the paper with practical meth-
ods of detecting nonrandomness.

The most familiar mode of testing randomness in statis-
tics is where we ask whether a given batch of data could
have been generated by an IID process. In Section 2, we
will see how the standard statistical tests for real-valued
observations can be adapted to more general observation
spaces.

We then move on to testing randomness online, assum-
ing that observations arrive sequentially. Known methods
of online testing of randomness are based on so-called
conformal martingales. Conformal martingales are con-
structed on top of conventional machine-learning algo-
rithms and have been used as a means of detecting de-
viations from randomness both in theoretical work (see,
e.g., [51], Section 7.1, [11, 14]) and in practice (in the
framework of the Microsoft Azure module on time series
anomaly detection [59]). They provide an online measure
of the amount of evidence found against the hypothesis
of randomness: if the assumption of randomness is sat-
isfied, a fixed nonnegative conformal martingale with a
positive initial value is not expected to increase its ini-
tial value manyfold; on the other hand, if the hypothesis
of randomness is seriously violated, a properly designed
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FIG. 1. The structure of this paper (apart from the introduction and
conclusion); the numbers refer to Sections 2–6.

nonnegative conformal martingale with a positive initial
value can be expected to increase its value substantially.
Correspondingly, we have two desiderata for a nonnega-
tive conformal martingale S:

• Validity is satisfied automatically: S is not expected to
ever increase its initial value by much, under the hy-
pothesis of randomness.

• But we also want to have efficiency, for example, to
have the increase Sn/S0 large with a high probability,
if the hypothesis of randomness is violated.

Validity corresponds to controlling the probability of error
of the first kind in the language of statistical hypothesis
testing, and efficiency is analogous to (but different from)
statistical power (one minus the probability of error of the
second kind) in the Neyman–Pearson paradigm (see, e.g.,
[25]). In this paper, a more Fisherian understanding of ef-
ficiency (introduced in Sections 5–6) will be more useful.

Conformal martingales are defined and their validity is
established in Section 3. Efficiency of a specific confor-
mal martingale is not guaranteed and depends on the qual-
ity of the underlying machine-learning algorithm. Our ex-
position then branches in two directions, with Section 4
relaxing the requirement of validity and Sections 5–6 dis-
cussing efficiency; see Figure 1.

It is often argued that the kind of validity enjoyed by
nonnegative martingales is too strong, and we should in-
stead be looking for a testing procedure that is valid only
in the sense of not raising false alarms too often. In the
context of testing randomness, the interpretation of the
data-generating process adopted in Section 4 is that at first
the data is IID, but starting from some moment T it ceases
to be IID; the special case T = 0 describes the situation
where the IID assumption is never satisfied (and so this
interpretation does not restrict generality). We want our
procedures to be efficient in the sense of raising an alarm
soon after the null hypothesis (such as the assumption
of randomness) becomes violated; both validity and effi-
ciency can be required to hold with high probability or on
average. In Section 4, conformal martingales are adapted
to such less demanding requirements of validity using the
standard CUSUM and Shiryaev–Roberts procedures.

Sections 5 and 6 discuss the much more difficult ques-
tion of efficiency in the context of the strongly valid pro-
cedures of Section 3. We ask how much we can potentially

lose when using conformal martingales as compared with
unrestricted testing of either IID or exchangeability. We
will see that at a crude scale customary in the algorithmic
theory of randomness we do not lose much when restrict-
ing our attention to testing randomness with conformal
martingales.

Our main running example will be the well-known
USPS dataset of handwritten digits (see, e.g., [51], Sec-
tion B.1), which is known to be nonrandom. In Section 2
we check that it is really nonrandom: combining Bartels’s
ratio test with the Nearest Neighbor method we obtain a
tiny p-value. This fact, however, is not particularly useful.
In Section 3, we report the performance of a nonnega-
tive conformal martingale on the USPS dataset; it attains
a huge final value. Such martingales are potentially very
useful in practice allowing us to decide when a trained
predictor needs to be retrained. The performance guar-
antees for prediction algorithms in mainstream machine
learning are proven under the assumption of randomness,
and after the deployment of such a predictor we might
want to monitor whether the new data remains IID. As
soon as it ceases to be IID, it is wise to retrain the predic-
tor.

We will also use a much less well-known dataset called
“Absenteeism at work” (abbreviated to Absenteeism)
and available at the UCI Machine Learning Repository
[10]. The data was collected from July 2007 to July 2010
at a courier company in Brazil. We can imagine the man-
agement of the company monitoring the absences of the
workforce. If the pattern of absences loses its stability
(ceases to be IID), they might want to raise an alarm and
investigate what is going on. In Section 3, we will con-
struct a simple conformal martingale that finds decisive
(to use Jeffreys’s [15], Appendix B, expression) evidence
against the hypothesis of randomness for the dataset.

Connections with the algorithmic theory of randomness
will be explained in the Appendix. The main part of this
paper will not use the algorithmic notion of randomness;
however, as customary in the algorithmic theory of ran-
domness, in our discussions of efficiency we will concen-
trate on the binary case and on the case of a finite time
horizon N . These restrictions go back to Kolmogorov (cf.
[49], arXiv, Appendix A); it would be interesting to elim-
inate them after a complete exploration of the binary and
finite-horizon case (but we are not at that stage as yet).

REMARK 1.1 (Terminology related to the hypothesis
of randomness). In this paper, we discuss two main hy-
potheses about the data, randomness and exchangeability.
The terminology related to the former is less standard-
ized and will be summarized in this remark. We will use
constantly (often adjectivally) two closely related terms,
“randomness” and “IID”; the latter is, of course, always
related to independent and identically distributed obser-
vations but is not always simply an abbreviation of “in-
dependent and identically distributed”. For example, IID
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distributions (or IID measures) are those of the form QN ,
where N is a natural number, or Q∞, Q being a prob-
ability measure. IID distributions generate IID observa-
tions. The hypothesis of randomness means that the data-
generating distribution is an IID distribution (and so the
observations are IID).

2. CONFORMAL TESTS OF RANDOMNESS IN THE
BATCH MODE

As already mentioned, in this paper we are mainly in-
terested in the online mode of testing: we assume that ob-
servations arrive sequentially, and after each observation
we evaluate the degree to which the hypothesis of ran-
domness has been discredited. We will discuss this online
setting starting from the next section, but in this section
discuss the batch setting, which is more standard in statis-
tics.

Let us fix N ∈ N := {1,2, . . . }, the size of the batch.
We would like to test the hypothesis of randomness us-
ing N observations. There are numerous standard tests
of randomness in statistics: see, for example, [24], Chap-
ter 7. These tests, however, are usually applicable only
to batches of real numbers, whereas in this paper we are
interested in more general observations. In particular, we
will apply them to the USPS dataset of handwritten dig-
its discussed in Section 1. To reduce the general case to
real-valued observations, we can apply basic ideas of con-
formal prediction [51]. Let Z be a measurable space, the
space of observations.

A nonconformity measure is a measurable function A

mapping any finite sequence (z1, . . . , zn) ∈ Zn of obser-
vations of any length n ∈ N to a sequence of numbers
(α1, . . . , αn) ∈ R

n of the same length that is equivariant
in the following sense: for any n ∈N and any permutation
π : {1, . . . , n} → {1, . . . , n},

(1)
A(z1, . . . , zn) = (α1, . . . , αn)

=⇒ A(zπ(1), . . . , zπ(n)) = (απ(1), . . . , απ(n)).

Intuitively, αi (the nonconformity score of zi) tells us
how strange zi looks as an element of the sequence
(z1, . . . , zn). (At this time the only relevant value is n :=
N , but in the next section we will need all n ∈ N.)

Any conventional machine-learning algorithm can be
turned (usually in more than one way) into a noncon-
formity measure. For example, suppose each observa-
tion zi (an element of the USPS dataset) consists of two
components, zi = (xi, yi), where xi ∈ [−1,1]16×16 is a
handwritten digit (a 16 × 16 matrix of pixels, each pixel
represented by its brightness on the scale [−1,1]) and
yi ∈ {0, . . . ,9} is its label (the true digit represented by
the image). The 1-Nearest Neighbour algorithm can be
turned into the nonconformity measure

(2) αi := minj∈{1,...,n}:yj=yi ,j �=i d(xi, xj )

minj∈{1,...,n}:yj �=yi
d(xi, xj )

,

where d(xi, xj ) is the Euclidean distance between xi and
xj . Intuitively, a handwritten digit is regarded as strange
if it is closer to a digit labeled in a different way than to
digits labeled in the same way. See, for example, [1, 51]
for numerous other examples of nonconformity measures.

In our terminology we will follow [52]. A p-variable
for testing randomness in ZN , where Z is a measurable
space, is a measurable function f : ZN → [0,1] such that,
for any IID measure P on ZN (i.e., for any measure P of
the form QN , where Q is a probability measure on Z) and
any ε > 0,

(3) P
({

(z1, . . . , zN) : f (z1, . . . , zN) ≤ ε
}) ≤ ε.

The value taken by f on the realized sample is then a bona
fide p-value (perhaps conservative) for testing the hypoth-
esis of randomness. Similarly, a p-variable for testing ex-
changeability in ZN is a measurable function f : ZN →
[0,1] such that, for any exchangeable probability measure
P on ZN (i.e., for any measure that is invariant with re-
spect to permutations of observations) and any ε > 0, we
have (3). The values taken by such f are p-values for test-
ing the hypothesis of exchangeability.

It is clear that every p-variable for testing exchangeabil-
ity is a p-variable for testing randomness. Nonparametric
statistics provides us with plenty of p-variables for test-
ing exchangeability in R

N (under the rubric “testing of
randomness”, even though they in fact test the weaker as-
sumption of exchangeability; see, for example, [2, 24,
57]). The following proposition shows how such a func-
tion f , in combination with a nonconformity measure A,
generates a p-variable for testing exchangeability in ZN .
Set

(f ◦ A)(z1, . . . , zN) := f
(
A(z1, . . . , zN)

)
.

PROPOSITION 2.1. If f is a p-variable for testing ex-
changeability in R

N and A is a nonconformity measure,
then f ◦ A is a p-variable for testing exchangeability in
ZN .

PROOF. This follows immediately from the equivari-
ance property (1): if P is an exchangeable probability
measure on ZN , then its pushforward PA−1 is an ex-
changeable probability measure on R

N , and so

P(f ◦ A ≤ ε) = (
PA−1)

(f ≤ ε) ≤ ε.

To check that the pushforward PA−1 of an exchange-
able probability measure P on ZN is indeed exchange-
able, it suffices to notice that, for any permutation π :
{1, . . . ,N} → {1, . . . ,N} and any event E ⊆ ZN ,

PA−1({
(u1, . . . , uN) : (uπ(1), . . . , uπ(N)) ∈ E

})
= P

({
(z1, . . . , zN) : A(z1, . . . , zN)

∈ {
(u1, . . . , uN) : (uπ(1), . . . , uπ(N)) ∈ E

}})
= P

({
(z1, . . . , zN) : A(zπ(1), . . . , zπ(N)) ∈ E

})
= P

({
(zπ(1), . . . , zπ(N)) : A(zπ(1), . . . , zπ(N)) ∈ E

})
= PA−1(E).
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(The second equality follows from the equivariance of A

and the third from the exchangeability of P .) �
EXAMPLE 2.2. Let us check that Proposition 2.1

ceases to be true if “exchangeability” is replaced by “ran-
domness”. Suppose Z = [0,1], and define the nonconfor-
mity score αi of zi in (z1, . . . , zn) by

αi :=
{

1 if zi ≥ mi,

0 otherwise,

where mi is the median of the multiset {z1, . . . , zi−1,

zi+1, . . . , zn}. Suppose N is an even number (to simplify
the notion of a median) and let P := UN , where U is the
uniform probability measure on [0,1]. Then the pushfor-
ward PA−1 is concentrated on the subset of {0,1}N con-
taining equal numbers of 0s and 1s. (Roughly, this corre-
sponds to half of the elements being above the median.
Intuitively, A transforms a sequence that looks IID to a
sequence that does not look IID at all for a large N , since
it contains equal numbers of 0s and 1s.) By Stirling’s for-
mula (see, e.g., (26) below), the probability of this subset
is at most

(4)
(

N

N/2

)
2−N ∼

√
2/πN−1/2 < N−1/2

under any IID measure. Therefore, assuming N is large,
the function f taking value N−1/2 on this subset and 1
elsewhere on {0,1}N is a p-variable for testing random-
ness while f ◦ A is not (indeed, f ◦ A will take value
N−1/2 almost surely under P , and then it is obvious that
it cannot be a p-variable).

Table 1 gives the p-values produced by Bartels’s [2] ra-
tio test applied to the nonconformity scores (2), where d

is the Euclidean distance or the more sophisticated tan-
gent distance [17, 44], as indicated. The p-values are very
low, especially for the tangent distance.

REMARK 2.3. It is important to keep in mind that the
standard implementations of the tangent distance are not
always symmetric and d(x, x′) �= d(x′, x) is possible (in
particular, this is the case for Keysers’s [17] implementa-
tion used in this paper). Whereas (2) itself defines a non-
conformity measure regardless of the symmetry of d , ef-
ficient implementations of conformal testing of random-
ness based on (2) tend to rely on the symmetry of d and
lose their validity if d is not symmetric. This is true for the
implementation used for empirical studies in this paper;

TABLE 1
Some p-values for the USPS dataset and Bartels’s ratio test

Euclidean distance Tangent distance

p-value 2.7 × 10−11 7.5 × 10−16

one possible solution (used here) is to replace d(xi, xj )

in (2) by the arithmetic mean of d(xi, xj ) and d(xj , xi)

(using the geometric mean produces similar results).

3. CONFORMAL MARTINGALES

First, let me give some basic definitions of conformal
prediction (see, e.g., [51] or [1] for further details). Let
us fix a nonconformity measure A. If Z is a set, Z∗ is
the set of all finite sequences of elements of Z; if Z is
a measurable space, Z∗ is also regarded as a measurable
space. The p-value pn generated by A after being fed with
a sequence of observations (z1, . . . , zn) ∈ Z∗ is

(5)
pn = pn(z1, . . . , zn, θn)

:= |{i : αi > αn}| + θn|{i : αi = αn}|
n

,

where i ranges over {1, . . . , n}, α1, . . . , αn are the non-
conformity scores for z1, . . . , zn,

(α1, . . . , αn) = A(z1, . . . , zn),

and θn is a random number distributed uniformly on the
interval [0,1]. The following proposition gives the stan-
dard property of validity for conformal prediction (for a
proof, see, e.g., [51], Proposition 2.8).

PROPOSITION 3.1. Suppose the observations z1,

z2, . . . are IID, θ1, θ2, . . . are IID and distributed uni-
formly on [0,1], and the sequences z1, z2, . . . and θ1,

θ2, . . . are independent. Then the p-values p1,p2, . . . as
defined in (5) are IID and distributed uniformly on [0,1].

REMARK 3.2. On a few occasions, we will also need
a version of Proposition 3.1 for a finite horizon N ∈ N.
Now we have finite input sequences z1, . . . , zN and
θ1, . . . , θN and, correspondingly, a finite output sequence
p1, . . . , pN . The conclusion of Proposition 3.1 will still
hold even if we relax the assumption of z1, . . . , zN being
IID to the assumption that they are exchangeable. (See
[51], Theorem 8.2.)

The formal definition of a nonnegative conformal mar-
tingale (equivalent to the definition given in [51], Sec-
tion 7.1) given in this paragraph will be followed by a
discussion of the intuition behind it in the following para-
graph (in our informal discussions we will often abbre-
viate “nonnegative conformal martingale” to “conformal
martingale”). A betting martingale is a measurable func-
tion F : [0,1]∗ → [0,∞] such that, for each sequence
(u1, . . . , un−1) ∈ [0,1]n−1, n ≥ 1, we have

(6)
∫ 1

0
F(u1, . . . , un−1, u)du = F(u1, . . . , un−1);

notice that betting martingales are required to be nonnega-
tive. A nonnegative conformal martingale is any sequence
of functions Sn : (Z × [0,1])∞ → [0,∞], n = 0,1, . . . ,
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such that, for some nonconformity measure A and betting
martingale F , for all m ∈ {0,1, . . . }, (z1, z2, . . . ) ∈ Z∞,
and (θ1, θ2, . . . ) ∈ [0,1]∞,

(7) Sm(z1, θ1, z2, θ2, . . . ) = F(p1, . . . , pm),

where pn, n ∈ N, is the p-value computed by (5) from the
nonconformity measure A, the observations z1, z2, . . . ,
and the nth element θn of the sequence (θ1, θ2, . . . ).
Notice that Sm(z1, θ1, z2, θ2, . . . ) depends on z1, θ1, z2,

θ2, . . . only via z1, θ1, . . . , zm, θm.
Intuitively, a betting martingale describes the evolution

of the capital of a player who gambles against the hypoth-
esis that the p-values p1,p2, . . . are distributed uniformly
and independently, as they should under the hypothesis
of randomness (see Proposition 3.1). The requirement (6)
expresses the fairness of the game: at step n−1, the condi-
tional expected value of the player’s future capital at step
n given the present situation (i.e., the first n − 1 p-values)
is equal to his current capital. This formalization of fair
betting goes back to Ville [46] and was made very popu-
lar in probability theory by Doob [8]; for a recent review
of developments in various directions, see [37]. A con-
formal martingale is what we get when we feed a betting
martingale with p-values (5) produced by conformal pre-
diction.

One way of constructing betting martingales is to use
“betting functions”, in the terminology of [11]. A bet-
ting function f : [0,1] → [0,∞] is a function satisfying∫ 1

0 f (u)du = 1. A useful method of betting against the
hypothesis that the p-values p1,p2, . . . are independent
and uniformly distributed is to choose, before each step
n, a betting function fn that may depend on p1, . . . , pn−1
(in a measurable manner). Then

(8)
F(p1, . . . , pn) := f1(p1) . . . fn(pn), n = 0,1, . . . ,

will be a betting martingale (a conformal martingale if
p1,p2, . . . are generated by conformal prediction, (5)).

REMARK 3.3. Conformal martingales are exchange-
ability martingales, that is, stochastic processes that are
martingales with respect to any exchangeable distribution.
The existence of nontrivial exchangeability martingales
is, however, not obvious. It is easy to check that for the
natural underlying filtration (Fn)n=0,1,... generated by the
observations z1, z2, . . . the only exchangeability martin-
gales are almost sure constants. There are two reasons
why nontrivial exchangeability martingales exist:

• Our underlying filtration is poorer than Fn. A confor-
mal martingale S satisfies

E(Sn | S1, . . . , Sn−1) = Sn−1, n ∈ N,

that is, it is a martingale in its own filtration. Moreover,
it is a martingale in the filtration (Gn)n=0,1,... where Gn

is generated by the first n p-values p1, . . . , pn.

• Conformal martingales are randomized: they also de-
pend on the random numbers θ1, θ2, . . . .

The first reason alone seems to be insufficient for getting
really useful exchangeability martingales: for example, in
the binary case Z = {0,1}, the observations z1, . . . , zn are
determined by the values S0, S1, . . . , Sn, unless Si = Si−1
for some i ∈ {1, . . . , n} (let us check this for n = 1: de-
pending on the value of z1, we have either S1(z1, . . . ) >

S0 or S1(z1, . . . ) < S0, and knowing which inequality is
true determines z1; for general n, use induction in n). In
many practically interesting cases there is not much ran-
domness in conformal martingales; it is only used for tie-
breaking. However, even a tiny amount of randomness can
be conceptually important (other fields where this phe-
nomenon has been observed are differential privacy and
defensive forecasting [37], Section 12.7).

REMARK 3.4. Notice that exchangeability martin-
gales discussed in Remark 3.3 can be equivalently defined
as stochastic processes that are martingales with respect to
any IID distribution, assuming that the observation space
Z is a Borel space (this is a very weak requirement; see,
for example, [34], B.3.2). Indeed, according to de Finetti’s
theorem (see, e.g., [34], Theorem 1.49) every exchange-
able distribution is then a Bayesian mixture of IID distri-
butions, and so being a martingale with respect to all IID
distributions and with respect to all exchangeable distri-
butions are equivalent.

Using Conformal Martingales for Testing
Randomness

We only consider nonnegative conformal martingales S

with S0 ∈ (0,∞). Let us see how such martingales can be
used for testing randomness.

A possible goal is to raise an alarm warning the user
about lack of randomness as soon as possible. Ville’s in-
equality [41], Chapter 7, Section 3, Theorem 1.III, as ap-
plied to a conformal martingale S, says that, for any c > 1,

P(∃n : Sn/S0 ≥ c) ≤ 1/c

under any IID distribution. This means that if we raise an
alarm when Sn/S0 reaches threshold c, we will be wrong
with probability at most 1/c. This is a strong (in some
situations too strong) requirement of validity, and we will
sometimes refer to it as strong validity.

We can also interpret Sn/S0 directly as the amount of
evidence detected against the first n observations being
IID. In principle, there is no need to raise an alarm explic-
itly, and we can leave the decision whether to abandon the
assumption of randomness with the user of our methods.

As an example, for the USPS dataset of handwritten
digits (9298 in total), the online performance of a nonneg-
ative conformal martingale based on the nonconformity
measure (2) (with Euclidean distance) is shown in the left
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FIG. 2. Left panel: The values Sn of a nonnegative conformal martingale after observing the first n digits, n = 0, . . . ,9298, of the USPS dataset,
with the log-10 scale for the vertical axis. The initial value S0 is 1, and the final value S9298 is 4.71 × 1018. Right panel: The values Sn of the same
nonnegative conformal martingale as in the left panel after observing the first n digits of a randomly permuted USPS dataset, with the log-10 scale
for the vertical axis. The initial value S0 is 1, and the final value S9298 is 0.0142.

panel of Figure 2 (which is Figure 7.6 in [51], where full
details of the conformal martingale can be found). We al-
ready know from Section 2 that the USPS dataset is not
random, and its lack of randomness is detected by this
conformal martingale in the online mode. The advantage
of the online mode is that such a conformal martingale
may be used in practice for deciding when a digit classi-
fier needs to be retrained (we can see that approximately
after the 2400th observation it would be definitely desir-
able).

The conformal martingale whose performance is shown
in Figure 2 is fairly complicated, but the ideas behind its
construction are instructive. Any function

(9) f (κ)(u) := κuκ−1, u ∈ [0,1], κ ∈ (0,1),

is a betting function, in the sense of satisfying∫
0 f (κ)(u)du = 1. This implies that

F (κ)(u1, . . . , un) :=
n∏

i=1

f (κ)(ui)

is a betting martingale (satisfies (6)) and so determines,
by (7), a conformal martingale S = S(κ). To get rid of the
dependence on κ , we can use the conformal martingale∫ 1

0 S(κ) dκ , which was called the simple mixture in [51],
Section 7.1. The simple mixture starts from 1 and its final
value is 2.18 × 1010.

The simple mixture attains an astronomical final value,
but it can be improved further, in some sense tracking the
best value of κ (following Herbster and Warmuth’s [13]
idea of tracking the best expert). For a stochastic process
producing a random sequence κ1, κ2, . . . , we can integrate

F (κ1,κ2,... )(u1, . . . , un) :=
n∏

i=1

f (κi)(ui)

with respect to the distribution of κ1, κ2, . . . , and for a rea-
sonable choice of the stochastic process, we can improve

the final value of the conformal martingale. It can be fur-
ther boosted by allowing the stochastic process to “sleep”
at some steps (so that the corresponding conformal mar-
tingale does not gamble on those steps). In statistical lit-
erature, these ideas are discussed in [45].

The idea behind the betting functions (9) is that the
lack of randomness will show itself in abnormally low p-
values. Fedorova and Nouretdinov [11] came up with an
unexpected new idea: in fact, we can gamble against any
nonuniformity in the distribution of the p-values, and this
may be a very successful strategy for detecting nonran-
domness.

Suppose we know the true distribution of the nth p-
value pn (conditional on knowing the first n−1 p-values),
and suppose it is continuous with density ρ. What betting
function f should we choose? This is a continuous ver-
sion of the standard problem of horse race betting [7, 16].
The following simple lemma sheds some light on ways of
exploiting such nonuniformity.

LEMMA 3.5. For any probability density functions ρ

and f on [0,1] (so that
∫ 1

0 ρ(p)dp = 1 and
∫ 1

0 f (p)dp =
1),

(10)
∫ 1

0

(
logρ(p)

)
ρ(p)dp ≥

∫ 1

0

(
logf (p)

)
ρ(p)dp

and

(11)
∫ 1

0

(
logρ(p)

)
ρ(p)dp ≥ 0.

PROOF. It is well known (and immediately follows
from the inequality logx ≤ x − 1) that the Kullback–
Leibler divergence is always nonnegative:∫ 1

0
log

(
ρ(p)

f (p)

)
ρ(p)dp ≥ 0.
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FIG. 3. Left panel: The histogram (with 10 bins) of the p-values at the last step for the nonnegative conformal martingale of Figure 4 on the
Absenteeism dataset. Right panel: The p-values of the same nonnegative conformal martingale on the randomly permuted Absenteeism
dataset.

This is equivalent to (10). And (11) is a special case
of (10) corresponding to the probability density function
f := 1. �

If we choose a betting function f , the log of our capital
will increase by the right-hand side of (10) in expectation.
Therefore, according to (10), the largest increase in expec-
tation is achieved when we use ρ as the betting function.
(Increasing the log capital as much as possible in expec-
tation is a natural objective since such increases add to
give the log of the final capital, and so we can apply the
law of large numbers, as in horse racing [7], Section 6.1,
or log-optimal portfolios [7], Chapter 16.) The discrete
version of this strategy is known as Kelly gambling [7],
Theorem 6.1.2.

How efficient the betting function ρ is depends on the
left-hand side of (10), which is the minus (differential) en-
tropy of ρ. The maximum entropy distribution on [0,1] is
the uniform distribution, as asserted by (11), whose right-
hand side is equal to the minus entropy of the uniform
distribution. (This is a very special case of standard max-
imum entropy results, such as [7], Theorem 12.1.1.) The
uniform true distribution for the p-values gives zero ex-
pected increase in the log capital; otherwise, it is positive.

Let us apply these ideas to the Absenteeism dataset
briefly described in Section 1. We will estimate the distri-
bution of the past p-values using a histogram and then will
use the estimated distribution for betting (therefore, we
will implicitly assume the stability of the distribution of
p-values). The dataset consists of 740 observations (em-
ployees’ absences) and a number of attributes; it is given
in the Clustering section of the repository, and so there
is no specified label. Let us use four attributes, Age, Dis-
ciplinary failure, Education, and Son (meaning the num-
ber of children); the other attributes appeared to me more
subjective (such as Social drinker and Social smoker) or
less relevant. To apply the same nonconformity measure
as before, (2), we need to nominate one of the attributes as
label, and “Disciplinary failure” appears to be particularly
relevant for studying the phenomenon of absenteeism. To

make the attributes comparable, let us divide Age by 50,
Education by 3 (this attribute ranges from 1, high school,
to 4, master and doctor), and Son by 4. With this choice,
the histogram of p-values at the last step is given in the left
panel of Figure 3, and it is visibly nonuniform, namely
tends to increase from left to right (unlike the more stable
right panel showing the p-values for a randomly permuted
dataset; cf. Remark 3.2).

Figure 4 shows the results for a simple conformal mar-
tingale exploiting the nonuniformity of the p-values. We
maintain B bins corresponding to the subintervals Ii :=
[(i − 1)/B, i/B] of [0,1], i = 1, . . . ,B (we ignore the
possibility of p-values landing on a boundary between
two bins). Initially, each bin contains C p-values (these
dummy p-values are an element of regularization). At step
n, the algorithm puts the n − 1 previous p-values (com-
puted using the nonconformity measure (2)), into the cor-
responding bins and uses as its betting function fn the
function equal to (C+ni)/(C+(n−1)/B) on the ith bin,
where ni is the number of p-values in that bin. The mean
of the betting function is 1 (and C + (n− 1)/B is the nor-
malizing constant), and it approximates Kelly gambling.
The conformal martingale whose performance is shown
in Figure 4 is (8); its initial value is 1.

The expectation of the martingale’s final value is 1 (it
is an e-value [12, 35, 53]), and we can use Jeffreys’s [15],
Appendix B, rule of thumb for interpreting the amount of
evidence against the null hypothesis of randomness that it
provides:

• A value below 1 supports the null hypothesis.
• A value in the interval (1,

√
10) provides poor evidence

against the null hypothesis (is not worth more than a
bare mention).

• A value in (
√

10,10) provides substantial evidence.
• For a value in (10,103/2), the evidence is strong.
• For a value in (103/2,100), the evidence is very strong.
• Finally, for values above 100 the evidence is decisive.

For example, the evidence against the hypothesis of ran-
domness provided by the left-hand panel of Figure 4,
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FIG. 4. Left panel: The values Sn of a nonnegative conformal martingale after observing the first n absences, n = 0, . . . ,740, in the Absen-
teeism dataset, with the log-10 scale for the vertical axis. The initial value S0 is 1, and the final value S740 is 100.50. Right panel: The values
Sn of the same nonnegative conformal martingale as in the left panel after observing the first n absences in a randomly permuted Absenteeism
dataset, with the log-10 scale for the vertical axis. The initial value S0 is 1, and the final value S740 is 0.00841.

which uses B = C = 10, is decisive (although border-
ing on very strong) since the final value of the conformal
martingale is 100.50. Varying various parameters leads to
similar, often stronger, results. For example, replacing the
ratio in (2) by difference, adding two extra attributes So-
cial drinker and Social smoker, and setting B = C = 20,
leads to a final value of 3446.75 greatly exceeding the
threshold for decisive evidence. However, all of these con-
formal martingales find deviations from randomness only
at the end of the period (starting from the 650th observa-
tion at the earliest).

Optimality of Sequential Testing Procedures

The efficiency of our procedure for testing randomness
will be the topic of Section 6, and in this section we will
only discuss the nature of the problem. Perhaps the most
satisfactory results about the efficiency of sequential test-
ing procedures are optimality results such as that obtained
by Wald and Wolfowitz [58] for Wald’s [55, 56] sequen-
tial probability ratio test. The goal of establishing such
optimality results for our procedures for testing random-
ness would be, however, too ambitious.

Wald’s sequential probability ratio test was designed by
him in April 1943 [55], Section B, for the problem of test-
ing a simple hypothesis against a simple alternative, with
IID observations. Let Sn be the likelihood ratio of the al-
ternative hypothesis to the null hypothesis after n obser-
vations. The test consists in fixing two positive constants
A and B such that A > 1 > B and stopping as soon as
Sn leaves the interval (B,A). If Sn ≥ A at that time n, we
reject the null hypothesis; otherwise, we accept it.

A sequential test can make errors of two kinds: reject
the null hypothesis when it is true (error of the first kind)
or accept it when it is false (error of the second kind). Any
sequential probability ratio test T is efficient in a strong
sense: if another sequential test T ′ has errors of the first
and second kind that are not worse than those for T , the
expected time of reaching a decision is as good for T as

it is for T ′ (or better), under both null and alternative hy-
potheses. In other words, sequential probability ratio tests
optimize the number of observations needed to arrive at a
decision, under natural constraints.

Wald showed the efficiency of his test in the sections
“Efficiency of the Sequential Probability Ratio Test” in
[55, 56] ignoring the possibility of Sn overshooting A or
undershooting B . In [58] he and Wolfowitz provided a full
proof.

The strength of this result is made possible by the re-
stricted nature of the testing problem. Both null and al-
ternative hypotheses are known probability distributions.
The test is specified by two numbers, A and B . The sit-
uation with testing randomness using conformal martin-
gales is very different. A conformal martingale is deter-
mined by the underlying nonconformity measure, which
can even involve an element of intelligence. See, for ex-
ample, [51], which defines numerous nonconformity mea-
sures based on powerful algorithms of machine learning,
including neural networks. We cannot expect to be able
to prove that such a procedure is successful (as argued by
philosophers in other contexts; see, e.g., [31], Section 20).
The task of designing a conformal martingale is too open-
ended for that.

Our approach to establishing the efficiency of our
strongly valid procedures will not be based on optimal-
ity. The idea is to show that our procedures do not con-
strain us: whatever a procedure for testing randomness
can achieve, can be achieved with conformal martingales.
Notice that even the Wald–Wolfowitz result can be inter-
preted in this way. However, our results in Section 6 will
be much cruder.

4. MULTISTAGE NONRANDOMNESS DETECTION

Our main concern in this section is application of con-
formal prediction to online change detection, which we
already started discussing in Section 1. A typical exam-
ple of online change detection is where we observe at-
tacks, which we assume to be IID, on a computer system.



TESTING RANDOMNESS ONLINE 603

When a new kind of attacks appears, the process of attacks
ceases to be IID, and we would like to raise an alarm soon
afterwards. The two benchmark datasets that we consid-
ered in the previous section can also be used to illustrate
the problem of change detection: we may be interested
in deciding when to retrain a predictor and in detecting a
change in the pattern of workforce absences.

There is vast literature on online change detection; see,
for example, [30, 42] for reviews. However, the standard
case is where the pre-change and post-change distribu-
tions are known, and the only unknown is the time of
change. Generalizations of this picture usually stay fairly
close to it (see, e.g., [30], Section 7.3). Conformal change
detection relaxes the standard assumptions radically.

REMARK 4.1. The literature on batch change detec-
tion is also vast; see, for example, [4] for an early review.
Here the problem is to detect changes in a data sequence
all of which is given to us in a batch rather than sequen-
tially. The importance of this problem has grown in recent
decades because of its applications in bioinformatics; see,
for example, [43]. This paper, however, concentrates on
online problems.

As explained in Section 1, we may regard any prob-
lem of detecting nonrandomness in the online mode as a
problem of detecting a change point. The latter includes
as special case the situation where the assumption of ran-
domness is never satisfied, since 0 is an allowed change
point. Our informal goal is to raise an alarm as soon as
possible after the hypothesis of randomness ceases to be
true. In the previous section, we did not insist on having
an explicit rule for raising an alarm, and simply regarded
the value of a nonnegative conformal martingale starting
from 1 as the amount of evidence found against the hy-
pothesis of randomness, but in this section it will be more
convenient to couch our discussion in terms of such rules.

As already mentioned, the kind of guarantees enjoyed
by the policy of raising an alarm when Sn/S0 ≥ c is often
regarded as too strong to be really useful. This can be il-
lustrated using the analogue of the left panel of Figure 2
for a randomly permuted USPS dataset. The same confor-
mal martingale performs as shown in the right panel of
Figure 2 (this is Figure 7.8 in [51]). The conformal mar-
tingale is trying to gamble against an exchangeable se-
quence of observations, which is futile, and so its value
decreases exponentially quickly. If a change occurs at
some point in the distant future, it might take a long time
for the martingale to recover its value. This is a gen-
eral phenomenon; we must pay for giving ourselves the
chance to detect lack of exchangeability by losing capital
in the situation of exchangeability.

The conformal martingale in Figure 2 is based on the
ideas of tracking the best expert and sleeping, which often
make it easier to recover the martingale’s value (to “catch

up”), as demonstrated by van Erven et al. [45]. The right
panel of Figure 2 suggests that this approach has its limits,
and we need to do something more radical: change the
rules of the game.

Weaker guarantees are provided by multistage proce-
dures originated, in a basic form, by Shewhart in his con-
trol chart techniques [38] and perfected by Page [28] and
Kolmogorov and Shiryaev [23]. As Shiryaev mentions in
his fascinating historical account [40], Section 1, he and
Kolmogorov rejected the policy of raising an alarm when
Sn/S0 ≥ c in favor of a multistage procedure, which was
“the correct formulation of the problem” (the emphasis
is Shiryaev’s), in January 1959 or soon afterwards, after
talking to a practitioner, Yurii B. Kobzarev, the founder of
the Soviet school of radiolocation.

CUSUM-Type Change Detection

A standard multistage procedure of raising alarms is the
CUSUM procedure proposed by Page [28] (see also [30],
Section 6.2). According to this procedure, we raise the kth
alarm at the time

(12)

τk := min
{
n > τk−1 : max

i=τk−1,...,n−1

Sn

Si

≥ c

}
, k ∈ N,

where the threshold c > 1 is a parameter of the algo-
rithm, τ0 := 0, and min∅ := ∞. If τk = ∞ for some k,
an alarm is raised only finitely often; otherwise it is raised
infinitely often. The procedure is usually applied to the
likelihood ratio process between two IID distributions, but
it can be applied to any positive martingale, and in this
paper we are interested in the case where S is a confor-
mal martingale, which is now additionally assumed to be
positive, ensuring that the denominator in (12) is always
nonzero. CUSUM is often interpreted as a repeated se-
quential probability ratio test [28], Section 4.2. The con-
formal CUSUM procedure (i.e., CUSUM applied to a pos-
itive conformal martingale) was introduced in [47]; how-
ever, a basic and approximate version of this procedure
has been known since 1990: see [27].

Properties of validity for the conformal CUSUM pro-
cedure will be obtained in this paper as corollaries of
the corresponding properties of validity for the Shiryaev–
Roberts procedure, which we consider next.

Shiryaev–Roberts Change Detection

A popular alternative to the CUSUM procedure is the
Shiryaev–Roberts procedure [33, 39], which modifies
(12) as follows:

(13) τk := min

{
n > τk−1 :

n−1∑
i=τk−1

Sn

Si

≥ c

}
, k ∈ N

(i.e., we just replace the max in (12) by
∑

). We will again
apply it to a conformal martingale S, still assumed to be
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positive, obtaining the conformal Shiryaev–Roberts pro-
cedure.

The procedure defining τ1 is based on the statistics

(14) Rn :=
n−1∑
i=0

Sn

Si

,

which admit the recursive representation

(15) Rn = Sn

Sn−1
(Rn−1 + 1), n ∈N,

with R0 := 0. An interesting finance-theoretic interpreta-
tion of this representation is that Rn is the value at time
n of a portfolio that starts from $0 at time 0 and invests
$1 into the martingale S at each time i = 1,2, . . . [9],
Section 2. If and when an alarm is raised at time n, we
apply the same procedure to the remaining observations
zn+1, zn+2, . . . .

The following proposition gives a nonasymptotic prop-
erty of validity of the Shiryaev–Roberts procedure.
Roughly, it says that we do not expect the first alarm to be
raised too soon under the hypothesis of randomness.

PROPOSITION 4.2. The conformal Shiryaev–Roberts
procedure (13) satisfies E(τ1) ≥ c, for any c > 1, under
the assumptions of Proposition 3.1.

Of course, we can apply Proposition 4.2 to other alarm
times as well obtaining E(τk − τk−1) ≥ c for all k ∈ N

(and similar inequalities for some conditional expecta-
tions, as discussed below in the proof of Proposition 4.4).
Therefore, more generally, the time interval between rais-
ing successive alarms is not too short in expectation under
the hypothesis of randomness.

All results of this section (from Proposition 4.2 to
Corollary 4.6) are general and applicable to any positive
martingale S. However, they are usually stated for S being
the likelihood ratio between two IID distributions (pre-
change and post-change). To simplify exposition, I will
state them only for S being a positive conformal martin-
gale with the underlying filtration (Gn)n=0,1,..., where Gn

is generated by the first n p-values p1, . . . , pn. However,
our arguments (which are standard in literature on change
detection) will be applicable to any filtration and any pos-
itive martingale with respect to that filtration.

PROOF OF PROPOSITION 4.2. The proof will follow
from the fact that Rn−n is a martingale; this fact (noticed,
in a slightly different context, in [29], Theorem 1) follows
from (15): since S is a martingale,

E(Rn | Gn−1) = E(Sn | Gn−1)

Sn−1
(Rn−1 + 1) = Rn−1 + 1.

Another condition for Rn − n being a martingale requires
the integrability of Rn, which follows from the integrabil-
ity of each addend in (14):

E

(
Sn

Si

)
= E

(
E

(
Sn

Si

∣∣∣ Gi

))
= E(1) = 1 < ∞.

Fix the threshold c > 1. By Doob’s optional sampling
theorem (see, e.g., [41], Chapter 7, Section 2, Theorem 1)
applied to the martingale Rn − n,

E(τ1) = E(Rτ1) ≥ c.

Applying this theorem, however, requires some regularity
conditions, and the rest of this proof is devoted to check-
ing technical details.

If τ1 = ∞ with a positive probability, we have E(τ1) =
∞ ≥ c, and so we assume that τ1 < ∞ a.s. Doob’s op-
tional sampling theorem is definitely applicable to the
stopping time τ1 ∧ L, where L is a positive constant (see,
e.g., [41], Chapter 7, Section 2, Corollary 1), and so the
nonnegativity of R implies

E(τ1) ≥ E(τ1 ∧ L) = E(Rτ1∧L) ≥ E(Rτ11{τ1≤L})
≥ cP(τ1 ≤ L) → c

as L → ∞, 1E being the indicator function of an event E.
�

COROLLARY 4.3. The conformal CUSUM procedure
(12) also satisfies E(τ1) ≥ c under the assumptions of
Proposition 3.1.

PROOF. All our properties of validity for the CUSUM
procedure will be deduced from the corresponding prop-
erties for Shiryaev–Roberts and the fact that Shiryaev–
Roberts raises alarms more often than CUSUM does, in
the following sense. Let τk (resp. τ ′

k) be the time of the kth
alarm raised by Shiryaev–Roberts (resp. CUSUM). Then
τk ≤ τ ′

k for all k; this can be checked by induction in k.
�

The next proposition is an asymptotic counterpart of
Proposition 4.2 given in terms of frequencies.

PROPOSITION 4.4. Let An be the number of alarms

An := max{k : τk ≤ n}
raised by the conformal Shiryaev–Roberts procedure (13)
after seeing the first n observations z1, . . . , zn. Then, un-
der the assumptions of Proposition 3.1,

(16) lim sup
n→∞

An

n
≤ 1

c
a.s.

Under the assumptions of Proposition 3.1, all alarms
are false, and so (16) limits the frequency of false alarms.

PROOF. Fix a positive conformal martingale S and a
threshold c > 0. We can rewrite (13) as

(17) τk := min
{
n > τk−1 : Rk

n ≥ c
}
,

where

Rk
n :=

n−1∑
i=τk−1

Sn

Si

.
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It will be convenient to modify (17) by forcing an alarm
L steps after the last one:

τ ′
k := (

τ ′
k−1 + L

) ∧ min
{
n > τ ′

k−1 : R′k
n ≥ c

}
,

where τ ′
0 := 0 and

R′k
n :=

n−1∑
i=τ ′

k−1

Sn

Si

.

(The value of L will be chosen later.) Similarly to the
proof of Corollary 4.3, by induction in k we can check
that, for all k, τ ′

k ≤ τk .
We still have a recursive representation similar to (15)

for (Rk and) R′k . Notice that R′k
n , n ≥ τ ′

k−1, is a nonnega-
tive submartingale with n − τ ′

k−1 as its compensator (and
we can set R′k

n and its compensator to 0 for n < τ ′
k−1).

Remember that Gn is the σ -algebra generated by the p-
values p1, . . . , pn, and let Gτ ′

k
be the σ -algebra of events

E such that E ∩ {τ ′
k ≤ n} ∈ Gn for all n (informally, Gτ ′

k

consists of the events E expressible in terms of the p-
values and settled at time τ ′

k).
Let us say that k ∈N is slow if

P
(
τ ′
k − τ ′

k−1 = L | Gτ ′
k−1

) ≥ c/L;
otherwise, k is fast. Notice that the event that k is fast (or
slow) is Gτ ′

k−1
-measurable. By Doob’s optional sampling

theorem and the nonnegativity of R′k
n , where n ≥ τ ′

k−1,
for a fast k we obtain, similarly to the proof of Proposi-
tion 4.2,

E
(
τ ′
k − τ ′

k−1 | Gτ ′
k−1

)
= E

(
R′k

τ ′
k
| Gτ ′

k−1

)
= E

(
R′k

τ ′
k
1{τ ′

k−τ ′
k−1=L} | Gτ ′

k−1

)
+E

(
R′k

τ ′
k
1{τ ′

k−τ ′
k−1<L} | Gτ ′

k−1

)
≥ 0 + cE(1{τ ′

k−τ ′
k−1<L} | Gτ ′

k−1
)

≥ c(1 − c/L) = c − c2/L.

Let F ⊆ N be the random set of all fast k, S := N \ F

be the random set of all slow k, and FK (resp. SK ) be the
set consisting of the K smallest elements of F (resp. S).
The strong law of large numbers for bounded martingale
differences now implies

(18) lim inf
K→∞

1

K

∑
k∈SK

(
τ ′
k − τ ′

k−1
) ≥ L(c/L) = c a.s.

and

(19) lim inf
K→∞

1

K

∑
k∈FK

(
τ ′
k − τ ′

k−1
) ≥ c − c2/L a.s.;

the inequality in (18) (resp. (19)) is interpreted as true
when |S| < ∞ (resp. |F | < ∞). Combining (18) and (19),
we obtain

lim inf
K→∞

τ ′
K

K
= lim inf

K→∞
1

K

K∑
k=1

(
τ ′
k − τ ′

k−1
) ≥ c − c2/L a.s.

Therefore, setting

A′
n := max

{
k : τ ′

k ≤ n
}
,

we have

lim sup
n→∞

An

n
≤ lim sup

n→∞
A′

n

n
≤ 1

c − c2/L
,

and it remains to let L → ∞. �
REMARK 4.5. It might be tempting to deduce (16)

from Proposition 4.2 directly using a suitable law of large
numbers. However, a simple application of the Borel–
Cantelli–Lévy lemma shows that we cannot do so without
using the specifics of our stopping times τk . Indeed, as-
suming c ∈ {2,3, . . . }, we can define a filtered probability
space and stopping times τk , k = 0,1, . . . , with τ0 := 0,
in such a way that

τk − τk−1 =
{

1 with probability 1 − k−2,

(c − 1)k2 + 1 with probability k−2

for all k ∈ N (where the probabilities may be conditional
on a suitable σ -algebra Gτk−1 ). Then E(τk − τk−1) = c

(and E(τk − τk−1 | Gτk−1) = c) for all k but, almost surely,
τk − τk−1 = 1 from some k on.

Of course, the statement of Proposition 4.4 also holds
for the CUSUM procedure.

COROLLARY 4.6. Let An be the number of alarms
raised by the conformal CUSUM procedure (12) after see-
ing the observations z1, . . . , zn. Then (16) holds under the
assumptions of Proposition 3.1.

PROOF. As in the proof of Corollary 4.3, combine
Proposition 4.4 with the fact that Shiryaev–Roberts raises
alarms more often than CUSUM does. �
Optimality of Procedures for Change Detection

It is remarkable that both CUSUM and Shiryaev–
Roberts procedures are optimal under some natural con-
ditions and for some natural criteria of optimality. As al-
ready mentioned, in standard settings of change detection
the task is to detect a change from one known IID distri-
bution for the incoming data to another known IID dis-
tribution. CUSUM and Shiryaev–Roberts procedures are
then applied to a specific martingale, the likelihood ratio
of the post-change distribution to the pre-change distri-
bution. Therefore, they depend on just one parameter, the
threshold c (for given pre-change and post-change distri-
butions), whereas in the context of testing randomness we
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have a wide class of CUSUM and Shiryaev–Roberts pro-
cedures, built on top of different conformal martingales.

The five standard criteria for the quality of such spe-
cific procedures have been referred to by the letters A–E;
see, for example, Shiryaev [42]. Under natural conditions,
Shiryaev–Roberts is optimal under two of the criteria, and
CUSUM is optimal under one of them. Such statements
of optimality are very satisfactory results about the effi-
ciency of the corresponding procedures.

In this paper, we only discuss validity results for
CUSUM and Shiryaev–Roberts in the context of random-
ness testing and do not claim their optimality. As dis-
cussed at the end of Section 3, this is a difficult task al-
ready for the basic strongly valid testing procedure us-
ing conformal martingales. The null hypothesis (that of
randomness) is composite and, moreover, very large (for
large Z), and we do not specify any alternatives; we sim-
ply do not have enough structure to specify a meaningful
optimization problem.

5. IID PROBABILITY VS EXCHANGEABILITY
PROBABILITY

We will be discussing two related interpretations of the
efficiency of conformal martingales. On one hand, we
can think of them as detecting deviations from random-
ness, and then “efficiency” would mean “ability to de-
tect deviations from randomness in small samples”. On
the other hand, we can think of them as detecting devia-
tions from exchangeability, and the meaning of efficiency
would change accordingly. In this section, we discuss the
relation between efficient testing for randomness and ex-
changeability in the simplest possible setting of finite bi-
nary data sequences and batch statistical tests. For infinite
sequences randomness and exchangeability are connected
by de Finetti’s theorem, as discussed in Remark 3.4; for
finite sequences their relation becomes much less close.
We reconnect our insights to conformal martingales in the
next section.

In the 1960s, Kolmogorov started revival of the interest
in random sequences, believing that they are important for
understanding the applications of probability theory and
statistics. As already mentioned, he concentrated on bi-
nary sequences (as a simple starting point), in which con-
text he often referred to them as Bernoulli sequences. His
first imperfect publication on this topic was the 1963 pa-
per [19] (Kolmogorov refers to it as “incomplete discus-
sion”, according to the English translation of [20]). In the
same year, he conceived using the notion of computabil-
ity for formalizing randomness. Kolmogorov’s main pub-
lications on the algorithmic theory of randomness were
[20–22].

Let 
 := {0,1}N be the set of all binary sequences of a
given length N , interpreted as sequences of observations.

The time horizon N ∈ N can be regarded as fixed in the
rest of this paper (apart from (27) and the appendix).

Let Bp be the Bernoulli probability measure on {0,1}
with the probability of 1 equal to p ∈ [0,1]: Bp({1}) := p.
The upper IID probability of a set E ⊆ 
 is defined to be

(20) P
iid(E) := sup

p∈[0,1]
BN

p (E),

and the upper exchangeability probability of E ⊆ 
 is de-
fined to be

(21) P
exch(E) := sup

P

P (E),

P ranging over the exchangeable probability measures on

 (in the current binary case we can say that a probability
measure P on 
 is exchangeable if P({ω}) depends on
ω ∈ 
 only via the number of 1s in ω).

REMARK 5.1. The lower probabilities corresponding
to (20) and (21) are 1 −P

iid(
 \E) and 1 −P
exch(
 \E),

respectively. In this paper, we never need lower probabil-
ities.

The function P
iid can be used when testing the hypoth-

esis of randomness: if Piid(E) is small (say, below 1%),
E is chosen in advance, and the observed sequence ω is
in E, we can reject the hypothesis that the observations
in ω are IID. Similarly, Pexch can be used when testing
the hypothesis of exchangeability. This is an instance of
application of Cournot’s principle, often regarded to be
the only bridge between probability theory and its appli-
cations. The principle was widely discussed at the be-
ginning of the 20th century and defended by, for exam-
ple, Borel, Lévy and Kolmogorov [36], Section 2.2. Kol-
mogorov’s statement of Cournot’s principle in his Grund-
begriffe [18], Chapter I, Section 2, is

If P(A) is very small, then one can be practi-
cally certain that the event A will not occur on
a single realization of the conditions S.

(The conditions S in this quote refer to the probability
trial under discussion.) In the form stated by Kolmogorov,
the principle goes back to Jacob Bernoulli [3] (see, e.g.,
[36], Section 2.2). It establishes a bridge between proba-
bility theory and our expectations about reality; observing
an event A (assumed to be chosen in advance) of a small
probability casts doubt on P. Cournot’s [6], page 78, con-
tribution was to state that this is the only bridge between
probability theory and reality.

Cournot’s principle suggests the following understand-
ing of the efficiency of a method of testing the hypothesis
of randomness: given any event E such that Piid(E) is
very small, the method should allow us to reject the hy-
pothesis of randomness after observing E.

PROPOSITION 5.2. For any E ⊆ 
,

(22) P
iid(E) ≤ P

exch(E) ≤ 1.5
√

NP
iid(E).
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PROOF. The first inequality in (22) follows from each
IID measure on 
 being exchangeable. If E contains
either the all-0 sequence 0 . . .0 or the all-1 sequence
1 . . .1, the second inequality in (22) is obvious (Piid(E) =
P

exch(E) = 1). If E is empty, it is also obvious (Piid(E) =
P

exch(E) = 0). Finally, if E is nonempty and contains nei-
ther sequence, we have, for some k ∈ {1, . . . ,N − 1},

P
exch(E) = P

exch(E ∩ 
k)

= 1/
(N
k

)
(k/N)k(1 − k/N)N−k

P
iid(E ∩ 
k)

(23)

≤ k!(N − k)!NN

N !kk(N − k)N−k
P

iid(E)

≤ √
2πe1/6

√
k(N − k)

N
P

iid(E)

(24)

≤ (√
2πe1/6/2

)√
NP

iid(E)

≤ 1.5
√

NP
iid(E),

(25)

where 
k is the set of all sequences in 
 containing k

1s. The first equality in (23) follows from each exchange-
able probability measure on 
 being a convex mixture of
the uniform probability measures on 
k , k = 0, . . . ,N .
The second equality in (23) follows from the maximum
of Bp({ω}), ω ∈ 
k , over p ∈ [0,1] being attained at
p = k/N . The first inequality in (24) is equivalent to the
obvious Piid(E ∩
k) ≤ P

iid(E). The second inequality in
(24) follows from Stirling’s formula

(26) n! = √
2πnn+1/2e−nern, 0 < rn <

1

12n
,

valid for all n ∈N; see, for example, [32], where it is also
shown that rn > 1

12n+1 . The first inequality in (25) follows
from maxp∈[0,1] p(1 − p) = 1/4. �

REMARK 5.3. The constant 1.5 in inequality (22) is
not too far from being optimal: when N = 2 and E =
{(0,1)}, it can be improved only to

√
2 ≈ 1.414. Notice

that our argument in fact gives
√

2πe1/6/2 ≈ 1.481 in-
stead of 1.5.

Kolmogorov’s [21, 22] implicit interpretation of (22)
was that Piid and P

exch are close; on the log scale we have

(27) − logPiid(E) = − logPexch(E) + O(logN),

whereas typical values of − logPiid(E) and
− logPexch(E) have the order of magnitude N for small
(but nonzero) |E|. See the Appendix for further details.

From the point of view of Cournot’s principle, Propo-
sition 5.2 may be interpreted as saying that there is not
much difference between testing randomness and testing
exchangeability. If we have a test with critical region E of
size ε for testing exchangeability, we can use it for test-
ing randomness and its size will not increase; in the op-
posite direction, if we have a test with critical region E

of size ε for testing randomness, we can use it for test-
ing exchangeability, and its size will increase to at most
1.5

√
Nε. On the log-scale of Equation (27) the difference

between the evidence provided by E against the hypothe-
sis of randomness and against the hypothesis of exchange-
ability is O(logN); it is clear that the left-hand side of
(27) can be as large as N (for a nonempty E and assuming
that the logarithms are binary). In the algorithmic theory
of randomness it is customary to ignore such differences,
although from the point of view of statistics, the differ-
ence is substantial.

6. CONFORMAL PROBABILITY

In this section, we explore the efficiency of conformal
martingales, restricting ourselves to the simple case of a
finite horizon N (as in the previous section). First we will
define upper conformal probability P

conf, an analogue of
P

iid and P
exch for testing randomness using conformal

martingales. Our simple version of upper conformal prob-
ability will be sufficient for our current purpose; there are
other natural definitions. The upper conformal probability
of E ⊆ 
 is

(28)
P

conf(E) := inf
{
S0 : ∀(z1, . . . , zN) ∈ E :

SN(z1, θ1, z2, θ2, . . . ) ≥ 1 θ -a.s.
}
,

where S ranges over the nonnegative conformal martin-
gales, “θ -a.s.” refers to the uniform probability measure
over (θ1, θ2, . . . ) ∈ [0,1]∞, and S0 stands for the constant
S0(z1, θ1, z2, θ2, . . . ). The definition (28) is in the spirit of
[37], Section 2.1; Pconf(E) < ε for a small ε > 0 means
that there exists a nonnegative conformal martingale with
a small initial value, below ε, that almost surely increases
its value manyfold, to at least 1, if the event E happens.
Therefore, we do not expect this event to happen under
the hypothesis of randomness. This is spelled out in the
following lemma.

LEMMA 6.1. For any event E, Piid(E) ≤ P
conf(E).

PROOF. Let P be an IID measure on 
 and S be a
nonnegative conformal martingale satisfying the condi-
tion in (28). It suffices to prove

(29) P(E) ≤ S0;
indeed, we can then obtain P

iid(E) ≤ P
conf(E) by taking

sup of the left-hand side of (29) over P and taking inf of
the right-hand side over S.

To check (29), remember that SN ≥ 1E a.s., where 1E

is the indicator of E. Since S is a nonnegative martingale
under P (like any nonnegative conformal martingale), we
have

P(E) =
∫

1E dP ≤
∫

SN dP = S0. �
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We will use upper conformal probability to make the
notion of efficiency for conformal martingales more pre-
cise. Namely, if Piid and P

conf are shown to be close, this
could be interpreted as conformal martingales being able
to detect any deviations from randomness. By Cournot’s
principle, any deviations from randomness are demon-
strated by indicating in advance an event E of small prob-
ability under any IID measure, that is, such that Piid(E)

is small, which then happens. If Piid and P
conf are close,

P
conf(E) will also be small. This means that there exists

a nonnegative conformal martingale S that increases its
value manyfold when E happens. We can choose S in ad-
vance since E is chosen in advance. And such an S will
be successful whenever E is.

The following proposition shows that Pexch and P
conf

are close, in the sense similar to the closeness of Piid and
P

exch asserted in Proposition 5.2 (see also (27)).

PROPOSITION 6.2. For any E ⊆ 
,

(30) P
exch(E) ≤ P

conf(E) ≤ NP
exch(E).

Proposition 6.2 is a statement of efficiency for confor-
mal martingales. It says that, at our crude scale, lack of
exchangeability can be detected using conformal martin-
gales. Namely, given a critical region E of a very small
size P

exch(E) < ε � 1, we can construct a nonnegative
conformal martingale with initial capital Nε that attains
capital of at least 1 when E happens.

Combining the right-hand sides of (22) and (30), we
obtain

P
conf(E) ≤ 1.5N1.5

P
iid(E).

This inequality says that conformal martingales are effi-
cient at detecting deviations not only from exchangeabil-
ity but also from randomness. Given a critical region E of
a very small size Piid(E) < ε � 1, there exists a nonnega-
tive conformal martingale that increases an initial capital
of 1.5N1.5ε to at least 1 when E happens.

PROOF OF PROPOSITION 6.2. First, we check the left
inequality in (30) (which strengthens Lemma 6.1, in view
of the first inequality in (22)). We will do even more: we
will check that it remains true even if the right-hand side
of (28) is replaced by

(31)
inf

{
S0 : ∀(z1, . . . , zN) ∈ E :

Eθ SN(z1, θ1, z2, θ2, . . . ) ≥ 1
}
,

where the Eθ refers to the uniform probability measure
over (θ1, θ2, . . . ) ∈ [0,1]∞. Notice that S0, . . . , SN in (28)
is a martingale in the filtration (Gn) generated by the
p-values p1, . . . , pN under any exchangeable probability
measure on 
; this follows from the fact that p1, . . . , pN

are IID and uniform on [0,1] under any exchangeable
probability measure (see Remark 3.2). Therefore, for each

E ⊆ 
 and each nonnegative conformal martingale S

such that Eθ SN ≥ 1E , we have

(32)
Pz(E) ≤ Pz(Eθ SN ≥ 1) ≤ Ez(Eθ SN)

= Ez,θ SN = S0,

where Pz refers to (z1, . . . , zN) ∼ P , P is an exchange-
able probability measure on 
, Eθ refers to (θ1, . . . ,

θN) ∼ UN , U is the uniform probability measure on
[0,1], and Ez,θ refers to (z1, . . . , zN) ∼ P and (θ1, . . . ,

θN) ∼ UN independently. Taking the sup of the leftmost
expression in (32) over P and the inf of the rightmost ex-
pression in (32) over S, we obtain the left inequality in
(30).

It remains to check the right inequality in (30). Let us
first check the part “≤” of the first equality in

P
conf({ω}) = k!(N − k)!

N ! = P
exch({ω}),

where k ∈ {0, . . . ,N} and ω ∈ 
 contains k 1s (the part
“≥” was established in the previous paragraph; it will not
be used in the rest of this proof).

Let ω = (z1, . . . , zN) be the representation of ω as a se-
quence of bits. Consider the nonnegative conformal mar-
tingale Sω obtained from the identity nonconformity mea-
sure A(z1, . . . , zn) := (z1, . . . , zn) and a betting martin-
gale F such that F(�) = 1/

(N
k

)
(where � is the empty

sequence) and

(33)

F(p1, . . . , pn−1,pn)

F (p1, . . . , pn−1)

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n

kn

if pn ≤ kn/n and zn = 1,

n

n − kn

if pn ≥ kn/n and zn = 0,

0 otherwise,

where n = 1, . . . ,N and kn is the number of 1s in ω ob-
served so far,

kn := ∣∣{j ∈ {1, . . . , n} : zj = 1
}∣∣;

in particular, kN = k. The numerator of the left-hand side
of (33) is defined to be 0 when the denominator is 0. Intu-
itively, Sω gambles recklessly on the nth observation be-
ing zn. If the actual sequence of observations happens to
be ω, on step n the value of the martingale Sω is mul-
tiplied, a.s., by the fraction whose numerator is n and
whose denominator is the number of bits zn observed in ω

so far. The product of all these fractions over n = 1, . . . ,N

will have N ! as its numerator and k!(N −k)! as its denom-
inator. This conformal martingale is almost deterministic,
in the sense of not depending on θn provided θn /∈ {0,1},
and its final value on ω is, a.s.,

1(N
k

) N !
k!(N − k)! = 1.
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To move from singletons to arbitrary E ⊆ 
, notice that
a finite linear combination of conformal martingales Sω

with positive coefficients is again a conformal martingale,
since they involve the same nonconformity measure, and
betting martingales can be combined. Fix E ⊆ 
 and re-
member that 
k is the set of all sequences in 
 containing
k 1s. Represent E as the disjoint union

E =
N⋃

k=0

Ek, Ek ⊆ 
k,

and let Uk be the uniform probability measure on 
k . We
then have

P
conf(E) ≤ ∑

ω∈E

P
conf({ω}) =

N∑
k=0

∑
ω∈Ek

P
conf({ω})

=
N∑

k=0

∑
ω∈Ek

P
exch({ω})

=
N∑

k=0

Uk(Ek) ≤ N max
k=0,...,N

Uk(Ek)

= NP
exch(E),

where the last inequality holds when, for example, E does
not contain the all-0 sequence 0 . . .0 ∈ 
. If E does con-
tain the all-0 sequence, it is still true that

P
conf(E) ≤ 1 ≤ N = NP

exch(E). �

7. CONCLUSION

This paper gives a review of known methods of test-
ing randomness online, all of which are based on con-
formal martingales. It raises plenty of questions, without
giving many answers. Propositions 5.2 and 6.2 say that
IID, exchangeability, and conformal upper probabilities
are close, but the accuracy of these statements is very low
and far from meaningful in practice. The most obvious
direction of further research is to obtain more accurate re-
sults (a simple example related to Proposition 5.2 will be
given in the Appendix). It would be ideal to establish ex-
act bounds on upper conformal probability in terms of up-
per IID probability and upper exchangeability probability.
The most natural definition of upper conformal probabil-
ity in this context might involve randomness in a more
substantial way than our official definition (28) does (cf.,
e.g., (31)).

APPENDIX: CONNECTIONS WITH THE
ALGORITHMIC THEORY OF RANDOMNESS

The emphasis of this appendix will be on Kolmogorov’s
approach to randomness and exchangeability expressed

in Martin-Löf’s [26] terms, which are closer to the tra-
ditional statistical language. (Kolmogorov’s original defi-
nitions, equivalent but given in terms of algorithmic com-
plexity, are discussed in the online Supplementary Mate-
rial [50] to this paper.) In our terminology we will follow
[54]. Following Kolmogorov [20–22], we will only con-
sider the case of binary observations.

A measure of randomness is an upper semicomputable
function f : {0,1}∗ → [0,1] such that, for any N ∈ N,
any IID measure P on {0,1}N , and any ε > 0, we have
(3). The upper semicomputability of f means that there
exists an algorithm that, when fed with a rational number
r and sequence ω ∈ {0,1}∗, eventually stops if f (ω) < r

and never stops otherwise.
In other words, a measure of randomness is a family

of p-variables for testing randomness in {0,1}N . The re-
quirement of upper semicomputability is natural: for ex-
ample, if f (ω) < 0.01 (the p-value is highly statistically
significant), we should learn this eventually.

Analogously, a measure of exchangeability is an upper
semicomputable function f : {0,1}∗ → [0,1] such that,
for any N ∈ N, any exchangeable measure P on {0,1}N ,
and any ε > 0, we have (3).

LEMMA A.1. There exists a measure of randomness
f (called universal) such that any other measure of ran-
domness f ′ satisfies f = O(f ′). There exists a mea-
sure of exchangeability f (called universal) such that any
other measure of exchangeability f ′ satisfies f = O(f ′).

The proof of Lemma A.1 is standard; see, for example,
[26] or [54], Lemma 4.

In the algorithmic theory of randomness, it is custom-
ary to measure lack of randomness or exchangeability on
the log scale. Therefore, we fix a universal measure of
randomness f , set d iid := − logf , and refer to d iid(ω) as
the deficiency of randomness of the sequence ω ∈ {0,1}∗.
Similarly, we fix a universal measure of exchangeability
f , set dexch := − logf , and refer to dexch(ω) as the defi-
ciency of exchangeability of ω. (Traditionally, the log is
binary.)

Proposition 5.2 immediately implies

(34)
dexch(ω) − O(1) ≤ d iid(ω)

≤ dexch(ω) + 1

2
logN + O(1),

where ω ranges over {0,1}∗ and N is the length of ω. In
fact, we can interpret (34) as the algorithmic version of
Proposition 5.2. Kolmogorov regarded the coincidence to
within log as close enough, at least for some purposes:
cf. the last two paragraphs of [21]; therefore, he preferred
the simpler definition dexch(ω) ≈ 0 of ω being a Bernoulli
sequence.

Proposition 5.2 is very crude, and Section 7 sets the task
of obtaining more accurate results. In fact, such results are
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known in the context of the algorithmic theory of random-
ness; some were obtained in the paper [49] written under
Kolmogorov’s supervision.

To clarify relations between algorithmic randomness
and exchangeability, we will need another notion, bino-
miality. The binomial probability distribution binN,p on
{0, . . . ,N} with parameter p is defined by

binN,p

({k}) :=
(
N

k

)
pk(1 − p)N−k, k ∈ {0, . . . ,N}.

A measure of binomiality is an upper semicomputable
function f : {(N, k) : N ∈ N, k ∈ {0, . . . ,N}} → [0,1]
such that, for any N ∈N, any p ∈ [0,1], and any ε > 0,

binN,p

({
k : f (N, k) ≤ ε

}) ≤ ε.

LEMMA A.2. There exists a measure of binomiality
f (called universal) such that any other measure of bino-
miality f ′ satisfies f = O(f ′).

We fix a universal measure of binomiality f , set
dbin(k;N) := − logf (N, k), and refer to dbin(k;N) as
the deficiency of binomiality of k (in {0, . . . ,N}).

PROPOSITION A.3. For any constant ε > 0,

(1 − ε)
(
dexch(ω) + dbin(k;N)

) − O(1)

≤ d iid(ω) ≤ (1 + ε)
(
dexch(ω) + dbin(k;N)

) + O(1),

N ranging over N, ω over {0,1}N , and k being the num-
ber of 1s in ω.

Proposition A.3 follows immediately from (and is
stated, in a more precise form, after) [49], Theorem 1.
It says, informally, that the randomness of ω is equiva-
lent to the conjunction of two conditions: ω should be
exchangeable, and the number of 1s in it should be bino-
mial. For example, suppose that N is a large even number
and the number of 1s in ω ∈ {0,1}N is k = N/2. Then
ω might be perfectly exchangeable whereas it will not be
random since it belongs to the set of all binary sequences
with the number of 1s precisely N/2, whose probability
(4) is small. (Example 2.2 was based on this observation
expressed in a different language.)
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