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Revisiting the Gelman–Rubin Diagnostic
Dootika Vats and Christina Knudson

Abstract. Gelman and Rubin’s (Statist. Sci. 7 (1992) 457–472) convergence
diagnostic is one of the most popular methods for terminating a Markov chain
Monte Carlo (MCMC) sampler. Since the seminal paper, researchers have
developed sophisticated methods for estimating variance of Monte Carlo av-
erages. We show that these estimators find immediate use in the Gelman–
Rubin statistic, a connection not previously established in the literature. We
incorporate these estimators to upgrade both the univariate and multivariate
Gelman–Rubin statistics, leading to improved stability in MCMC termina-
tion time. An immediate advantage is that our new Gelman–Rubin statistic
can be calculated for a single chain. In addition, we establish a one-to-one
relationship between the Gelman–Rubin statistic and effective sample size.
Leveraging this relationship, we develop a principled termination criterion
for the Gelman–Rubin statistic. Finally, we demonstrate the utility of our im-
proved diagnostic via examples.

Key words and phrases: Markov chain Monte Carlo, Gelman–Rubin, con-
vergence diagnostic, effective sample size, batch means.

1. INTRODUCTION

In the early 1990s, a surge in Markov chain Monte
Carlo (MCMC) research produced a variety of conver-
gence diagnostics, including those developed by Geweke
(1992), Gelman and Rubin (1992), and Raftery and Lewis
(1992). The Gelman–Rubin (GR) diagnostic has been one
of the most popular diagnostics for MCMC convergence:
Google Scholar indicates the original paper has been cited
over 9000 times, with over 1000 citations in 2017 alone.
Primary reasons for its popularity are its ease of use and
its widespread availability in software.

The GR diagnostic framework relies on m parallel
MCMC chains, each run for n steps with starting points
determined by a distribution that is over-dispersed relative
to the target distribution. The GR statistic (denoted R̂) is
the square root of the ratio of two estimators for the target
variance. In finite samples, the numerator overestimates
this variance and the denominator underestimates it. Each
estimator converges to the target variance, meaning that
R̂ converges to 1 as n increases. When R̂ is sufficiently
close to 1, the GR diagnostic declares convergence.

Gelman et al. (2004) recommend terminating simu-
lation when R̂ ≤ 1.1. This threshold has been adopted
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widely by practitioners. Table 1 summarizes the R̂ thresh-
olds reported by 100 randomly sampled papers that cited
Gelman and Rubin (1992) in 2017. The recommended
cutoff of 1.1 was used by 43 of the 100. The next most
commonly used cutoffs were 1.01 and 1.05. A cutoff
higher than 1.1 was used by 10 papers, and the smallest
threshold was 1.003.

We argue that a cutoff of R̂ ≤ 1.1 is much too high to
yield reasonable estimates of target quantities. Consider
the example of sampling from a t5-distribution, a t distri-
bution with 5 degrees of freedom, using a random walk
Metropolis–Hastings sampler with a N(·,2.62) proposal.
We run m = 3 chains for 2n = 150 steps, with starting
values drawn from a t2 distribution. We discard the first
n samples from each chain, as recommended by Gelman
and Rubin (1992). Density estimates from the three chains
are in Figure 1. The resulting R̂ from this run is 1.0053,
which is much smaller than the termination threshold sug-
gested by Gelman and Rubin (1992), but the estimated
density is far from the truth.

The termination threshold critically impacts the qual-
ity of estimation, yet current practices do not suffice. The
suggested threshold of 1.1 seems arbitrary and—as the
example suggests—may be much too high to yield con-
fidence in final estimates. We respond with two contribu-
tions: (i) we present an improved GR statistic and (ii) we
establish a principled method of selecting a GR diagnostic
termination threshold.

First, we propose improving both the univariate GR
statistic (Section 3) and the multivariate GR statistic of
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TABLE 1
Distribution of R̂ cutoff used over 100 sampled papers

R̂ cutoff

1.003 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.1 1.2 1.3

Count 1 12 9 9 2 11 2 1 43 9 1

Brooks and Gelman (1998) (Section 4) by using recently-
developed estimators of the variance of Monte Carlo aver-
ages. The relative efficiency of the original estimator used
in the GR statistic versus our new estimator grows with-
out bound as the chain length increases, resulting in dra-
matic stabilization of the GR statistic. Such an improve-
ment was indirectly implied by Flegal, Haran and Jones
(2008).

Second, in Section 5, we present a method of selecting a
principled, interpretable GR statistic cutoff by identifying
a one-to-one correspondence between the GR statistic and
the effective sample size (ESS) for estimating the mean of
the target distribution. Specifically, we show that

R̂ ≈
√

1 + m

ESS
.

Thus, for m chains, choosing a termination threshold 1.1
implies an ESS of approximately 5m, or five independent
samples per chain; this is clearly too low to estimate the
mean with any reasonable certainty.

In Section 6, we assess the performance of our meth-
ods in four examples. First, we present a complete anal-
ysis of the t5-distribution example. The second example
uses an autoregressive model—for which underlying true
variances are known—to assess the two statistics’ time-
to-convergence stability as it compares to the truth. The
third example compares the traditional and updated GR
statistics’ performance for a bimodal target distribution.
We consider two cases, the first when the Markov chain

FIG. 1. Density estimate and R̂ along with the three individual den-
sity estimates.

gets stuck in a local mode, and the second when the
Markov chain is able to jump between modes. The fourth
and final example demonstrates the implementation of our
improved GR statistic on a Bayesian logistic regression
model analyzing the Titanic dataset; this highlights the
marked improvement in the regression estimates’ stabil-
ity when using the ESS-based termination threshold. We
end with a discussion in Section 7.

2. MARKOV CHAINS AND CONVERGENCE

Let F be a target distribution defined on a space X
equipped with a countably generated σ -field, B(X ). Let
P : X × B(X ) → [0,1] denote a Markov chain transi-
tion kernel such that for x ∈ X and A ∈ B(X ), P(x,A) =
Pr(X2 ∈ A|X1 = x). For i = 1, . . . ,m, let {Xit }t≥1 denote
the ith independent Markov chain. The starting value of
the Markov chains, Xi1, are user-chosen and are either
fixed or drawn randomly from a convenient initial distri-
bution. We assume that P is F -invariant and Harris er-
godic (see Meyn and Tweedie, 2009, for definitions) for
definitions so that P converges to F (in total variation dis-
tance) for any initial distribution.

Typically, MCMC returns samples that are correlated
and only approximately from F . This has allowed for di-
verse literature on the issue of convergence of an MCMC
algorithm. There are two main types of convergence that
are relevant to most MCMC problems (see Roy, 2020,
Vats et al., 2020, for a detailed discussion): (i) the con-
vergence of the n-step Markov transition, P n, to the sta-
tionary distribution F , and (ii) the convergence of sam-
ple statistics to the truth. The first is often termed as the
“burn-in” problem, where a first chunk of the samples is
discarded when the starting distribution of Xi1 is far away
from F . Determining how many samples to retain is a
challenging problem that often involves a detailed study
of the specific Markov chain kernel, P . See Rosenthal
(1995), Jones and Hobert (2001) for a theoretical expo-
sition.

Convergence diagnostics that address the second class
of convergence either assess convergence of the empirical
distribution function or assess convergence of moments
of functions of interest. Many density-based diagnostics
have been proposed in the literature. Boone, Merrick and
Krachey (2014) measure the Hellinger distance between



520 D. VATS AND C. KNUDSON

estimated marginal densities from multiple chains. A sim-
ilar approach was used by Hjorth and Vadeby (2005)
with a distance metric similar to the Kullback Leibler
(KL) divergence and by Dixit and Roy (2017) with a
KL divergence and adaptive kernel density estimators.
VanDerwerken and Schmidler (2017) use a state-space
partition of the clusters in the MCMC output to diagnose
convergence of the estimated target distribution.

This article and the original Gelman–Rubin diagnostic
focuses on diagnosing moment-based convergence. That
is, if interest is in estimating the mean, quantile, variance,
etc of F , the MCMC process is said to have converged
when the sample statistics are close enough to the truth.
Convergence is guaranteed due to Harris ergodicity of the
chains. Suppose interest is in estimating the mean of the
posterior distribution F , μ = EF Xit . The Monte Carlo av-
erage of each chain estimates μ consistently. That is, as
n → ∞, due to the Markov chain strong law

X̄i· = 1

n

n∑
t=1

Xit
a.s.→ μ.

The combined estimator of μ from the m Markov chains
is

μ̂ = 1

m

m∑
i=1

X̄i·
a.s.→ μ,

as n → ∞. If m = 1, then μ̂ = X̄1·. Moment-based di-
agnostic tools measure the quality of estimation of μ̂.
Geweke (1992) constructed a hypothesis test for testing
the equality of the means of two nonoverlapping sections
of a Markov chain. These sections are usually the first
10% and the last 50% of the chain. Similarly, Raftery and
Lewis (1992) used a two-state Markov chain assumption
to construct a univariate diagnostic based on estimating
quantiles of univariate components of the target distribu-
tion. A comprehensive survey of these and other diagnos-
tics can be found in Cowles and Carlin (1996) which also
extends the above to the case when interest is in estimat-
ing the mean of a function g :X →R

p . Almost all of the
methods require the estimation of the limiting variance
τ 2∞ := limn→∞ nVar(X̄i·), which is finite if a Markov
chain central limit theorem holds (see Jones, 2004, for
conditions). That is, a Markov chain central limit theorem
holds if there exists τ 2∞ < ∞ such that as n → ∞
(1)

√
n(X̄i· − μ)

d→ N
(
0, τ 2∞

)
.

Flegal and Gong (2015), Gong and Flegal (2016), Jones
et al. (2006) propose a family of sequential termination
rules that stop simulation the first time the variability in
μ̂ is (relatively) small. For the sequential stopping rules
to yield confidence regions with the nominal coverage
probability, estimators of τ 2∞ must be strongly consis-
tent, a property that has been shown for a wide range

of estimators, including batch means (Liu and Flegal,
2018, Vats, Flegal and Jones, 2019), spectral variance
(Flegal and Jones, 2010, Vats, Flegal and Jones, 2018) and
regeneration-based estimators (Jones et al., 2006, Seila,
1981/82).

By far, the most popular method for terminating an
MCMC sampler run is the Gelman–Rubin diagnostic
of Gelman and Rubin (1992) and Brooks and Gel-
man (1998). In the following sections, we introduce the
Gelman–Rubin diagnostic in detail and reformulate the
univariate and multivariate diagnostics facilitating the use
of strongly consistent estimators of τ 2∞. This allows us to
find a novel connection between ESS and the Gelman–
Rubin statistic, thus motivating a termination threshold
for the Gelman–Rubin statistic. As in Gelman and Ru-
bin (1992), we assume throughout that a Markov chain
central limit theorem holds.

3. UNIVARIATE DIAGNOSTIC

3.1 Original Gelman–Rubin Statistic

Let F be the target distribution with mean μ ∈ R and
variance σ 2 < ∞. Gelman and Rubin (1992) construct
two estimators of σ 2 and compare the square root of their
ratio to 1. This process is described below.

Recall that X̄i· is the sample mean from chain i and μ̂

is the overall mean. Let s2
i denote the sample variance for

chain i and s2 be the average of the m sample variances.
That is,

s2
i = 1

n − 1

n∑
t=1

(Xit − X̄i·)2 and s2 = 1

m

m∑
i=1

s2
i .

Although s2 is strongly consistent for σ 2 as n → ∞, it is
biased for σ 2 for nontrivial Markov chains. In fact,

(2) EF

(
s2
i

) = n

n − 1

(
σ 2 − VarF (X̄i·)

)
.

When the samples are independent and identically dis-
tributed, VarF (X̄i·) = σ 2/n and s2

i is an unbiased estima-
tor of σ 2. However, for samples obtained through MCMC,
VarF (X̄i·) is often much larger than σ 2/n due to positive
correlation in the Markov chain. Thus, s2

i on average, un-
derestimates the target variance.

Define τ 2
n := nVarF (X̄i·) and let τ 2∞ = limn→∞ τ 2

n <

∞. Gelman and Rubin (1992) perform a bias correction
by estimating τ 2

n/n = VarF (X̄i·) with B , the sample vari-
ance of sample means from m chains. That is,

(3)
B

n
= 1

m − 1

m∑
i=1

(X̄i· − μ̂)2.

Using (3) to estimate VarF (X̄i·) in (2) yields the following
estimator of σ 2:

σ̂ 2 := n − 1

n
s2 + B

n
.
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The univariate GR potential scale reduction factor (PSRF)
is

(4) R̂ =
√

σ̂ 2

s2 .

Gelman and Rubin (1992) and Gelman et al. (2004) ar-
gue that if an over-dispersed starting distribution for the
Markov chain is used, σ̂ 2 overestimates σ 2—due to (2)—
and s2 underestimates σ 2. Since both are consistent for
σ 2, R̂ decreases to 1 as n increases. Simulation is stopped
when R̂ ≤ δ for some δ > 1.

REMARK 1. The univariate PSRF presented by
Brooks and Gelman (1998) and Gelman and Rubin (1992)
differs from (4). Specifically, it is defined as

√
R̂ =

√√√√ σ̂ 2 + B
mn

s2

df + 3

df + 1
,

where df is the degrees of freedom for the numerator es-
timated via a method of moments. Since this original es-
timator, R̂ has evolved into the expression in (4). Popu-
lar resources for MCMC convergence diagnostics such as
Gelman et al. (2004) and softwares such as Stan use the
expression in (4). Although the R package coda uses the
original GR expression, we commit to the expression in
(4).

3.2 New Univariate PSRF

Our improved construction of the PSRF incorporates
efficient estimators of VarF (X̄i·). Due to the correlation
in the Markov chain,

τ 2
n = nVarF (X̄i·)

= VarF (Xi1) + 2
n−1∑
k=1

(
n − k

n

)
CovF (Xi1,Xi(1+k)).

We use known estimators of τ 2∞ to estimate τ 2
n ; in fact

these estimators are technically estimating τ 2
n but are con-

sistent for τ 2∞ as n → ∞. A significant amount of re-
search in the past two decades has resulted in improved
estimation of τ 2∞. This includes batch means estimators
and regenerative estimators (Jones et al., 2006), spectral
variance estimators and overlapping batch means estima-
tors (Flegal and Jones, 2010), and weighted batch means
estimators (Liu and Flegal, 2018). Under appropriate con-
ditions, the estimators above are strongly consistent but
are biased from below for τ 2∞ (Vats and Flegal, 2018). The
initial sequence estimators of Geyer (1992) are asymptot-
ically conservative but only apply to reversible Markov
chains.

We use a lugsail version of the replicated batch means
estimator to estimate τ 2

n . As Vats and Flegal (2018) de-
scribe, the lugsail estimator is biased from above in finite
samples but strongly and mean square consistent for τ 2∞

as n → ∞. Thus, even without an over-dispersed starting
distribution, the lugsail estimator yields a biased-from-
above estimate of τ 2

n . In order to combine variance es-
timates from multiple chains, we use a replicated version
of the lugsail batch means estimator à la Argon and An-
dradóttir (2006). This replicated estimator accounts for
the case when independent copies of the chain are concen-
trated in different areas of the support of the distribution,
a case that arises often in multi-modal targets. We now
describe the replicated lugsail batch means estimator.

Suppose n is such that n = a · b where a is the num-
ber of batches and b is the batch size. Both a and b

must increase with n; usual choices of b include 	n1/3

and 	n1/2
. For the ith chain, define the mean for batch
k = 1, . . . , a as

Ȳik = 1

b

kb∑
t=(k−1)b+1

Xit .

The replicated batch means estimator of τ 2
n is

τ̂ 2
b := b

am − 1

m∑
i=1

a∑
k=1

(Ȳik − μ̂)2.

Here the subscript b in τ̂ 2
b indicates the batch size used

to construct the estimator. The replicated lugsail batch
means estimator is

(5) τ̂ 2
L := 2τ̂ 2

b − τ̂ 2
b/3,

where τ̂ 2
b/3 is the replicated batch means estimator con-

structed using batch size 	b/3
.
An advantage of τ̂ 2

L over B is its relative efficiency. The
large sample variance of B is 2τ 4∞/(m − 1) (Gelman and
Rubin, 1992) while the large-sample variance of the repli-
cated lugsail batch means estimator is 6τ 4∞/am (Gupta
and Vats, 2020, Argon and Andradóttir, 2006). Because a

increases with n, the large sample relative efficiency of B

versus τ̂ 2
L is

(6) eff
(
B, τ̂ 2

L

) = ma

3(m − 1)
→ ∞ as n → ∞.

Equation (6) shows that as the Markov chain length in-
creases, the relative variance of B versus τ̂ 2

L grows; for
any reasonable choice of n, the replicated lugsail batch
means estimator is markedly more efficient than B . Sec-
tion 6 will show that incorporating τ̂ 2

L rather than B dra-
matically stabilizes the termination of MCMC.

Using τ̂ 2
L instead of B yields the following biased-from-

above estimator of σ 2

σ̂ 2
L := n − 1

n
s2 + τ̂ 2

L

n
.

Using σ̂ 2
L instead of σ̂ 2 in R̂ yields the following im-

proved estimator for the PSRF:

(7) R̂L =
√

σ̂ 2
L

s2 .
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As before, the criterion for terminating simulation is
R̂L ≤ δ for some δ > 1.

4. MULTIVARIATE PSRF

4.1 Original Multivariate PSRF

Most MCMC problems are inherently multivariate in
that the goal is to sample from a multidimensional tar-
get distribution. Acknowledging the multivariate nature
of estimation is critical in order to account for the interde-
pendence between components of the chain (Vats, Flegal
and Jones, 2019). Brooks and Gelman (1998) proposed
the following multivariate extension of the univariate GR
diagnostic.

Let F be a p-dimensional target distribution with mean
μ ∈ R

p and let � be the p×p variance-covariance matrix
of the target distribution. Let Xi1, . . . ,Xin be the ith par-
allel Markov chain; each Xit = (Xit1, . . . ,Xitp)T ∈ R

p .
Let X̄i· = n−1 ∑n

t=1 Xit be the mean vector of the ith
chain and let the overall mean be μ̂ = m−1 ∑m

i=1 X̄i·. Let
Si be the sample covariance matrix for chain i, and let S

be the sample mean of S1, . . . , Sm. That is

Si = 1

n − 1

n∑
t=1

(Xit − X̄i·)(Xit − X̄i·)T and

S = 1

m

m∑
i=1

Si.

Just as in the univariate case, Brooks and Gelman (1998)
decompose the target variance:

� =
(

n − 1

n

)
EF (S) + VarF (X̄i·).

Let Tn := nVarF (X̄i·) and let T∞ = limn→∞ nVarF (X̄i·).
Then T∞ is the asymptotic variance-covariance matrix in
the multivariate Markov chain CLT. When p = 1, Tn = τ 2

n

and T∞ = τ 2∞. Brooks and Gelman (1998) estimate Tn/n

with the sample covariance matrix of the sample mean
vectors from m chains. Define B such that

B
n

= 1

m − 1

m∑
i=1

(X̄i· − μ̂)(X̄i· − μ̂)T .

Using B/n to correct for the bias in S yields

�̂ :=
(

n − 1

n

)
S + B

n
.

As in the univariate case, the goal is to compare the ratio
of these estimators of �. However, because � is a p × p

matrix, a univariate quantification of this ratio is required.
Let λmax(A) denote the largest eigenvalue of a matrix A.
The multivariate PSRF is

(8) R̂p =
√(

n − 1

n

)
+ λmax(S−1B)

n
.

REMARK 2. As in the univariate case, we use a dif-
ferent expression from the original paper by Brooks and
Gelman (1998) so that the multivariate expression here is
a direct generalization of the univariate PSRF. The expres-
sion in Brooks and Gelman (1998) is

R̂p =
√(

n − 1

n

)
+

(
m + 1

m

)
λmax(S−1B)

n
.

The estimator B will not be positive definite in the re-
alistic event of m being smaller than p. Also, the use of
the largest eigenvalue is likely the reason the multivariate
PSRF has not found large practical use in the literature.
The largest eigenvalue quantifies the variability in the di-
rection of the largest variation, the principal eigenvector
of S−1B. This can be significantly larger than any of the
individual variances, thus leading to a needlessly conser-
vative termination criterion.

4.2 New Multivariate PSRF

Recent work by Dai and Jones (2017), Kosorok (2000),
Liu and Flegal (2018), Vats and Flegal (2018), and Vats,
Flegal and Jones (2018) provide estimators of T∞. We
use the biased-from-above, multivariate replicated lugsail
batch means estimator to estimate Tn. As before, for the
ith chain, define the mean vector for batch k = 1, . . . , a as

Ȳik = 1

b

kb∑
t=(k−1)b+1

Xit .

The multivariate replicated batch means estimator of Tn

is

T̂b := b

am − 1

m∑
i=1

a∑
k=1

(Ȳik − μ̂)(Ȳik − μ̂)T .

The multivariate replicated lugsail batch means estimator
for the ith chain is

(9) T̂L := 2T̂b − T̂b/3.

Define

�̂L =
(

n − 1

n

)
S + T̂L

n
.

Let det(·) denote determinant. We define our multivariate
PSRF as

(10) R̂
p
L =

√(
n − 1

n

)
+ det(S−1T̂L)1/p

n
.

REMARK 3. We use the function det(·)1/p instead of
the largest eigenvalue for multiple reasons. First, note that

det
(
S−1T̂L

)1/p =
(

det(T̂L)

det(S)

)1/p

.

Since the determinant of a covariance matrix of a random
variable is referred to as the generalized variance of the
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random variable (Wilks, 1932), this ratio of generalized
variances is akin to the ratio of variances in the univariate
case. Second, the pth root of the determinant is the geo-
metric mean of the eigenvalues of the matrix. Thus, the
determinant accounts for variability in all directions and
not only in the direction of the principal eigenvector. The
power 1/p ensures stability and invariance to change of
units (Sen Gupta, 1987). Also, when p = 1, (10) is the
univariate PSRF in (7).

REMARK 4. Users commonly run a single Markov
chain in their analysis (m = 1). The use of the replicated
lugsail batch means estimators to estimate T∞ or τ 2∞ al-
lows a direct application of the GR statistic to a single
chain.

5. RELATION TO ESS AND CHOOSING δ

A challenge in implementing the GR diagnostic is
choosing the PSRF cutoff, δ. Gelman et al. (2004) say:

The condition of R̂ near 1 depends on the prob-
lem at hand; for most examples, values below
1.1 are acceptable, but for a final analysis in
a critical problem, a higher level of precision
may be required.

In this section, we establish and highlight the relationship
between ESS and PSRF. Using the quantitative guidelines
established in the literature for terminating simulation us-
ing ESS, we obtain interpretable values of δ.

For an estimator, ESS is the number of independent
samples with the same standard error as a correlated sam-
ple. Recall that T∞ is the covariance matrix in the Markov
chain CLT and � is the covariance matrix of the target dis-
tribution. If p = 1, both T∞ and � are scalars. For m ≥ 1
chains, each of length n, Vats, Flegal and Jones (2019)
define ESS as

ESS = mn

(
det(�)

det(T∞)

)1/p

.

For p = 1, this reduces to the following univariate defini-
tion of ESS as discussed by Gong and Flegal (2016) and
Kass et al. (1998):

ESSp=1 = mn
σ 2

τ 2∞
.

Strongly consistent estimators of T∞ and � will yield a
strongly consistent estimator of ESS. Thus, an estimator
of ESS is the following:

ÊSS = mn

(
det(Ŝ)

det(T̂L)

)1/p

.

A theoretically-justified lower bound on the number of
effective samples required to obtain a certain level of pre-
cision has been determined for the univariate case (Gong

and Flegal, 2016) and for the general multivariate problem
(Vats, Flegal and Jones, 2019). Just as we can calculate
the sample size necessary to construct a confidence inter-
val with a desired width, we can obtain a lower bound on
the ESS necessary to construct a confidence region with
a desired relative volume. Suppose the goal is to make
100(1 − α)% confidence regions for μ, using estimator
μ̂. Let ε be the desired volume of the confidence region
for μ̂ relative to the generalized standard deviation in the
target distribution, det(�)1/2p . Then ε—the relative vol-
ume of the confidence region—is akin to the width of a
confidence interval in sample size calculations.

Let χ2
1−α,p be the (1 − α)th quantile of the χ2 distri-

bution with p degrees of freedom. Vats, Flegal and Jones
(2019) show that if simulation is terminated when the es-
timated ESS satisfies

(11) ÊSS ≥ (2)2/pπ

(p�(p/2))2/p

χ2
1−α,p

ε2 := Mα,ε,p,

then the confidence regions created at termination will
asymptotically have the correct coverage probability. The
lower bound Mα,ε,p can be calculated a priori, and sim-
ulation can terminate when the estimated ESS exceeds
Mα,ε,p .

It is straightforward to see that

(12)

R̂
p
L =

√(
n − 1

n

)
+ m

ÊSS

≈
√

1 + m

ÊSS

≤
√

1 + m

Mα,ε,p

:= δε.

Because δε can be calculated a priori, simulation can ter-
minate when the PSRF drops below the threshold δε . The
value of Mα,ε,p is obtained from (11) and is most affected
by the choice of ε (Vats, Flegal and Jones, 2019). There-
fore, the desired δε will be most affected by the choice
of ε. Because ε is interpretable, δε is interpretable; termi-
nating when R̂

p
L ≤ δε is equivalent to terminating simula-

tions when ÊSS ≥ Mα,ε,p for estimating the mean of the
target distribution.

EXAMPLE 1. In our examples, we choose ε = 0.10
and α = 0.05. That is, for creating 95% confidence re-
gions, we desire the volume of the confidence region for
the Monte Carlo estimator of the mean to be less than
10% of det(�)1/2p . For problems with m = 3 and p = 1,
M0.05,0.10,1 = 1537, which corresponds to δε = 1.000976.
Thus, the desired termination threshold in this situation is
dramatically lower than the ad hoc cutoff of 1.1.

REMARK 5. Vats, Flegal and Jones (2019) explain
that a minimum simulation effort must be set to safeguard
from premature termination due to early bad estimates of
σ 2. We concur and suggest a minimum simulation effort
of n = Mα,ε,p .
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FIG. 2. t-distribution: (From left to right and top to bottom). Estimated density using R̂L with δ = 1.1, δ = 1.01 and δ0.1 = 1.000975. Bottom
right is a running plot of the estimated PSRF using both R̂ (red) and R̂L (blue). The horizontal dotted black line is δ0.1 = 1.000975.

6. EXAMPLES

6.1 t5-Distribution Continued

Recall the t5-distribution example introduced in Sec-
tion 1, where we run m = 3 chains with starting values
randomly sampled from a t2-distribution. For our seed, the
starting points were (0.484,1.370,−0.131). For δ = 1.1,
δ = 1.01, and δ0.1 = 1.000975, we check whether each
convergence criterion is satisfied for R̂L in increments of
50 iterations and present the estimated density plots in
Figure 2. For δ = 1.1 and δ = 1.01, the termination cri-
teria are met at n = 50. The density estimate clearly in-
dicates poor quality of estimation. For δ0.1 = 1.000975,
the sampler terminates at n = 2350 iterations, resulting
in improved estimation. Further smaller values of ε will
provide further improvements, and ε can be chosen based
on the quality of estimation desired. In Figure 2, we also
present a running plot of R̂ and R̂L which illustrates the
erratic behavior of R̂, especially for small sample sizes. In
comparison, R̂L is far more stable and exhibits monotonic
decreasing behavior (up to randomness).

6.2 Autoregressive Process of Order 1

Consider the autoregressive process of order 1 (AR(1)).
For t = 1,2, . . . , let Yt ∈ R and εt ∼ N(0, ν2). For |ρ| <

1, the AR(1) process is

Yt = ρYt−1 + εt .

This describes a Markov chain with stationary distribution
N(0, σ 2), where

(13) σ 2 = ν2

1 − ρ2 .

The autocorrelation coefficient ρ determines the rate of
convergence of the Markov chain. In particular, if |ρ| < 1
a Markov chain CLT holds for Ȳn = n−1 ∑n

t=1 Yt with the
following asymptotic variance:

τ 2∞ = σ 2 1 + ρ

1 − ρ
.

For finite n, we can obtain an expression for τ 2
n =

nVarF (Ȳn),

(14) τ 2
n = σ 2 + 2σ 2

n−1∑
k=1

(
n − k

n

)
ρk.

In this example, we set ν = 1 and ρ = 0.95. Since the
true values of τ 2

n and σ 2 are known, we can compare the
performance of our proposed methods with that of the
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FIG. 3. AR(1): Sample mean versus termination iteration for m = 5 chains. (Left) Blue squares are for R̂; green points are for R̂L. The horizontal
dotted line is the true mean. The vertical dotted line is the true chain length for termination cutoff δ0.10. (Right) Blue squares are for R̂L ≤ δ = 1.1.
Green points and orange triangles are for R̂L ≤ δ0.10 and R̂L ≤ δ0.05, respectively. The horizontal dotted line is the true mean.

original GR methods. Over 500 replications, we deter-
mine when R̂ and R̂L reach δ and record the Monte Carlo
estimate, Ȳn, and termination sample size; each criterion
is checked in increments of 500 iterations. In Figure 3, we
plot Ȳn at termination versus the termination index using
both R̂ and R̂L for a single chain and for m = 5 chains.
For these simulations, we set ε = 0.10 and use m = 5; this
yields termination threshold δε = 1.001625. We compare
our results against the true value of the PSRF determined
by (13) and (14).

In Figure 3, we present our simulation results. First, we
inspect the horizontal variability by comparing the num-
ber of iterations required for convergence for the two con-
vergence statistics. The variability in the termination pro-
cedure using R̂ is large: some runs converged almost im-
mediately while others required over 30,000 steps. The
replicated lugsail batch means estimators terminate close
to the true termination index and do so with considerably
lower variability; this follows from the efficiency result in
(6). Second, we inspect the vertical variability in Figure 3:
the means produced at termination by R̂L have low, near-
uniform variability in each plot while the original GR di-
agnostic produces means with more variability.

Unlike R̂, R̂L can be calculated for a single chain. In
Figure 4, we plot the iterations to convergence for R̂L us-
ing three convergence criteria versus the estimated sample
mean at convergence. The plot here is essentially similar
to the right plot in Figure 3 in that it is clear that δ = 1.1
yields high variability in the resulting estimates.

For three different termination criteria we calculate the
iterations to convergence using R̂L and the Monte Carlo
average at convergence. Results are in the right plot of
Figure 3. Naturally, smaller values of ε—which corre-
spond to smaller values of δε—yield later termination.
Most importantly, we note the poor performance of the ad
hoc R̂L ≤ 1.1 criterion: the variability in the sample mean
is much too large to yield any confidence in the quality of
estimation.

6.3 Bimodal Gaussian Distribution

Let f (x; θ, λ2) be the density of a normal distribution
with mean θ and variance λ2. Consider the following den-
sity of a mixture distribution of two normal random vari-
ables:

f (x) = 1

2
f1(x;0,2) + 1

2
f2(x;10,0.5).

We run a random walk Metropolis–Hastings MCMC al-
gorithm with proposal distribution N(·, h) and consider
two choices of h: h = 1 and h = 10. A larger h allows the
Markov chains to jump between modes relatively easily
so that each Markov chain explores the state space rel-
atively well. The first setting with h = 1 localizes each
Markov chain, not allowing them to easily jump modes.
Trace plots illustrating this behavior are in Figure 5.

For h = 1, we run m = 5 Markov chains from the
first mode and track both R̂ and R̂L. Since the Markov
chains do not adequately explore the state space—in par-
ticular, the chains have not discovered the second mode

FIG. 4. AR(1): Sample mean versus termination iteration for m = 1
chain. Blue squares are for R̂L ≤ δ = 1.1. Green points and orange
triangles are for R̂L ≤ δ0.10 and R̂L ≤ δ0.05, respectively. The hori-
zontal dotted line is the true mean.
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FIG. 5. Bimodal: Trace plots of one Markov chain run for h = 1 (left) and h = 10 (right).

yet—both methods prematurely diagnose convergence;
see Figure 6 where the Markov chains satisfy R̂L < δ0.1 =
1.001625 at n = 4100. Since this declaration of conver-
gence is premature, the estimated density plot at termina-
tion is nowhere near the truth. The GR diagnostic, even
with our improvements, cannot possibly detect lack of
convergence when the chain has failed to travel to areas
of critical mass. It is thus imperative to choose an MCMC
sampler that adequately explores the state space before
any output analysis is considered.

For h = 10, the Markov chain is able to move across
modes often so that sample quantities are well estimated.
Over 500 replications, we run m = 5 Markov chains start-
ing from an over-dispersed distribution. In each replica-
tion, we record the chain length at R̂ ≤ δ0.1 and R̂L ≤ δ0.1.
Results are presented in the left plot of Figure 7. Using
R̂ results in termination as early as chain length 500 and
as late as chain length 1.5e5. In contrast, R̂L has far less
variability in the termination time and in the sample mean
estimates at termination.

In order to assess the performance of R̂L for a single
chain, we implemented another simulation study using

only R̂L for m = 1 chain with cutoffs δ = 1.1, δ = 1.01,
and δ0.1 = 1.000325; the results are presented in the right
plot of Figure 7. Barring two of the 500 replications where
the single chain was not able to jump from the local mode,
termination criterion δ0.1 dramatically stabilizes the esti-
mation quality at termination. The convergence criteria of
δ = 1.1 and δ = 1.01 lead to premature termination.

6.4 Bayesian Logistic Regression: Titanic Data

On April 15, 1912, the RMS Titanic sank after colliding
with an iceberg on its maiden voyage. The accident killed
1502 of the 2224 passengers and crew on board. The ti-
tanic_train data in the R package titanic con-
tains information on 891 passengers aboard the Titanic
and whether they survived the tragedy or not. Additional
information includes the class of the passenger (Pclass,
a factor with three levels), sex (a factor with two levels),
age, the number of siblings/spouses aboard (SibSp), the
number of parents/children aboard (Parch), the passen-
ger’s fare (Fare), and port of embarkation (Embarked, a
factor with three levels). The data-set contains 179 entries
with missing values, which we remove, yielding 712 ob-
servations.

FIG. 6. Bimodal: Running plot of PSRF estimates with horizontal lines drawn at δ = 1.01 and δ0.1 = 1.001625 (left) and estimated density plot
at termination using R̂L ≤ δ0.1 (right).
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FIG. 7. Bimodal: Sample mean versus Monte Carlo sample size at termination with the horizontal dotted line being the true mean. (Left) For
m = 5 chains with termination threshold δ0.1. Blue squares are obtained using R̂; green points are obtained using R̂L. (Right) For m = 1 chain
with statistic R̂L and three termination thresholds. Blue squares are obtained using δ = 1.1, green points are obtained using δ = 1.01, and orange
triangles are obtained using δ0.1.

We fit a Bayesian logistic regression model to this data.
Let Y1, . . . , Y712 be the observed binary response. Yi = 1
if the ith passenger survived and Yi = 0 otherwise. For
i = 1, . . . ,712, let xi = (xi1, . . . , xi10)

T denote the vec-
tor of covariates for the ith response. For β ∈ R

10, the
Bayesian logistic regression setup is

Yi | β ∼ Bernoulli
(

1

1 + exp(−xT
i β)

)
.

We assume a multivariate normal prior on β (i.e., β ∼
N(0, σ 2

β I10), where I10 is the 10×10 identity matrix). We

set σ 2
β = 100 to yield a diffuse prior on β . A random walk

Metropolis–Hastings sampler available in the R package
MCMCpack is used to sample from the intractable poste-
rior. We tune the step size of the sampler to approximate
the optimal acceptance probabilities indicated by Roberts,
Gelman and Gilks (1997).

Since posterior distribution is 10-dimensional, we em-
ploy the multivariate PSRF to determine the number of
samples required. We run m = 5 parallel chains with start-
ing values from across −3 to 3 standard deviations from
the maximum likelihood estimate of β . We start with n =

50 and—as long as the multivariate PSRFs are above 1.1
and δ0.10 in (12)—we increase the Markov chain length
by 10%.

In 100 replications, we note the posterior mean of β and
the 95% credible interval at termination using both crite-
ria. The results are in Figure 8. It is immediately clear
that the ad hoc threshold of δ = 1.1 yields credible in-
tervals with unacceptably large variability, as illustrated
by the left set of points in Figure 8; in this example, the
δ = 1.1 cutoff yields untrustworthy estimates. In contrast,
δ0.10 produces credible interval estimates with minimal
variability.

Next we compare the performance of the multivari-
ate PSRF using the determinant against the performance
of the original multivariate PSRF in (8), which uses the
largest eigenvalue (Brooks and Gelman, 1998). In Fig-
ure 9, we track the evolution of the two statistics, along
with the 10 univariate PSRFs, for one run of the 5 paral-
lel chains. The determinant PSRF yields values close to
the univariate PSRFs, but the largest eigenvalue PSRFs
are markedly more conservative, resulting in delayed ter-
mination. If conservative termination is desirable, we rec-

FIG. 8. Titanic: Centered posterior mean and 95% credible interval estimates from 100 replications for all 10 components. Purple circles are
upper quantiles, blue circles are posterior means, and green circles are lower quantiles. Each component has two sets of points: the left points are
for R̂

p
L ≤ 1.1 and the right points are for R̂

p
L ≤ δ0.10.
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FIG. 9. Titanic: Univariate PSRFs (blue dotted lines), multivariate
PSRFs using the largest eigenvalue (green circles), and multivari-
ate PSRFs using the determinant (red triangles) from m = 5 parallel
chains. Green text represents the PSRFs of circles that did not fit in the
graph.

ommend adhering to the determinant-based multivariate
PSRF and using a smaller ε in order to retain the ESS
interpretation of the procedure.

7. DISCUSSION

The MCMC community has long held the view that the
GR diagnostic is susceptible to premature and unreliable
convergence diagnoses (Flegal, Haran and Jones, 2008).
This certainly remains true in situations where the Markov
chains are all stuck in a local mode (as demonstrated in
Section 6.3). In this situation, we demonstrate the poor
performance of δ = 1.1—as Vehtari et al. (2021) also
acknowledged—and emphasize the importance of choos-
ing a well-informed termination threshold. Even if the
Markov chains explore different parts of the state space,
we propose changes that strengthen the GR diagnostic
in two significant ways: (1) we stabilize the GR statis-
tic using improved estimators of Monte Carlo variance
and (2) we safeguard against premature diagnosis by re-
placing δ = 1.1 with a principled, ESS-based termination
threshold. Our diagnostic is available for public use in the
R package stableGR (Knudson and Vats, 2020).

To stabilize the GR statistic, we incorporate an efficient
estimator of the variance of the Monte Carlo average: the
replicated lugsail batch means estimator. Our examples
demonstrate how this incorporation effectively stabilizes
the time-to-convergence and the resulting sample means.
An immediate advantage of the replicated lugsail batch
means estimator is it can be calculated for a single chain;
single chain output analysis has long been part of MCMC
practice and our proposed GR statistic can easily assess
convergence in this scenario. Ordinary batch means esti-
mators and spectral variance estimators can also handle a
single chain and might yield even higher statistical effi-
ciency, but they do not naturally overestimate the Monte

Carlo standard errors. This biased-from-above property of
the lugsail estimator safeguards the statistic against early
termination. Although we believe that the replicated lug-
sail batch means estimator is currently the best candidate
for the GR statistic, univariate and multivariate Monte
Carlo variance estimation is a rich, ongoing area of re-
search: the GR statistic will benefit from continual adap-
tation to incorporate advances in this area.

To address premature convergence diagnoses, we in-
spect the PSRF threshold of 1.1. and through various ex-
ample show that a premature convergence diagnosis is of-
ten due to the arbitrary PSRF threshold of 1.1. We es-
tablish a one-to-one mapping between PSRF and ESS
and use this to show that a PSRF termination thresh-
old of 1.1 yields approximately 5 effective samples per
chain, which is far too small for any reasonable number
of chains. We then leverage this ESS-PSRF connection
to construct a principled, ESS-based PSRF termination
threshold. This connection makes PSRF thresholds in-
terpretable and theoretically-motivated. Additionally, this
ends the tension between ESS and PSRF—which have
historically competed as methods for output analysis—by
recognizing these methods are one and the same when in-
terest is in estimating the mean of the target distribution.
When interested in estimating the expectation of a general
function g,

∫
gF(dx), where g(x) �= x, then ESS pertains

to estimating EF g whereas the untransformed PSRF still
connects to the effective sample size in estimating EF X.
For the connection to remain, the PSRF must be calcu-
lated for the transformed process, g(X).

Finally, we note that a significant amount of theoreti-
cal detail has been intentionally left undiscussed in order
to focus on the more practical issues of the GR diagnos-
tic implementation. We have assumed the existence of a
Markov chain central limit theorem, which requires mix-
ing and moment conditions. Strong consistency and vari-
ance expressions for the replicated lugsail batch means
estimators also require similar moment and mixing condi-
tions. More details on the theoretical aspects of this work
can be found in Gupta and Vats (2020) and Jones (2004).
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