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Identification of Causal Effects Within
Principal Strata Using Auxiliary Variables
Zhichao Jiang and Peng Ding

Abstract. In causal inference, principal stratification is a framework for
dealing with a posttreatment intermediate variable between a treatment and
an outcome. In this framework, the principal strata are defined by the joint
potential values of the intermediate variable. Because the principal strata are
not fully observable, the causal effects within them, also known as the prin-
cipal causal effects, are not identifiable without additional assumptions. Sev-
eral previous empirical studies leveraged auxiliary variables to improve the
inference of principal causal effects. We establish a general theory for the
identification and estimation of principal causal effects with auxiliary vari-
ables, which provides a solid foundation for statistical inference and more
insights for model building in empirical research. In particular, we consider
two commonly used assumptions for principal stratification problems: prin-
cipal ignorability and the conditional independence between the auxiliary
variable and the outcome given principal strata and covariates. Under each
assumption, we give nonparametric and semiparametric identification results
without modeling the outcome. When neither assumption is plausible, we
propose a large class of flexible parametric and semiparametric models for
identifying principal causal effects. Our theory not only establishes formal
identification results of several models that have been used in previous empir-
ical studies but also generalizes them to allow for different types of outcomes
and intermediate variables.

Key words and phrases: Augmented design, auxiliary independence, iden-
tification, principal ignorability, principal stratification.

1. INTRODUCTION

Complications arise in causal inference with an inter-
mediate variable between the treatment and the outcome.
Cochran (1957), Rosenbaum (1984) and Frangakis and
Rubin (2002) pointed out that naively conditioning on
the observed intermediate variable does not yield valid
causal interpretations in general. Frangakis and Rubin
(2002) proposed to use principal stratification, the joint
potential values of the intermediate variable under both
the treatment and control, to define subgroup causal ef-
fects, because it acts as a pretreatment covariate vec-
tor unaffected by the treatment. Principal stratification
has a wide range of applications with meanings varying
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in different scientific contexts. In noncompliance prob-
lems where the treatment received might differ from the
treatment assigned, principal stratification represents in-
dividual potential compliance behavior (Angrist, Imbens
and Rubin, 1996). In truncation-by-death problems where
some units die before the measurement time point of
their outcomes, principal stratification represents individ-
ual potential survival status (Rubin, 2006). In surrogate
evaluation problems, principal stratification helps to clar-
ify criteria for good surrogate endpoints (Frangakis and
Rubin, 2002, Gilbert and Hudgens, 2008). In mediation
analysis, principal stratification with respect to the media-
tor represents different causal mechanisms from the treat-
ment to the outcome (Rubin, 2004, Gallop et al., 2009,
Elliott, Raghunathan and Li, 2010, Mattei and Mealli,
2011). VanderWeele (2008) and Forastiere, Mattei and
Ding (2018) linked the principal stratification approach
with the direct and indirect effect approach and Jo (2008)
linked the principal stratification approach with structural
equation model for mediation analysis. These problems
with intermediate variables concern the average causal ef-
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fects within principal strata, which are also known as the
principal causal effects (PCEs).

Because we cannot simultaneously observe the poten-
tial values of the intermediate variable under the treatment
and control, we do not know the principal stratum of every
individual, and thus cannot identify the PCEs without ad-
ditional assumptions. For a binary intermediate variable,
Zhang and Rubin (2003), Cheng and Small (2006) and
Imai (2008) derived large sample bounds, which can be
too wide to be informative. Angrist, Imbens and Rubin
(1996), Little and Yau (1998), Zhang, Rubin and Mealli
(2009) and Frumento et al. (2012) imposed additional
structural or modeling assumptions to achieve identifica-
tion. When the intermediate variable is continuous, iden-
tification becomes more difficult because of the infinitely
many principal strata. To estimate the PCEs, Gilbert and
Hudgens (2008) assumed parametric models and used
a likelihood approach. Jin and Rubin (2008), Schwartz,
Li and Mealli (2011), and Zigler and Belin (2012) pro-
posed different forms of parametric and semiparametric
Bayesian approaches. However, the identifiability of their
models is not formally established. Without identifiability,
the likelihood function may be flat over a region of some
parameters, and the Bayesian inference can be sensitive to
prior specifications. See Gustafson (2009) and Ding and
Li (2018) for more discussion on identifiability.

Identification is sometimes achievable with a pretreat-
ment auxiliary variable satisfying some conditional inde-
pendence assumptions. We focus on two categories. The
first category assumes that the outcome is independent
of the principal strata given the auxiliary variable. This
assumption is known as principal ignorability (Jo et al.,
2011, Ding and Lu, 2017). Under principal ignorability,
Jo and Stuart (2009) and Stuart and Jo (2015) used prin-
cipal scores to analyze data with one-sided noncompli-
ance, and Joffe, Small and Hsu (2007) suggested using
principal scores to estimate general PCEs. Ding and Lu
(2017) established formal identification results for PCEs
with a binary intermediate variable in randomized exper-
iments. The other category assumes the conditional in-
dependence between the outcome and the auxiliary vari-
able within principal strata. We will refer to this condi-
tional independence as auxiliary independence. This as-
sumption motivates several identification and estimation
strategies in different contexts. For a binary intermediate
variable indicating the survival status, Ding et al. (2011)
used the baseline quality of life as an auxiliary variable
to help to identify the effect of a treatment on the qual-
ity of life which is truncated by death. Under monotonic-
ity, Mealli and Pacini (2013) relaxed Ding et al.’s (2011)
assumptions and discussed bounds and identification of
the PCEs with a binary secondary outcome. Wang, Zhou
and Richardson (2017) extended the strategy to obser-
vational studies and relaxed monotonicity in a sensitiv-
ity analysis. In a study with multiple independent trials,

Jiang, Ding and Geng (2016) used the trial number as
an auxiliary variable and proposed strategies to identify
the PCEs. Yuan, Feller and Miratrix (2019) weakened
the identification assumptions and applied the methodol-
ogy to a multisite trial in education. Similar ideas have
also been used to deal with continuous intermediate vari-
ables. In assessing the effect of an HIV vaccine on in-
fection rate through immune response, Follmann (2006)
used the baseline immune response to the rabies vaccine
as an auxiliary variable. Qin et al. (2008) extended this
idea to deal with time-to-event endpoints under a case-
cohort sampling. Gilbert and Hudgens (2008) and Huang
and Gilbert (2011) proposed approaches to evaluating
biomarkers based on principal stratification by incorpo-
rating baseline covariates as auxiliary variables to predict
the biomarkers. These strategies also provided insights
for better experimental designs. In particular, Gabriel and
Follmann (2016) proposed the augmented treatment run-
in design and used a baseline measure as a predictor of
the potential values of the intermediate variable. How-
ever, under auxiliary independence, formal identification
results are established only for binary intermediate vari-
ables (Ding et al., 2011, Mealli and Pacini, 2013, Jiang,
Ding and Geng, 2016).

This paper discusses the identification of PCEs defined
by a general intermediate variable with auxiliary vari-
ables. We first generalize the identification results under
principal ignorability in Ding and Lu (2017) to general
intermediate variables in both randomized experiments
and observational studies, and then study the identifica-
tion under auxiliary independence in various scenarios.
With auxiliary independence, we establish nonparametric
identification results for discrete intermediate variables
and semiparametric identification results for continuous
intermediate variables. These results do not require mod-
eling the outcome. Without principal ignorability or auxil-
iary independence, we propose a large class of parametric
models to identify the PCEs, which have not been for-
mally established before. Compared with models used in
previous empirical studies, our models require weaker as-
sumptions and can deal with different types of data.

Identifiability is a cornerstone for both frequentists’
(Bickel and Doksum, 2015) and Bayesian (Gustafson,
2015) inferences. Our results provide theoretical bases to
check the identifiability of PCEs. Practitioners can use our
results to guide model building for principal stratification
problems. Our results imply that some existing models
are identifiable but some are not (e.g., Follmann, 2006,
Gilbert and Hudgens, 2008, Zigler and Belin, 2012).
Moreover, our results reveal that some existing models
invoked unnecessary assumptions for identification, for
example, restricting the parameter space or imposing in-
formative priors, although these assumptions can improve
finite-sample inference.
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The paper uses the following notation. Let i.i.d. denote
“independently and identically distributed,” A ⊥⊥ B | C

denote the conditional independence of A and B given C,

and A
d= B denote that A has the same distribution as B .

Let 1(·) be the indicator function, P(·) be the probabil-
ity mass or density function, and �(·) be the cumulative
distribution function of the standard Normal distribution.
We say that functions {f1(x), . . . , fJ (x)} are linearly in-
dependent if c1f1(x)+· · ·+cJ fJ (x) = 0 for all x implies
c1 = · · · = cJ = 0. We say that a family Q of probabil-
ity distributions is complete if

∫
f (v)Q(dv) = 0 for all

Q ∈ Q implies f (v) = 0 a.e. Q (Lehmann and Romano,
2005).

2. NOTATION AND ASSUMPTIONS

Let Z be a binary treatment indicator with Z = 1 for the
treatment and 0 for the control, Y be an outcome of inter-
est, and S be an intermediate variable between the treat-
ment and outcome. Let Siz and Yiz be the potential values
of the intermediate variable and the outcome if unit i were
to receive treatment z (z = 0,1). The observed values of
the intermediate variable and the outcome are

Si = ZiSi1 + (1 − Zi)Si0, Yi = ZiYi1 + (1 − Zi)Yi0.

Assume that {Zi, Si1, Si0, Yi1, Yi0 : i = 1, . . . , n} are i.i.d.
samples drawn from an infinite superpopulation, and thus
the observed {Zi, Si, Yi : i = 1, . . . , n} are also i.i.d. As a
result, we will drop the subscript i for notational simplic-
ity when no confusion would arise.

Frangakis and Rubin (2002) defined principal stratifi-
cation as Ui = (Si1, Si0), the joint potential values of the
intermediate variable, and the PCEs as

τs1s0 = E
{
Y1 − Y0 | U = (s1, s0)

}
for all s1, s0. The PCEs are not identifiable because U

is latent in general. It is common to exploit a pretreatment
auxiliary variable for identifying the PCEs. Let Wi denote
this variable with meanings varying in different settings.
We start with the following basic assumption.

ASSUMPTION 1. Z ⊥⊥ (Y1, Y0, S1, S0) | W .

Assumption 1 is sometimes guaranteed by design. In
completely randomized experiments, Assumption 1 holds
because Z ⊥⊥ (Y1, Y0, S1, S0,W). In a multicenter exper-
iment with W being the center number, Assumption 1
holds because Z is randomized in each center.

We consider two different assumptions for identifica-
tion. The first assumption is the conditional independence
between the potential outcome Yz and the principal stra-
tum U given the auxiliary variable W .

ASSUMPTION 2 (Principal ignorability). Yz ⊥⊥ U | W
for z = 0,1.

Assumption 2 means that given auxiliary variable W ,
the principal stratification variable is randomly assigned
with respect to the potential outcomes. It requires that no
difference exists between the distributions of the poten-
tial outcomes across principal strata given the auxiliary
variable. Many applied researchers have invoked it to es-
timate the PCEs (Follmann, 2000, Jo and Stuart, 2009,
Jo et al., 2011, Stuart and Jo, 2015). Assumption 2 can
be weakened (Ding and Lu, 2017, Forastiere, Mattei and
Ding, 2018), but we present it for simplicity. To make As-
sumption 2 more plausible, researchers often include all
pretreatment covariates in W . We provide two examples
below.

EXAMPLE 1. Follmann (2000) studied the effect of
a multifactor intervention on mortality due to coronary
heart disease, where Z is the indicator of the intervention
and Y is the survival time of the patients. One-sided non-
compliance occurred in the experiment, where patients
assigned to the treatment group might not actually take
the treatment. Let S denote the actual treatment, which
can be different from Z. Then, the principal stratifica-
tion variable characterizes the compliance behavior of the
patients. Follmann (2000) argued that the potential sur-
vival time of the patients with different compliance be-
havior would be similar conditional on pretreatment co-
variates W .

EXAMPLE 2. Ding and Lu (2017) gave an exam-
ple of a randomized experiment with truncation-by-death,
where Z is the treatment indicator, S is the binary sur-
vival status, and Y is the health-related quality of life. Be-
cause the outcome is only well-defined for the survived
patients, the parameter of interest is the PCE within the
stratum of the patients who would survive regardless of
the treatment. They used all the covariates as the auxil-
iary variables and invoked principal ignorability in their
analysis, which requires that the health-related quality of
life for always survived patients would be identical to that
for other patients given the covariates.

The second identification assumption is the conditional
independence between the potential outcome Yz and the
auxiliary variable W given the principal stratum U .

ASSUMPTION 3 (Auxiliary independence). Yz ⊥⊥ W |
U for z = 0,1.

Assumption 3 requires the units with different values
of the auxiliary variable to have the same distribution of
potential outcomes if they are in the same principal stra-
tum. Under Assumption 1, we can show that Assump-
tion 3 is equivalent to Y ⊥⊥ W | (Z,U), that is, the aux-
iliary variable is independent of the outcome conditional
on the treatment and principal strata. Including additional
pretreatment covariates can make this assumption more
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plausible. However, for notational simplicity, we condi-
tion on such covariates implicitly and omit them below.
In some situations, Assumption 3 is justifiable by design.
We illustrate it using two examples.

EXAMPLE 3. Follmann (2006) introduced an aug-
mented design to assess immune response in vaccine tri-
als, where Z is the indicator of an HIV vaccine injection,
S is the immune response to this vaccine, and Y is the
infection indicator. Before the randomization of Z, all pa-
tients receive the rabies vaccine. Let W denote the im-
mune response to the rabies vaccine, which is correlated
with S. Because the rabies vaccine is irrelevant to the HIV
infection, the potential HIV infection status should de-
pend only on the immune response to the HIV vaccine
but not the rabies vaccine. This justifies auxiliary inde-
pendence.

EXAMPLE 4. Jiang, Ding and Geng (2016) proposed
approaches to identifying the PCEs by multiple indepen-
dent trials, where Z is the treatment indicator, S is the
indicator of three-year cancer reoccurrence, and Y is the
five-year survival status. The data are from multiple tri-
als with the trial number denoted by W . Jiang, Ding and
Geng (2016) argued that the principal stratification vari-
able is a measure of physical status, and assumed that the
potential survival status does not depend on the trial num-
ber W given the patient’s physical status. So auxiliary in-
dependence is plausible in their study.

When S is binary as in Example 4, Jiang, Ding and
Geng (2016) showed the identifiability of PCEs. With a
general S as in Example 3, formal identification results
have not been established although several parametric or
semiparametric models have been used in empirical stud-
ies.

In the following two sections, we will give a unified
theory for the identification of the PCEs with an auxiliary
variable under various scenarios. We divide the discussion
into two sections depending on whether or not S0 is con-
stant. Within each section, the theoretical results depend

on two factors: (1) whether or not the intermediate vari-
able S is discrete or continuous, and (2) whether or not
Assumption 2 or 3 holds. Table 1 presents an overview of
the key results in our paper.

3. CONSTANT CONTROL INTERMEDIATE VARIABLE

We start with the case with a constant intermediate vari-
able under control. Under this assumption, the distribution
of principal strata is identifiable, which greatly simplifies
the identification strategies. We will study the case with-
out this assumption in the next section.

ASSUMPTION 4. Si0 = c for all i, where c is a con-
stant.

In some vaccine trials (e.g., Follmann, 2006, Hudgens
and Gilbert, 2009), Assumption 4 is plausible because
vaccine antigens must be present to induce a specific im-
mune response, which is absent in the control group. For
a binary S, Assumption 4 with c = 0 is called strong
monotonicity, which holds in the one-sided noncompli-
ance setting because individuals assigned to the control
group do not have access to the treatment (Sommer and
Zeger, 1991, Imbens and Rubin, 2015). Under Assump-
tion 4, S0 is constant, and therefore it is not necessary to
include it in U , simplifying the PCEs to

τs1 = E(Y1 − Y0 | S1 = s1)

= E(Y1 | S1 = s1) −E(Y0 | S1 = s1).

Because S1 is observed in the treatment group, we can
identify E(Y1 | S1 = s1) = E{Y11(S1 = s1)}/P(S1 = s1)

by the standard formula under Assumption 1, for exam-
ple,

E [E{Y1(S = s1) | Z = 1,W }]
E {P(S = s1 | Z = 1,W)}
= E [P(S = s1 | Z = 1,W)E{Y | Z = 1, S1 = s1,W }]

E {P(S = s1 | Z = 1,W)} .

TABLE 1
Overview of the sufficient conditions for identifying PCEs. Note that the results with a nonconstant S0 require the identification of P(S1, S0 | W)

Assumptions Type of S Requirement for W Outcome model

Constant S0
Section 3.1 1, 2 and 4 General No No
Section 3.2 1, 3 and 4 Discrete More categories than S No
Section 3.3 1, 3 and 4 General Completeness No
Section 3.4 1 and 4 General Depends on the model of S Yes

Nonconstant S0
Section 4.2 1 and 2 General No No
Section 4.3 1 and 3 Discrete More categories than S No
Section 4.4 1 and 3 General Completeness No
Section 4.5 1 General Depends on the model of S Yes
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Thus, we need only to identify E(Y0 | S1 = s1). Because
S1 is missing in the control group, the PCEs are not identi-
fiable without additional assumptions. Below we will dis-
cuss the identification of PCEs under Assumption 2 or 3.

3.1 Principal Ignorability

Ding and Lu (2017) identify the PCEs for a binary S un-
der principal ignorability using the principal score, which
is the probability of principal strata conditional on the
auxiliary variable. We extend it to a general S:

es1,s0(W) = P(S1 = s1, S0 = s0 | W).

Under Assumption 4, the principal score simplifies to
es1(W) = P(S1 = s1 | W), which is identified by
es1(W) = P(S = s1 | Z = 1,W) under Assumption 1.
The proportions of principal strata are then identified by
es1 = P(S1 = s1) = E{es1(W)}. The following theorem
gives the identification results for the PCEs.

THEOREM 1. Under Assumptions 1, 2, and 4, the
PCEs are identified by

(1)

τs1 = E

{
es1(W)

es1

· ZY

π(W)

}

−E

{
es1(W)

es1

· (1 − Z)Y

1 − π(W)

}
,

where π(W) = P(Z = 1 | W) is the propensity score.

Theorem 1 shows that E(Yz | S1 = s1) can be identi-
fied by the average of the outcomes in a weighted sample,
with the weights depending on both the principal score
and the propensity score. The principal score accounts
for the relationship between the principal stratum mem-
bership and the covariates, whereas the propensity score
accounts for the relationship between the treatment and
the covariates. The result of Ding and Lu (2017) holds
with a binary S in randomized experiments, while The-
orem 1 allows for a general S in observational studies.
Theorem 1 motivates simple moment estimators for the
PCEs with the expectations replaced by the sample aver-
ages and {es1(W),π(W)} replaced by their fitted values.

3.2 Auxiliary Independence with a Discrete
Intermediate Variable

Suppose S ∈ {s1, . . . , sK} and W ∈ {w1, . . . ,wL}. Let
M denote the K × L matrix with the (k, l)th element
P(S = sk | Z = 1,W = wl).

THEOREM 2. Under Assumptions 1, 3, and 4, if
rank(M�M) = K , then the PCEs are identifiable.

From Theorem 2, a necessary condition for identifi-
cation is L ≥ K , that is, W must have more categories
than S. Because M depends only on the distribution of the
observed data, the condition rank(M�M) = K is testable.
The following example from Jiang, Ding and Geng (2016)
illustrates the identifiability for the case with a binary in-
termediate and auxiliary variable.

EXAMPLE 5. Consider binary S and W . First, from
the observed distribution and Assumption 1, we can iden-
tify θsw = P(S1 = s | W = w) = P(S = s | Z = 1,W =
w) and δw = E(Y0 | W = w) = E(Y | Z = 0,W = w) for
s,w = 0,1. Second, under Assumption 3,

δ1 = E(Y0 | S1 = 1)θ11 +E(Y0 | S1 = 0)θ01,

δ0 = E(Y0 | S1 = 1)θ10 +E(Y0 | S1 = 0)θ00,

which are two linear equations of E(Y0 | S1 = 1) and
E(Y0 | S1 = 0). If rank(M�M) = 2, the above linear
equations have unique solutions

E(Y0 | S1 = 1) = δ1θ00 − δ0θ01

θ11θ00 − θ10θ01
,

E(Y0 | S1 = 0) = δ1θ10 − δ0θ11

θ11θ00 − θ10θ01
.

Therefore, the PCEs are identifiable. In this example, the
condition rank(M�M) = 2 is equivalent to S �⊥⊥W | Z =
1 or θ11θ00 − θ10θ01 �= 0.

3.3 Auxiliary Independence with a General
Intermediate Variable

Identification is more difficult with a continuous inter-
mediate variable, which generates infinitely many princi-
pal strata. Let W be the support of W , and

PW = {
P(S1 | W = w) : w ∈ W

}
be the family of probability distributions indexed by w.
Based on the definition of completeness, we give a suffi-
cient condition for identification.

THEOREM 3. Under Assumptions 1, 3, and 4, if PW
is complete, then the PCEs are identifiable.

As discussed before, the key to identify the PCEs is to
identify E(Y0 | S1). Under Assumptions 1 and 3, we have

E(Y | Z = 0,W = w) = E(Y0 | W = w)

= E
{
E(Y0 | S1) | W = w

}
(2)

=
∫

E(Y0 | S1 = s)Q(ds)

for any probability measure Q(s) = P(S1 ≤ s | W = w) in
PW . The left-hand side of (2) is directly estimable from
the observed data, and the distributions in PW are iden-
tified by P(S1 | W) = P(S | Z = 1,W). Therefore, (2)
is an integral equation for E(Y0 | S1 = s). As a result,
E(Y0 | S1 = s) is identifiable if it can be uniquely deter-
mined by (2), which is guaranteed by the completeness
of PW . When S is discrete, the integral in (2) becomes
summation, and the completeness is the same as the rank
condition in Theorem 2.

Theorem 3 is general but abstract. From the well-
known completeness property of an exponential family
(Lehmann and Romano, 2005), we have a more inter-
pretable sufficient condition for identifying PCEs.



498 Z. JIANG AND P. DING

THEOREM 4. Under Assumptions 1, 3, and 4, we fur-
ther assume

P(S1 = s1 | W = w) = h(s)g(w) exp
{
η�(w)t(s1)

}
,

where s1 → t(s1) is a one-to-one mapping and {η(w) :
w ∈W} contains an open set in R

d where d is the dimen-
sion of the vector function η(w). The PCEs are identifi-
able.

Theorem 4 requires that the distribution of S1 con-
ditional on W belongs to the exponential family, but it
does not require any models for the potential outcome Yz.
Therefore, Theorem 4 guarantees semiparametric identifi-
ability and allows for different types of outcomes. Below
we give an example with Normal (S1,W).

COROLLARY 1. Under Assumptions 1, 3, and 4, if
(S1,W) follows a bivariate Normal distribution, then the
PCEs are identifiable.

REMARK 1. For a binary outcome, Follmann (2006)
assumes that the outcome follows a Probit model and
(S1,W) follows a bivariate Normal distribution, which is
a special case of Corollary 1. Thus, Follmann’s (2006)
model is semiparametrically identified even without the
outcome model, and his parametric outcome model is in-
voked only for convenience in the finite-sample inference.

To further improve the applicability of Theorem 3,
we review the following lemma (Hu and Shiu, 2018,
Lemma 4) on the completeness of a class of location-scale
distribution families, which works for nonexponential dis-
tributions.

LEMMA 1. Suppose the support of W has an interior

point, and S1
d= h(W) + σ(W)ε with continuously differ-

entiable h(w) and σ(w) and ε ⊥⊥ W . Then, PW is com-
plete if the characteristic function and density function of
ε, φ(t) and f (ε), satisfy the following conditions:

(a) 0 < |φ(t)| < C exp(−δ|t |) for all t ∈ R and some
constants C,δ > 0;

(b) f (ε) is continuously differentiable, and∫ +∞
−∞

|xf ′(x)|dx < +∞,

∫ +∞
−∞

f 2(x)dx < +∞;
(c) for any positive integer J , the following functions

are linearly independent,{
f

(
x − h1

σ1

)
, . . . , f

(
x − hJ

σJ

)}
,

where the (hj , σj )’s are distinct.

The existence of the interior point required by Lemma 1
holds automatically for continuous W but fails for dis-
crete W . Conditions (a) and (b) in Lemma 1 are technical
requirements on the distribution of the error term ε. Con-
dition (c) means that the finite location-scale mixture of

the distribution of ε is identifiable, which holds for many
distributions (Everitt and Hand, 1981). For example, Ap-
pendix B.1 shows that Conditions (a)–(c) hold when ε fol-
lows a Normal, t or Logistic distribution. Combining The-
orem 3 and Lemma 1 yields the following theorem for the
location-scale distribution families.

THEOREM 5. Suppose that W is continuous, Assump-

tions 1, 3, and 4 hold, S1
d= h(W) + σ(W)ε with contin-

uously differentiable h(w) and σ(w), and ε ⊥⊥ W . If ε

satisfies Conditions (a)–(c) in Lemma 1, then the PCEs
are identifiable.

Theorem 5 guarantees the identifiability of PCEs in
many models involving distributions that do not belong
to an exponential family. It allows for heteroscedastic er-
rors and enables flexible model choices. For example, if
we replace the bivariate Normal distribution assumption
of (S1,W) with S1 | W = w ∼ N(μ(w),σ 2(w)), then
Theorem 4 and Corollary 1 cannot be applied because
{η(w) = (1/σ 2(w),μ(w)/σ 2(w)) : w ∈ W} is a line in
R

2. In contrast, Theorem 5 is still applicable in this ex-
ample which ensures that the PCEs are identifiable.

3.4 Without Conditional Independence

The conditional independence in Assumption 2 or 3
may be violated. In Example 2, covariates may not be suf-
ficient to account for the difference in the health-related
quality of life across principal strata, which makes As-
sumption 2 implausible; in Example 4, different centers
may have different qualities of services, which makes
Assumption 3 implausible. Without conditional indepen-
dence, W does not help to achieve nonparametric or semi-
parametric identification. One solution is to conduct sen-
sitivity analysis, which, however, requires to use sensitiv-
ity parameters to characterize the violation of the assump-
tions and further requires to specify their ranges. Sen-
sitivity analysis gives a range of estimates rather than a
point estimate, and it often depends on additional model
assumptions. We will not pursue this direction. Instead,
we propose to identify the PCEs by exploiting the role of
W with some parametric models for the outcome. We can
also include other covariates X in our models, but do not
require any modeling assumptions for X. So, again, we
condition on X implicitly. The results in this subsection
ensure the identifiability of the PCEs under many mod-
els that have been used in previous empirical studies and
generalize some models to account for different types of
outcomes and intermediate variables.

PROPOSITION 1. Under Assumptions 1 and 4, as-
sume that (S1, Y0) follow additive models:

S1 = g(W) + σ1(W)εS1,(3)

Y0 = β0 + αS1 +
J∑

j=1

βjfj (W) + σ2(W)εY0,(4)
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where E(εS1 | W) = E(εY0 | W) = 0, and g(w) and σ1(w)

can be unknown functions. If {1, g(w), f1(w), . . . , fJ (w)}
are linearly independent, then the PCEs are identifiable.

We do not need to specify g(w) and σ1(w) because they
are identifiable from the observed distribution P(S,W |
Z = 1) under Assumption 1. In contrast, we need to spec-
ify the fj (w)’s and σ2(w) in the model of Y0.

Intuitively, replacing S1 in (4) by (3), we obtain an addi-
tive model of Y0 on W , and the linear independence con-
dition in Proposition 1 allows us to disentangle the coef-
ficients of different terms involving W . For example, if
g(w) is quadratic in w in (3) and {J = 1, f1(w) = w}
in (4), then the linear independence assumption holds in
Proposition 1. However, if g(w) is linear in w, then the
linear independence assumption fails.

If fj (w) = 0 for all j = 1, . . . , J , then Proposition 1
becomes a special case of Theorem 5. Proposition 1 guar-
antees the identifiability of PCEs in additive models with-
out specifying the distributions of the error terms.

In the model of Y0, we require S1 to have a linear form.
Identification may also be possible for other forms of S1,
but will require the knowledge of the distributions of the
error terms.

For binary outcomes, we show an identification result
below for the Probit model.

PROPOSITION 2. Under Assumptions 1 and 4, as-
sume that S1 follows an additive model with a Normal
error term and Y0 follows a Probit model:

S1 = g(W) + εS1, εS1 ⊥⊥ W, εS1 ∼ N
(
0, σ 2)

,

P(Y0 = 1 | S1 = s,W = w)

= �

{
β0 + αs +

J∑
j=1

βjfj (w)

}
,

where g(w) can be unknown. If {1, g(w), f1(w), . . . ,

fJ (w)} are linearly independent, then the PCEs are iden-
tifiable.

The model of S1 in Proposition 2 requires the variance
of the error term εS1 not depend on W , which is different
from Proposition 1. Identification may also be possible
with the variance depending on W , but will rely on the
functional form of var(S1 | W).

REMARK 2. Our result does not contradict Follmann
(2006). Without Assumption 3, Follmann (2006) assumed
a bivariate Normal distribution for (S1,W) and used the
following Probit model for Y :

(5)
P(Y = 1 | Z,S1,W)

= �(β0 + β1Z + β2S1 + β3W + β4ZS1).

Under Assumption 1, (5) is equivalent to

P(Y1 = 1 | S1,W) = �
{
β0 + β1 + (β2 + β4)S1 + β3W

}
,

P(Y0 = 1 | S1,W) = �(β0 + β2S1 + β3W).

From Proposition 2, the PCEs are not identifiable without
the model of Y1 because the linear independence condi-
tion is violated. The identifiability comes from the paral-
lel model assumption that restricts the coefficients of W

be the same in the models of Y1 and Y0.

REMARK 3. Without the linear independence condi-
tion, researchers often use additional information on the
parameters to improve identification. Using a Bayesian
approach, Zigler and Belin (2012) imposed informative
priors on α. In a similar setting with a time-to-event out-
come, Qin et al. (2008) imposed the principal ignorability
Y0 ⊥⊥ S1 | W , or, equivalently, α = 0.

4. NONCONSTANT CONTROL INTERMEDIATE
VARIABLE

When Assumption 4 does not hold, we can never si-
multaneously observe S1 and S0, making it challenging to
identify the joint distribution of (S1, S0) in the first place,
let alone the PCEs. Below we first use a copula model for
the joint distribution of (S1, S0), and then discuss identi-
fication of the PCEs.

4.1 A Copula Model for P(S1,S0 | W)

Under Assumption 1, P(Sz | W) = P(S | Z = z,W),
and thus the marginal distributions of Sz given W are
identifiable from the observed data. To recover the joint
distribution of (S1, S0) given W from the marginal distri-
butions, we need some prior knowledge about the associ-
ation between S1 and S0 conditional on W . For a binary
S, a commonly used assumption to recover the joint dis-
tribution of (S1, S0) is the monotonicity assumption that
S1 ≥ S0. Under this assumption, the joint distribution is
identifiable:

P(S1 = 1, S0 = 1 | W) = P(S = 1 | Z = 0,W),

P(S1 = 0, S0 = 0 | W) = P(S = 0 | Z = 1,W),

P(S1 = 1, S0 = 0 | W) = P(S = 1 | Z = 1,W)

− P(S = 1 | Z = 0,W).

For a continuous S, Efron and Feldman (1991) and Jin and
Rubin (2008) discussed the equipercentile equating as-
sumption, that is, F1(S1 | W) = F0(S0 | W), where Fz(· |
W) is the cumulative distribution function of Sz given W

for z = 0,1. Under this assumption, Sz determines S1−z

via F1(· | W) and F0(· | W) for z = 0,1.
The monotonicity and equipercentile equating assump-

tions are special cases of the copula approach (Nelsen,
2006), which is a general strategy to obtain the joint distri-
bution from marginal distributions. Various copula mod-
els have been proposed to model principal strata (Roy,
Hogan and Marcus, 2008, Bartolucci and Grilli, 2011,
Schwartz, Li and Mealli, 2011, Daniels et al., 2012,
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Conlon, Taylor and Elliott, 2017, Yang and Ding, 2018,
Kim et al., 2020). Assume

(6)
P(S1, S0 | W = w)

= Cρ

{
P(S1 | W = w),P(S0 | W = w)

}
,

where Cρ(·, ·) is a copula and ρ is a measure of the associ-
ation between S1 and S0. If we know ρ, then we can iden-
tify P(S1, S0 | W = w) from the marginal distributions by
(6). Otherwise, we can view ρ as a sensitivity parameter.

4.2 Principal Ignorability

Assume that the principal score es1,s0(W) = P(S1, S0 |
W) is identifiable. So the density of the principal strata
equals es1,s0 = E{πs1,s0(W)}. Similar to Section 3.1,
PCEs are identifiable as shown below.

THEOREM 6. Under Assumptions 1 and 2, if
es1,s0(W) is identifiable, then the PCEs are identified by

τs1s0 = E

{
es1,s0(W)

es1,s0

· ZY

π(W)

}

−E

{
es1,s0(W)

es1,s0

· (1 − Z)Y

1 − π(W)

}
.

Theorem 6 generalizes Theorem 1 to the case with
nonconstant control intermediate variables. It shows that
E(Yz | S1 = s1, S0 = s0) can be identified by the average
of the outcomes in a weighted sample, with the weight
depending on both the principal score and the propensity
score.

4.3 Auxiliary Independence with a Discrete
Intermediate Variable

We give the identification results for discrete inter-
mediate variables. Suppose S ∈ {s1, . . . , sK} and W ∈
{w1, . . . ,wL}. Let Ms0 denote the K × L matrix with
(k, l)th element P(S1 = sk | S0 = s0,W = wl), and Ms1

denote the K ×L matrix with (k, l)th element P(S0 = sk |
S1 = s1,W = wl).

THEOREM 7. Suppose that Assumptions 1 and 3 hold,
and P(S1, S0 | W) is identifiable.

(a) For a fixed s0, if rank(M�
s0

Ms0) = K , then P(Y0 |
S1, S0 = s0) is identifiable.

(b) For a fixed s1, if rank(M�
s1

Ms1) = K , then P(Y1 |
S1 = s1, S0) is identifiable.

(c) If rank(M�
s0

Ms0) = rank(M�
s1

Ms1) = K for all s1
and s0, then the PCEs are identifiable.

Theorem 7 extends Theorem 2. As a special case of
Theorem 7, for a binary intermediate variable under
monotonicity, Ding et al. (2011) and Jiang, Ding and
Geng (2016) gave the identification results, and the rank
conditions in Theorem 7 simplify to testable conditions
S1 �⊥⊥W | S0 and S0 �⊥⊥W | S1.

4.4 Auxiliary Independence with a General
Intermediate Variable

Recalling that W is the support of W . For fixed s0 and
s1, let

PW,s0 = {P(S1 | S0 = s0,W = w) : w ∈ W},
PW,s1 = {P(S0 | S1 = s1,W = w) : w ∈ W}

be the families of the distributions indexed by w given
S0 = s0 and S1 = s1, respectively. Similar to Section 3.2,
the identifiability of PCEs reduces to the completeness of
PW,s0 and PW,s1 .

THEOREM 8. Suppose that Assumptions 1 and 3 hold,
and P(S1, S0 | W) is identifiable.

(a) If PW,s0 is complete for all s0, then P(Y, S1, S0,W |
Z = 0) is identifiable.

(b) If PW,s1 is complete for all s1, then P(Y, S1, S0,W |
Z = 1) is identifiable.

(c) If (a) and (b) above hold, then the PCEs are identi-
fiable.

Similar to Theorem 3, Theorem 8 does not require any
models for the distribution of Yz (z = 0,1), which guar-
antees the nonparametric or semiparametric identification
of PCEs. Based on the completeness of the location-scale
distribution families in Lemma 1, we can obtain identifi-
cation results for some widely used models with an exam-
ple below.

COROLLARY 2. For a continuous W , suppose that
Assumptions 1 and 3 hold. If

(7) (S1, S0) | W = w ∼ N2

{(
μ1(w)

μ0(w)

)
,�(w)

}
,

where

�(w) =
(

σ 2
1 (w) ρ(w)σ1(w)σ0(w)

ρ(w)σ1(w)σ0(w) σ 2
0 (w)

)

with a known ρ(w), then the PCEs are identifiable.

Corollary 2 does not need any models for the outcome,
but requires the auxiliary variable to be continuous. In
Corollary 2, with a known ρ(w), we can identify the joint
distribution of (S1, S0) given W from the marginal distri-
butions of Sz given W . Therefore, the PCEs are identifi-
able from Theorem 8. To apply Corollary 2, we need to
specify the correlation coefficient ρ(w), which is a sensi-
tive parameter in practice.

4.5 Without Conditional Independence

Similar to the case with a constant control intermediate
variable, we propose some useful parametric models for
identifying the PCEs using the auxiliary variable W when
Assumptions 2 or 3 fails.
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PROPOSITION 3. For a binary S with monotonicity
S1 ≥ S0, suppose that Assumption 1 holds, and Y1 and Y0
follow linear models

(8)
E(Yz | S1, S0,W) = βz0 + βz1S1 + βz2S0 + βz3W,

(z = 0,1).

If neither

(9)

P(S = 1 | Z = 1,W = w)

P(S = 1 | Z = 0,W = w)
nor

P(S = 0 | Z = 1,W = w)

P(S = 0 | Z = 0,W = w)

is constant in w, then the PCEs are identifiable.

We can use observed data to check whether the two
terms in (9) are constant in w. For a binary W , the only
restriction of (8) is no interaction term among (S1, S0,W)

in the model of Y , which is similar to some existing no-
interaction or homogeneity assumption (Ding et al., 2011,
Wang, Zhou and Richardson, 2017).

For a continuous intermediate variable, we give the fol-
lowing proposition.

PROPOSITION 4. Suppose that Assumption 1 holds,
(S1, S0) given W follows (7) with a known ρ(w), and Y1
and Y0 follow additive models:

Y1 = β0 + α1S1 + α0S0 +
J1∑

j=1

βjfj (W) + σ 2
1 (W)εY1,

Y0 = β ′
0 + α′

1S1 + α′
0S0 +

J0∑
j=1

β ′
jhj (W) + σ 2

0 (W)εY0,

(εY1, εY2) ⊥⊥ (S1, S0,W).

The PCEs are identifiable if the following two conditions
hold:

(a) {1, s1,E(S0 | S1 = s1,W = w),f1(w), . . . ,

fJ1(w)} are linearly independent as functions of (s1,w);
(b) {1, s0,E(S1 | S0 = s0,W = w),h1(w), . . . ,

hJ0(w)} are linearly independent as functions of (s0,w).

Proposition 4, as an extension of Proposition 1, is
mostly useful for continuous outcomes. The Normality in
(7) implies a linear relation of S0 on S1 given W , that is,
S0 = a0(W)S1 + b0(W)εS0 with a0(w) and b0(w) deter-
mined by the distribution of (S1, S0) given W . Then, in
Proposition 4, we can obtain an additive model of Y1 on
S1 and W by replacing S0 in the model of Y1. The linear
independence condition (a) allows us to disentangle the
coefficients of different terms involving S1 and W . Simi-
lar discussion applies to condition (b).

The Normality in (7) is also helpful for binary out-
comes. The following proposition gives the identification
result under the Probit model for Yz.

PROPOSITION 5. Suppose that Assumption 1 holds,
and (S1, S0) given W follows (7) with a known ρ(w). Sup-
pose Y1 and Y0 follow Probit models:

P(Y1 = 1 | S1 = s1, S0 = s0,W = w)
(10)

= �

{
β0 + α1s1 + α0s0 +

J1∑
j=1

βjfj (w)

}
,

P(Y0 = 1 | S1 = s1, S0 = s0,W = w)
(11)

= �

{
β ′

0 + α′
1s1 + α′

0s0 +
J0∑

j=1

β ′
jhj (w)

}
.

If Conditions (a) and (b) in Proposition 4 hold, then the
PCEs are identifiable.

REMARK 4. Using a Bayesian approach, Zigler and
Belin (2012) assumed a trivariate Normal distribution for
(S1, S0,W) with a sensitivity parameter to characterize
the correlation between S1 and S0, and Probit models for
Yz with fj (w) and hj (w) linear in w. Under their mod-
els, the conditional expectation E(S0 | S1 = s1,W = w)

is linear in both s1 and w, and E(S1 | S0 = s0,W = w)

is linear in both s0 and w. Thus, the linear independence
condition is violated, and the parameters are not identi-
fiable. To mitigate the inferential difficulties, Zigler and
Belin (2012) imposed informative priors on α1 − α′

1 and
α0 − α′

0.

5. NUMERICAL EXAMPLES

In the frequentists’ inference, nonidentifiability renders
the likelihood function flat over a region for some pa-
rameters, and the classical repeated sampling theory of
the maximum likelihood estimates do not apply (Bickel
and Doksum, 2015). Computationally, the Bayesian ma-
chinery is still applicable as long as the priors are proper.
The simulation below, however, highlights the importance
of identifiability in the Bayesian inference. In both cases
with a constant and nonconstant control intermediate vari-
able, we use two models to estimate the PCEs under sev-
eral data generating processes (DGPs). The two models
seem similar in form but have different identifiability. We
use the Gibbs Sampler to simulate the posterior distri-
butions of the PCEs with 20,000 iterations and the first
4000 iterations as the burn-in period. The Markov chains
mix very well with the Gelman–Rubin diagnostic statis-
tics close to one based on multiple chains.

5.1 Constant Control Intermediate Variable

We generate data from DGP 1:

Z ∼ Bernoulli(0.5), W ∼ N(0,1), Z ⊥⊥ W,

S1 | W ∼ N
(
γ0 + γ1W,σ 2)

,

P(Yz = 1 | S1,W) = �(βz0 + βz1S1 + βz2W),
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with parameters (β00, β01, β02) = (1,−0.5,0.5), (β10,

β11, β12) = (0.5,1,1.5) and (γ0, γ1, σ ) = (1,0.5,1). We
name the model corresponding to DGP 1 as model 1. Un-
der model 1, Assumption 1 holds but the conditions in
Proposition 2 do not. Therefore, model 1 is not identifi-
able.

In DGP 2, Z, W and Yz are the same as DGP 1, but

S1 | W ∼ N(γ0 + γ1W + γ2W
2, σ 2),

where (γ0, γ1, γ2, σ ) = (1,0.5,1,1). We name the model
corresponding to DGP 2 as model 2. Because (1, γ0 +
γ1W + γ2W

2,W) are linearly independent, the PCEs are
identifiable based on Proposition 2.

For both DGPs 1 and 2, we use the true models to ana-
lyze the generated data with sample size 1000. We choose
the following two sets of priors to assess the sensitivity of
the inference based on posteriors:

(A) (βz0, βz1, βz2) ∼ N3(03,diag(1,1,1)/10−2) for
z = 0,1, p(σ 2) ∝ 1/σ 2, and (γ0, γ1) ∼ N2(02,diag(1,

1)/10−2) for model 1 (correspondingly, (γ0, γ1, γ2) ∼
N3(02,diag(1,1,1)/10−2) for model 2).

(B) (βz0, βz1, βz2) ∼ N3(03,diag(1,1,1)) for z = 0,1,
p(σ 2) ∝ 1/σ 2, and (γ0, γ1) ∼ N2(02,diag(1,1)/10−2)

for model 1 (correspondingly, (γ0, γ1, γ2) ∼ N3(02,

diag(1,1,1)/10−2) for model 2).

The prior for (βz0, βz1, βz2) is much less diffused in prior
(B) than in prior (A).

Figure 1 shows the posterior distributions of (β01, β02,

β11, β12). For model 2, the posterior 95% credible in-
tervals cover the true parameters under both priors. For
model 1, the posterior distributions of β01 and β02 dif-
fer greatly under the two priors. Their posterior distri-
butions deviate greatly from the true values under prior
(A), which shows strong evidence of nonidentifiability or
weakly identifiability of model 1.

5.2 Nonconstant Control Intermediate Variable

Similar to Section 5.1, we describe two DGPs with dif-
ferent identifiability and evaluate the finite-sample perfor-
mance of Bayesian inference under each DGP. We choose
two models corresponding to two nested DGPs so that we
can go beyond Section 5.1 to assess the performance of
the Bayesian inference with a misspecified model.

We first specify the two DGPs. For DGP 3, W ∼
Bernoulli(0.5) and Z | W = w ∼ Bernoulli(αw), where
(α1, α2) = (0.5,0.5). We then generate U = (S1, S0) from
categorical distributions conditional on W , and Y from
Bernoulli distributions conditional on Z and U with true
values of the parameters in Table 2(a). We name the model
corresponding to DGP 3 as model 3. For model 3, As-
sumptions 1 and 3 hold. Because the stratum (S1, S0) =
(0,1) does not exist, monotonicity holds and thus the dis-
tribution of (S1, S0) given W is identifiable. From Theo-
rem 7, the PCEs are identifiable.

For DGP 4, we generate W and Z in the same way
as DGP 4. We then generate U = (S1, S0) from categori-

FIG. 1. Posterior distributions of the parameters in Section 5.1. The grey histograms are the results with prior (A), and the white histograms are
the results with prior (B). The vertical dashed lines represent the true values of the parameters.
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TABLE 2
True values of the parameters under DGP 3 and DGP 4

(a) DGP 3 with τ11 = 0.3, τ10 = 0.4 and τ00 = 0.5

u = (1,1) u = (1,0) u = (0,0)

P(U = u | W = w)

w = 1 0.5 0.3 0.2
w = 2 0.2 0.3 0.5

P(Y = 1 | Z = z,U = u)

z = 1 0.8 0.7 0.6
z = 0 0.5 0.3 0.1

(b) DGP 4 with τ11 = 0.3, τ10 = 0.4, τ00 = 0.5 and τ01 = −0.3

u = (1,1) u = (1,0) u = (0,0) u = (0,1)

P(U = u | W = w)

w = 1 0.5 0.3 0.1 0.1
w = 2 0.1 0.3 0.5 0.1

P(Y = 1 | Z = z,U = u)

z = 1 0.8 0.7 0.6 0.2
z = 0 0.5 0.3 0.1 0.5

cal distributions conditional on W , and Y from Bernoulli
distributions conditional on Z and U with true values of
the parameters in Table 2(b). We name the model cor-
responding to DGP 4 as model 4. For model 4, stratum
(S1, S0) = (0,1) exists, and monotonicity does not hold.
Without monotonicity, the distribution of (S1, S0) | W is
not identifiable, and thus the PCEs are not identifiable.

We first use models 3 and 4 to analyze the data simu-
lated from DGP 3. Because model 4 is a generalization of
model 3, they are both correctly specified under DGP 3.
However, the true value of τ01 in model 4 is not well-
defined.

We choose two sample sizes 1000 and 50,000. For
model 3, we choose the following priors: P(W = 1) ∼
Beta(1,1), αw ∼ Beta(1,1), and (π11,w,π10,w,π00,w) ∼
Dirichlet(1,1,1) for w = 1,2. We choose two differ-
ent priors for the parameters δu,s1s0 . One is the uniform
prior Beta(1,1) and the other is Beta(0.5,0.5). For model
4, all the priors are the same except that the prior for
(π11,w,π10,w,π00,w,π01,w) is Dirichlet(1,1,1,1).

Figure 2(a) shows the posterior distributions of τm
11,

τ11 and τ01, where τm
11 is the PCE within the stratum

FIG. 2. Posterior distributions of the PCEs in Section 5.2. τm
11 is the PCE within the stratum (S1, S0) = (1,1) under model 3; τ11 and τ01 are

the PCEs within the strata (S1, S0) = (1,1) and (0,1) under model 4. The grey histograms are the results with prior Beta(1,1) for δu,s1s0 , and the
white histograms are the results with prior Beta(0.5,0.5) for δu,s1s0 . The vertical dashed lines represent the true values of the parameters.
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(S1, S0) = (1,1) under model 3, and τ11 and τ01 are the
PCEs within the strata (S1, S0) = (1,1) and (0,1) under
model 4, respectively. Comparing the two rows of plots
in Figure 2(a), we can see that as the sample size in-
creases, the posterior 95% credible intervals of τm

11 be-
come narrower and always cover the true value, regard-
less of the priors. For model 4, the posterior distributions
of the PCEs change greatly and the posterior 95% cred-
ible intervals do not shrink as those under model 3.
When the sample size is 50,000, the posterior distri-
bution of τ11 deviates greatly from the true value with
the flat prior Beta(1,1) and is not unimodal with the
prior Beta(0.5,0.5). This is in sharp contrast to stan-
dard Bayesian problems in which the Beta(1,1) and
Beta(0.5,0.5) priors result in small discrepancies. The
drastic differences with different sample sizes and priors
show strong evidence of the nonidentifiability or weakly
identifiability of model 4, which can yield misleading es-
timates and inferences.

We then use models 3 and 4 to analyze data simulated
from DGP 4. The true model 4 is not identifiable, and
model 3 is misspecified. Figure 2(b) shows the results for
τm

11, τ11 and τ01. Although model 3 is not the true model,
the result under this model is very stable under different
priors. The 95% credible intervals of τm

11 cover the true
value. This may be due to our choice of small π01,1 and
π01,2, which makes model 3 only slightly deviates from
the true model. In contrast, the result of model 4 changes
drastically under different priors even when the sample
size is large. The posterior distributions of τ01 are multi-
modal even with a very large sample size. Therefore, us-
ing an unidentifiable model may lead to an undesirable
result even if it is a true model.

Our simulation demonstrates that identification is im-
portant in the Bayesian inference. Otherwise, the results
are extremely sensitive to the priors. More importantly,
the simulation suggests that when the proposed model is
not identifiable, using an identifiable model “close” to it
may be a compromising solution.

6. APPLICATION TO THE JOB SEARCH
INTERVENTION STUDY

The Job Search Intervention Study was a randomized
field experiment investigating the efficacy of a job train-
ing intervention on unemployed workers (Vinokur, Price
and Schul, 1995, Vinokur and Schul, 1997, Tingley et al.,
2014). The program was designed not only to increase
reemployment among the unemployed but also to enhance
the mental health of the job seekers. In the study, 600 un-
employed workers were randomly assigned to the treat-
ment group (Z = 1) and 299 were assigned to the control
group (Z = 0). Those in the treatment group participated
in workshops that covered skills for job search and coping

with stress. Those in the control group received a book-
let describing job-search tips. The intermediate variable
S is a measure of job-search self-efficacy ranged from 1
to 5. It measures the participants’ confidence in being able
to successfully perform six essential job-search activities
including completing a job application or resume, using
their social network to discover promising job openings,
and getting their point across in a job interview. The out-
come Y is a measure of depressive symptoms based on the
Hopkins Symptom Checklist. It measures how much they
had been bothered or distressed in the last two weeks by
various depression symptoms such as feeling blue, having
thoughts of ending one’s life, and crying easily. Let W be
the previous occupation, which is a nominal variable with
seven categories.

Assume that (S1, S0) given W follows (7), where ρ(w)

is the correlation coefficient of S1 and S0 given W = w.
Further assume linear models for Y1 and Y0,

Yz = βz0 + βz1S1 + βz2S0 + εYz,

where

εY1 ∼ N(0, σ 2
Y1

), εY0 ∼ N(0, σ 2
Y0

),

(εY1, εY0) ⊥⊥ (S1, S0,W).

We choose the linear model because of its simplicity for
illustration, and acknowledge its limitation and leave the
task of building more flexible models for Y1 and Y0 to
future work. Under this model,

τs1s0 = β10 − β00 + (β11 − β01)s1 + (β12 − β02)s0.

We assume ρ(w) = ρ and treat ρ as the sensitivity pa-
rameter within {0,0.2,0.4,0.6,0.8}. From Corollary 2,
the PCEs are identifiable. We use a Bayesian approach
and simulate the posterior distributions of the PCEs. To
assess the sensitivity of our results to different priors,
we choose two different priors. Let β1 = (β10, β11, β12),
β0 = (β00, β01, β02) and μw = (μ1(w),μ0(w)). For the
first prior, we choose multivariate Normal priors for βz

and μw: βz ∼ N3(0,�z), μw ∼ N2(0,�), with

�z = 102 diag(1,1,1), � = 102 diag(1,1)

for z = 0,1, and w = 1, . . . ,7. We choose the following
noninformative priors for the other parameters: f (σ 2

zw) ∝
1/σ 2

zw , f (σ 2
Yz

) ∝ 1/σ 2
Yz

, {P(W = 1), . . . ,P(W = 7)} ∼
Dirichlet(1, . . . ,1) and P(Z = 1 | W = w) ∼ Beta(1,1),
where z = 0,1 and w = 1, . . . ,7. For the second prior, we
choose

�z = diag(1,1,1), � = diag(1,1)

and keep other prior distributions unchanged. We will
present the results for the first prior in the main text and
show the sensitivity check of the results to different priors
in Appendix C.2.

Figure 3 shows the posterior medians of τs1s0 for all
(s1, s0) under ρ = 0. The surface of these posterior medi-
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FIG. 3. Posterior medians of the PCEs with ρ = 0.

ans rises from its lowest point at principal stratum (5,1) to
its highest point at principal stratum (1,5). In general, the
estimated PCE increases as the difference between S1 and
S0 decreases. That is, for people who gained more for the
job-search self-efficacy from the treatment, the treatment
lowered the risk of depression to a larger extent. Imai,
Keele and Tingley (2010) analyzed this data using a me-
diation analysis and found that the indirect effect of the
treatment through job-search self-efficacy was negative.
So the program participation decreased depressive symp-
toms by increasing the level of job search self-efficacy.
Jo et al. (2011) used the principal stratification approach
by dichotomizing the job-search self-efficacy and found
that the treatment had a negative effect on the depression
for people whose job-search self-efficacy was improved

by the treatment. Our conclusion corroborates with their
findings.

For sensitivity analysis, we focus on five principal
strata, consisting of the maximum, minimum, 25%, 50%,
and 75% quantiles of S1 and S0. Table 3 shows their pos-
terior medians and 95% credible intervals for different
values of ρ. The point estimates are not sensitive to the
values of ρ, and the interval estimates are not sensitive to
small values of ρ. But as ρ grows larger, the intervals tend
to become wider, which makes the results not significant.

Appendix C contains more details for the data analy-
sis. Corollary 2 requires W to be continuous but W is
categorical in our application. Appendix C.1 gives a for-
mal justification of the identifiability of the PCEs in our
model with a discrete W . The Normality assumptions on
the outcomes are invoked for convenience in the Bayesian
computation. In fact, without Normality, we can use the
method of moments to estimate the PCEs. Appendix C.2
presents the results from the method of moments which
are similar to those from the Bayesian inference. Includ-
ing additional covariates can make Assumption 3 more
plausible. Appendix C.3 shows an analysis with more co-
variates.

7. DISCUSSION

7.1 Summary and Extensions

Identification of the PCEs is an important but chal-
lenging problem. Although several empirical studies have
leveraged auxiliary variables to improve inference for the
PCEs, formal identification results have not been estab-
lished especially for nonbinary intermediate variables.
Our results supplement previous empirical studies with
theoretical justifications for identification. We give iden-
tification results for several models based on Normal dis-
tributions, which can be generalized to other commonly
used distributions. Appendix B.4 gives identification re-
sults for models based on t distributions, which are useful
for robust analysis of data with heavy tails.

TABLE 3
Posterior medians and credible intervals of some PCEs. The intervals excluding zero are highlighted in bold

(S1, S0) ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

(1.00,5.00) 1.363 1.901 1.676 1.790 1.530
(−0.332,3.164) (−0.504,4.681) (−0.837,4.125) (−1.167,5.182) (−1.331,4.832)

(3.67,4.50) 0.288 0.392 0.366 0.389 0.318
(−0.009,0.613) (−0.053,0.962) (−0.143,0.876) (−0.240,1.107) (−0.310,1.047)

(4.17,4.00) −0.093 −0.112 −0.100 −0.104 −0.099
(−0.197,0.009) (−0.227,0.004) (−0.220,0.009) (−0.240,0.011) (−0.234,0.017)

(4.67,3.58) −0.439 −0.563 −0.522 −0.550 −0.476
(−0.815,−0.077) (−1.202,−0.030) (−1.104,0.053) (−1.362,0.152) (−1.315,0.230)

(5.00,1.67) −1.386 −1.732 −1.700 −1.773 −1.496
(−2.451,−0.428) (−3.428,−0.338) (−3.451,−0.011) (−4.251,0.368) (−4.166,0.717)
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Researchers have conducted sensitivity analyses for the
principal ignorability and the auxiliary independence. For
example, Ding and Lu (2017) proposed the sensitivity
analysis for principal ignorability with a binary interme-
diate variable, and Jiang, Ding and Geng (2016) proposed
the sensitivity analysis for auxiliary independence using a
random-effects model. However, there is no general setup
for the sensitivity analysis of these assumptions, which
depends on the specification of the model and types of
the outcomes and the intermediate variables. We believe
that sensitivity analysis should be routinely conducted in
problems with principal stratification, but leave the devel-
opment and the technical details to future research.

7.2 Comparing Two Strategies

Auxiliary variables play different roles in identifying
the PCEs, depending on the underlying assumptions.
Under principal ignorability, auxiliary variables can be
viewed as “confounders” between the principal stratifica-
tion variable and the outcome. In contrast, under auxil-
iary independence, auxiliary variables can be treated as
an “instrumental variables” for the relationship between
the principal stratification and the outcome. Therefore,
the comparison between the principal ignorability and
auxiliary independence for identifying the PCEs resem-
bles the comparison between the ignorability assumption
(Rosenbaum and Rubin, 1983) and the instrumental vari-
able method (Angrist, Imbens and Rubin, 1996) for iden-
tifying the average causal effect. The methods based on
principal ignorability are easy to employ because the as-
sumption generally conditions on all baseline variables.
However, they bear similar disadvantages as the meth-
ods based on ignorability for estimating average causal
effect—we do not know whether we have conditioned
on sufficient variables (Pearl, 2000, Pearl, 2009). In con-
trast, the methods based on auxiliary independence may
be burdening to analysts and content experts because one
needs to carve out a specific baseline variable as a des-
ignated auxiliary variable. However, the advantage is that
we can intentionally target the variable based on science
and experts’ knowledge or by design. For example, this
assumption can possibly be used in a multicenter trial as
in Example 4, and in the augmented design for assessing
the effect of vaccination as in Example 3.

Although we restrict the auxiliary variable W to be
pretreatment in the paper, the auxiliary independence as-
sumption allows it to be affected by the treatment. It only
requires the auxiliary variable to be independent of the
outcome conditional on the treatment and principal strata,
which can hold even if the auxiliary variable is posttreat-
ment. For example, for a binary S, Mealli and Pacini
(2013) identify the PCEs in completely randomized ex-
periments using a secondary outcome as the auxiliary
variable. In contrast, the principal ignorability assumption

is unlikely to hold with a posttreatment auxiliary variable.
The required independence would fail due to the bias in-
duced by conditioning on a posttreatment variable.

7.3 Alternative Identification Strategies

Alternative identification strategies do exist without re-
quiring an auxiliary variable. For a binary intermediate
variable, without monotonicity or exclusion restriction,
Hirano et al. (2000) suggested using parallel outcome
models to improve identifiability where the regression
coefficients of the covariates are the same for all types
of noncompliers. Mealli, Pacini and Stanghellini (2016)
used the concentration graph theory to study the identifi-
cation of the PCEs. It is of interest to combine these strate-
gies in theory and practice.

The identification of PCEs is closely related to the iden-
tification of finite mixture models. For example, with a
binary intermediate variable, the observed data with (Z =
1, S = 1) is a mixture of principal strata (S1 = 1, S0 = 1)

and (S1 = 1, S0 = 0), and the observed data with (Z =
1, S = 0) is a mixture of principal strata (S1 = 0, S0 = 0)

and (S1 = 0, S0 = 1). From this perspective, principal
ignorability and auxiliary independence help to separate
the components in the finite mixture model. Researchers
sometimes use parametric finite mixture models for prin-
cipal stratification problems (Zhang, Rubin and Mealli,
2009, Frumento et al., 2012). However, even though those
models are parametrically identifiable, the estimators of-
ten have poor finite-sample properties (Frumento et al.,
2016, Feller et al., 2019). These findings echo the caveat
from Cox and Donnelly (2011), page 96: “If an issue can
be addressed nonparametrically then it will often be bet-
ter to tackle it parametrically; however, if it cannot be re-
solved nonparametrically then it is usually dangerous to
resolve it parametrically.” This is an important motivation
for us to seek nonparametric and semiparametric identifi-
ability as presented in this paper.
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