Open Access
February 2021 Bipartite Causal Inference with Interference
Corwin M. Zigler, Georgia Papadogeorgou
Statist. Sci. 36(1): 109-123 (February 2021). DOI: 10.1214/19-STS749


Statistical methods to evaluate the effectiveness of interventions are increasingly challenged by the inherent interconnectedness of units. Specifically, a recent flurry of methods research has addressed the problem of interference between observations, which arises when one observational unit’s outcome depends not only on its treatment but also the treatment assigned to other units. We introduce the setting of bipartite causal inference with interference, which arises when (1) treatments are defined on observational units that are distinct from those at which outcomes are measured and (2) there is interference between units in the sense that outcomes for some units depend on the treatments assigned to many other units. The focus of this work is to formulate definitions and several possible causal estimands for this setting, highlighting similarities and differences with more commonly considered settings of causal inference with interference. Toward an empirical illustration, an inverse probability of treatment weighted estimator is adapted from existing literature to estimate a subset of simplified, but interesting, estimands. The estimators are deployed to evaluate how interventions to reduce air pollution from 473 power plants in the U.S. causally affect cardiovascular hospitalization among Medicare beneficiaries residing at 18,807 zip code locations.


Download Citation

Corwin M. Zigler. Georgia Papadogeorgou. "Bipartite Causal Inference with Interference." Statist. Sci. 36 (1) 109 - 123, February 2021.


Published: February 2021
First available in Project Euclid: 21 December 2020

MathSciNet: MR4194206
Digital Object Identifier: 10.1214/19-STS749

Keywords: Air pollution , Causal inference , interference , network dependence , power plants

Rights: Copyright © 2021 Institute of Mathematical Statistics

Vol.36 • No. 1 • February 2021
Back to Top