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A General Framework for Vecchia
Approximations of Gaussian Processes
Matthias Katzfuss and Joseph Guinness

Abstract. Gaussian processes (GPs) are commonly used as models for func-
tions, time series, and spatial fields, but they are computationally infeasi-
ble for large datasets. Focusing on the typical setting of modeling data as a
GP plus an additive noise term, we propose a generalization of the Vecchia
(J. Roy. Statist. Soc. Ser. B 50 (1988) 297–312) approach as a framework
for GP approximations. We show that our general Vecchia approach con-
tains many popular existing GP approximations as special cases, allowing for
comparisons among the different methods within a unified framework. Rep-
resenting the models by directed acyclic graphs, we determine the sparsity
of the matrices necessary for inference, which leads to new insights regard-
ing the computational properties. Based on these results, we propose a novel
sparse general Vecchia approximation, which ensures computational feasibil-
ity for large spatial datasets but can lead to considerable improvements in ap-
proximation accuracy over Vecchia’s original approach. We provide several
theoretical results and conduct numerical comparisons. We conclude with
guidelines for the use of Vecchia approximations in spatial statistics.

Key words and phrases: Computational complexity, covariance approxima-
tion, directed acyclic graphs, large datasets, sparsity, spatial statistics.

1. INTRODUCTION

Gaussian processes (GPs) have become popular choices
as models or prior distributions for functions, time series,
and spatial fields (see, e.g., Banerjee, Carlin and Gelfand,
2015, Rasmussen and Williams, 2006, Cressie and Wikle,
2011). The defining feature of a GP is that the joint dis-
tribution of a finite number of observations is multivariate
normal. However, since computing with multivariate nor-
mal distributions incurs quadratic memory and cubic time
complexity in the number of observations, GP inference
is infeasible when the data size is in the tens of thousands
or higher, limiting the direct use of GPs for many large
datasets available today.

To achieve computational feasibility, numerous ap-
proaches have been proposed in the statistics and
machine-learning literatures. These include approaches
leading to sparse covariance matrices (Furrer, Genton and
Nychka, 2006, Kaufman, Schervish and Nychka, 2008,
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Du, Zhang and Mandrekar, 2009), sparse inverse co-
variance (i.e., precision) matrices (Rue and Held, 2005,
Lindgren, Rue and Lindström, 2011, Nychka et al., 2015),
and low-rank matrices (see, e.g., Higdon, 1998, Wikle and
Cressie, 1999, Quiñonero-Candela and Rasmussen, 2005,
Banerjee et al., 2008, Cressie and Johannesson, 2008,
Katzfuss and Cressie, 2011). Several other approaches
are described in Section 3. Heaton et al. (2019) re-
view and compare many of these methods, plus sev-
eral algorithmic approaches (Gramacy and Apley, 2015,
Gerber et al., 2018, Guhaniyogi and Banerjee, 2018).

In this article, we extend and study Vecchia’s approach
(Vecchia, 1988), one of the earliest proposed GP approx-
imations, which leads to a sparse Cholesky factor of the
precision matrix. Based on some ordering of the GP ob-
servations, Vecchia’s approximation replaces the high-
dimensional joint distribution with a product of univariate
conditional distributions, in which each conditional dis-
tribution conditions on only a small subset of previous
observations in the ordering. This approximation incurs
low computational and memory burden, it has been shown
to be highly accurate in terms of Kullback–Leibler diver-
gence from the true model (see, e.g., Guinness, 2018), and
it is amenable to parallel computing because each term
can be computed separately.
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We consider the typical setting of spatial data modeled
as a GP plus an additive noise or nugget component. Datta
et al. (2016a) proposed to apply Vecchia’s approximation
to the latent GP instead of the noisy observations, but
Finley et al. (2019) noted that this approach “require[d]
an excessively long run time.” Here, we propose a gen-
eralized version of the Vecchia approximation, which al-
lows conditioning on both latent and observed variables.
We show that our general Vecchia approach contains sev-
eral popular GP approximations as special cases, allowing
for comparisons among the different approaches within a
unified framework. We give a formula for efficient com-
putation of the likelihood in the presence of noise. Fur-
ther, we describe how approximations within the general
Vecchia framework can be represented by directed acyclic
graph (DAG) models, and we use the connection to DAGs
to prove results about the sparsity of the matrices ap-
pearing in the inference algorithms. The results lead to
new insights regarding computational properties, includ-
ing shedding light on the computational challenges with
latent Vecchia noted in Finley et al. (2019). Based on these
results, we propose a particular instance of the general
Vecchia framework, which we call sparse general Vec-
chia (SGV), that provides guaranteed levels of sparsity
in its matrix representation but can lead to considerable
improvements in approximation accuracy over Vecchia’s
original approach. In addition to the theoretical results,
we provide numerical studies exploring different options
within the general Vecchia framework and comparing our
novel SGV to existing approximations.

This article is organized as follows. In Section 2, we re-
view Vecchia’s approximation, introduce our general Vec-
chia framework, and detail connections to DAGs. In Sec-
tion 3, we describe several existing GP approximations
as special cases of the framework. In Section 4, we con-
sider inference within the framework, including introduc-
ing the necessary matrices and studying their sparsity, and
deriving the computational complexity. In Section 5, we
describe our new SGV approximation and contrast it with
two existing approaches. Section 6 contains additional in-
sights on ordering and conditioning. Numerical results
and comparisons can be found in Section 7. In Section 8,
we conclude and provide guidelines for the use of Vecchia
approximations. Appendices A–F contain further details
and proofs. The methods and algorithms proposed here
are implemented in the R package GPvecchia.

2. A GENERAL VECCHIA APPROACH

2.1 Noisy Observations of a Gaussian Process

Let {y(s) : s ∈ D}, or y(·), be a process of interest on
a continuous (i.e., nongridded) domain D ⊂ R

d , d ∈ N
+.

We assume that y(·) ∼ GP(0,K) is a zero-mean Gaussian
process (GP) with covariance function K : D ×D →R.

We place no restrictions on K , other than assuming that
it is a positive-definite function that is known up to a
vector of parameters, θ . Usually, K will be a continuous
covariance function without a nugget component, which
will be added in the next paragraph. In most applications,
y(·) will not have zero mean, but estimating and sub-
tracting the mean is typically not a computational prob-
lem, so we ignore the mean here for simplicity. Further,
let S be a vector of vectors of locations, meaning that
S = (S1, . . . ,S�), where Si is a vector of ri locations
in D. (Our vector and indexing notation is explained in
detail in Appendix A.) Then define yi = y(Si ) to be the
Gaussian process vector at locations Si , and form the vec-
tor y := (y1, . . . ,y�).

We observe zi = yi + εi , where the noise or nugget
terms εi are independent Nri (0, τ 2I). The noisy-
observation assumption is ubiquitous in spatial statistics,
GP regression, and functional data, and has been proposed
for the modeling of computer experiments (Gramacy and
Lee, 2012). In this work, we assume that we observe the
subset zo of z = (z1, . . . , z�), where o ⊂ (1, . . . , �). Pa-
rameters θ and τ 2 are assumed to be known for now;
parameter inference will be discussed in Section 4.2.

2.2 Review of Vecchia’s Approximation

Define ho(i) := o ∩ (1, . . . , i − 1) to be the observed
“history” of i with ho(1) = ∅, allowing us to write the
joint density for the observed vector zo as

(1) f (zo) = ∏
i∈o

f (zi |zho(i)).

Working with or evaluating the density in (1) directly in-
curs O(n2

z) memory and O(n3
z) computational cost, and

is thus infeasible for large nz, where nz is the number of
individual observations in zo.

To avoid these computational difficulties, Vecchia’s ap-
proximation (Vecchia, 1988) replaces ho(i) with a sub-
vector g(i), where g(i) is often chosen to contain those
indices corresponding to observations nearby in distance
to the ith vector of observations. We refer to g(i) as the ith
conditioning index vector, and to zg(i) as the conditioning
vector for zi . This leads to the Vecchia approximation of
the joint density in (1):

(2) f̂ (zo) = ∏
i∈o

f (zi |zg(i)).

Vecchia (1988) considered only the case of zi as single-
tons, whereas Stein, Chi and Welty (2004) are credited
with the generalization to vector zi . Cressie and David-
son (1998) showed that (2) implies a Markov random field
model with sparse precision matrix. Stein, Chi and Welty
(2004) showed that maximizing (2) corresponds to solv-
ing a set of unbiased estimating equations, and they pro-
posed a residual maximum likelihood (REML) method
for estimating covariance parameters.
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2.3 The General Vecchia Framework

The standard Vecchia approach in Section 2.2 applies to
the vector of observations, zo. We propose a general Vec-
chia approach, which applies Vecchia’s approximation to
a vector x = y ∪ zo consisting of the data zo and latent
variables y:

(3) f̂ (x) =
b∏

i=1

f (xi |xg(i)),

where b is the number of subvectors in x, and g(i) ⊂
h(i) = (1, . . . , i − 1). Here, the elements of y and zo

are interweaved within x. Specifically, using the nota-
tion from Appendix A, the ordering in x is defined as
#(yi ,x) < #(yj ,x) when i < j , and #(zi ,x) =
#(yi ,x) + 1. In words, the yi vectors retain their rela-
tive ordering in x, and zi is inserted directly after yi when
i ∈ o. Then, the general Vecchia approximation in (3) can
be written as

(4) f̂ (x) =
(

�∏
i=1

f (yi |yqy(i), zqz(i))

)(∏
i∈o

f (zi |yi )

)
.

For the conditioning vector of yi , j ∈ qy(i) means that
yi conditions on yj , while j ∈ qz(i) means that yi condi-
tions on zj . It can be more accurate but also more com-
putationally expensive to condition on yj rather than on
zj ; we will explore this tradeoff in Section 5. We always
pick yi as the conditioning vector for zi , because zi was
defined to be conditionally independent of all other vec-
tors given yi . For the same reason, there is nothing to be
gained by conditioning yi on both yj and zj , and so we al-
ways take qy(i)∩qz(i) =∅. We call q(i) = (qy(i), qz(i))

the conditioning index vector. Note that if j /∈ o, assuming
j ∈ qz(i) is equivalent to removing j from q(i).

Usually, it is of interest to evaluate an approximation to
f (zo), which involves integrating the approximation for
the joint density of zo and y in (3) and (4) over the latent
vector y:

(5) f̂ (zo) =
∫

f̂ (x) dy.

If the conditioning vectors are equal to the respective his-
tory vectors (i.e., g(i) = h(i) for all i), the exact distri-
bution f (zo) in (1) is recovered. In this sense, the gen-
eral Vecchia approximation converges to the truth as the
conditioning vectors grow larger. However, large condi-
tioning vectors negate the computational advantages, and
thus the case of small conditioning vectors is of interest
here.

In summary, a general Vecchia approximation f̂ (x) of
f (x), and the implied approximation f̂ (zo) of f (zo), are
determined by the following choices:

C1: The ny locations S , usually a superset of the ob-
served locations.

C2: The partitioning of S into � ≤ ny vectors of loca-
tions.

C3: The ordering of the location vectors as S =
(S1, . . . ,S�).

C4: For each i, the conditioning index vector q(i) ⊂
(1, . . . , i − 1) for yi .

C5: For each i, the partitioning of q(i) into qy(i) and
qz(i); that is, for each j ∈ q(i), whether yi should condi-
tion on yj or zj .

For C1, the default choice is often to set S equal to the
observed locations. A major focus of this article is C5,
which is discussed in Section 5. In Section 6, we provide
some insights into C2–C4, and in Section 7 we explore
C3–C5 numerically.

2.4 Connections to Directed Acyclic Graphs

There are strong connections between the Vecchia ap-
proach and directed acyclic graphs (DAGs; cf. Datta
et al., 2016a). A brief review of DAGs is provided in
Appendix B. The conditional-independence structure im-
plied by the Vecchia approximation in (3) can be well rep-
resented by a DAG. Viewing x1, . . . ,xb as the vertices in
the DAG, we have xj → xi if and only if j ∈ g(i), and
so xg(i) is the vector formed by the set of all parents of
xi . Note that, because Vecchia approximations allow con-
ditioning only on previous variables in the ordering, we
always have xi 	→ xj if i > j . DAG representations are il-
lustrated in Figure 1. We will use this connection between
Vecchia approaches and DAGs to study the sparsity of the
matrices needed for inference in Section 4.4.

3. EXISTING METHODS AS SPECIAL CASES

Many existing GP approximations fall into the frame-
work described above. Each of these special cases cor-
responds to particular choices of C1–C5. We give some
examples here. Most of these examples are illustrated in
Figure 1.

3.1 Standard Vecchia and Extensions

Vecchia’s original approximation (Vecchia, 1988) spec-
ifies singleton vectors (ri = 1), ordering locations by a
spatial coordinate (henceforth referred to as coord order-
ing), and conditioning only on observations zi (as op-
posed to latent yi ); that is, qz(i) = q(i), qy(i) = ∅, and
o = (1, . . . , �). Using (5), this results in the approxima-
tion

f̂ (z) =
∫ �∏

i=1

f (zi |yi )f (yi |zq(i)) dy

=
�∏

i=1

∫
f (zi |yi , zq(i))f (yi |zq(i)) dyi

=
�∏

i=1

f (zi |zq(i)),
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FIG. 1. Toy examples of special cases of our general Vecchia approach (see Section 3) with � = 7 and o = (1, . . . ,7), including sparse general
Vecchia (Section 5). First column: DAGs (see Section 2.4). Second column: sparsity of U (elements corresponding to zi in gray). Third column:
sparsity of V (Section 4.4). Computational complexity depends on the number of off-diagonal nonzeros in each column of U and V (Section 4.5).
For all methods except latent Vecchia, these numbers are at most m = 2. For latent Vecchia, two nonzero-producing paths and the resulting nonzeros
are highlighted (see Section 5).

where f (zi |yi ) = f (zi |yi , zq(i)) because zi is condition-
ally independent of zq(i) given yi . Stein, Chi and Welty
(2004) recommended including in q(i) the indices of
some close and some far-away observations, and group-
ing observations (i.e., ri > 1) for computational advan-
tages. Guinness (2018) considered an adaptive group-
ing scheme, and discovered that ordering schemes other
than coord ordering can improve approximation accuracy.
Vecchia (1988) and Stein, Chi and Welty (2004) focus on
likelihood approximation, but Guinness (2018) also con-
siders spatial prediction via conditional simulation. Fur-
ther extensions were proposed in Sun and Stein (2016)
and Huang and Sun (2018). Some asymptotics are pro-
vided in Zhang (2012).

3.2 Nearest-Neighbor GP (NNGP)

The NNGP (Datta et al., 2016a, 2016b, 2016c) consid-
ers explicit data models (such as the additive Gaussian

noise assumed here), and conditions only on latent vari-
ables: qy(i) = q(i) and qz(i) = ∅. A GP is defined by
setting ri = 1, S = (S1, . . . ,S�y+�z), o = (�y + 1, . . . ,

�y + �z), and enforcing the constraint that q(i) ⊂ (1, . . . ,

�y) for all i. This means that variables at the observed
locations can condition only on variables in the knot set
(S1, . . . ,S�y ).

3.3 Independent Blocks

The simplest special case is given by empty condition-
ing index vectors q(i) = ∅ for every i:

f̂ (z) =
∫ �∏

i=1

f (zi |yi )f (yi ) dy

=
�∏

i=1

∫
f (zi |yi )f (yi ) dy =

�∏
i=1

f (zi ),
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which treats the � subvectors z1, . . . , z� independently and
assumes o = (1, . . . , �). When each subvector or block
corresponds to a contiguous subregion in space, Stein
(2014) showed that this approximation can be quite com-
petitive as a surrogate for the likelihood, and also com-
putationally inexpensive since each term in the product
incurs small computational cost and can be computed in
parallel. One difficulty with this approach is characteriza-
tion of joint uncertainties in predictions, due to the inde-
pendence assumption embedded in the approximation.

3.4 Latent Autoregressive Process of Order m
(AR(m))

Latent (vector-)AR processes of order m, also called
state-space models, are common in time-series settings.
They condition only on the latest m sets of latent variables
for some ordering: q(i) = qy(i) = (i − m, . . . , i − 1).
Inference in this type of model is typically carried out
using the Kalman filter and smoother (Kalman, 1960,
Rauch, Tung and Striebel, 1965).

3.5 Modified Predictive Process (MPP)

The MPP (Finley et al., 2009) is obtained by defining
S1 as a vector of “knot” locations, typically 1 /∈ o, and
for all i > 1, set ri = 1 and q(i) = qy(i) = 1. This means
that all variables condition on the same vector y1 and are
assumed to be conditionally independent.

3.6 Full-Scale Approximation (FSA)

As in the MPP, the FSA-block (Snelson and Ghahra-
mani, 2007, Sang, Jun and Huang, 2011) is obtained by
designating a common conditioning vector y1, and set-
ting q(i) = qy(i) = 1 for i > 1. However, the FSA allows
ri > 1 and groups all remaining variables by spatial region
as in the independent-blocks case in Section 3.3.

When q(i) = qy(i) = 1 for all i > 1 in general Vecchia,
we have f̂ (y) = f (y1)

∏�
i=2 f (yi |y1), and so f̂ (y1) =

f (y1), f̂ (yi ) = ∫
f (y1)f (yi |y1) dy1 = f (yi ) for i > 1

(i.e., the marginal distributions are exact), and f̂ (yi ,yj ) =∫
f (y1)f (yi |y1)f (yj |y1) dy1. Hence, as for the FSA, we

have v̂ar(yi ) = var(yi ), and for i 	= j > 1,

ĉov(yi ,yj )

=
∫ ∫ ∫

yiy′
j f (y1)f (yi |y1)f (yj |y1) dyi dyj dy1

=
∫ (∫

yif (yi |y1) dyi

)
×

(∫
y′
j f (yj |y1) dyj

)
f (y1) dy1

= cov
(
E(yi |y1),E(yj |y1)

)
,

where E(yi |y1) is the predictive process with knots S1
evaluated at Si . The recently proposed smoothed FSA

(Zhang, Sang and Huang, 2019), which is billed as a gen-
eralization of the Vecchia approach, can also be viewed
as a special case of general Vecchia, for which the condi-
tioning vectors include some nearby blocks in addition to
the knot vector y1.

3.7 Multi-Resolution Approximation (MRA)

The MRA (Katzfuss, 2017) is an iterative extension of
the FSA-block, in which the domain D is iteratively par-
titioned into J subregions, and we select ri variables in
each of the resulting subregions, such that Si ⊂ Di . For
example, if J = 4, let D1 = D, and define {D2, . . . ,D5}
to be a partition of D1, {D6, . . . ,D9} to be a partition of
D2, {D10, . . . ,D13} to be a partition of D3, and so forth.
Set q(i) = {j : Di ⊂ Dj }, and qy(i) = q(i), so that the
conditioning vector consists of latent variables associated
with locations above it in the hierarchy.

The FSA and MPP are special cases of the MRA. All
three methods allow latent variables at unobserved loca-
tions, such that S is different from the set of observed
locations, which can be handled in our framework by
o ⊂ (1, . . . , �).

3.8 Related Approach: Composite Likelihood (CL)

CL is a popular approach for fast GP inference. Varin,
Reid and Firth (2011) categorize CL methods as either
marginal or conditional. A common marginal CL ap-
proach is pairwise blocks, which approximates the like-
lihood as f̂ (z) = ∏

f (zi , zj ), where the product is often
over all pairs (i, j) of neighboring blocks (e.g., Eidsvik
et al., 2014). Conditional CL is an approximation of the
form (2), except that more general conditioning index
vectors g(i) ⊂ (1, . . . , i − 1, i + 1, . . . , �) are considered.
In contrast to Vecchia approaches, CL-based inference is
not generally guaranteed to become exact as the number
of considered pairs or conditioning variables increases,
and f̂ (z) is not generally guaranteed to be a valid joint
density, which can make CL-based Bayesian inference
difficult (see, e.g., Shaby, 2014). While the Vecchia ap-
proaches reviewed in Section 3.1 are special cases of con-
ditional CL, our general Vecchia framework in (3) is not
a CL approach, in that is defined on x, not on z alone, and
so it generally cannot be written in the form (2). Simu-
lation studies comparing parameter estimation using Vec-
chia and CL approaches can be found in Appendix D.

4. INFERENCE AND COMPUTATIONS

In this section, we describe matrix representations of
general Vecchia approximations, which enable fast infer-
ence. Further, we examine the sparsity of the involved ma-
trices and derive the computational complexity.
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4.1 Matrix Representations of General Vecchia

For any two subvectors xi and xj of x, we write
C(xi ,xj ) = E(xix′

j ), the cross-covariance between xi

and xj . This gives C(yi ,yj ) = C(zi ,yj ) = K(Si ,Sj ),
C(zi , zj ) = K(Si ,Sj ) for i 	= j , and C(zi , zi) =
K(Si ,Si) + τ 2Iri .

We can write the general Vecchia approximation in (3)
as

(6) f̂ (x) =
b∏

i=1

f (xi |xg(i)) =
b∏

i=1

N (xi |Bixg(i),Di),

where Bi = C(xi ,xg(i))C(xg(i),xg(i))
−1 and Di =

C(xi ,xi) − BiC(xg(i),xi). We view Bi as a block ma-
trix, and so (Bi )#(j,g(i)) is the block of Bi corresponding
to xj when j ∈ g(i).

For any symmetric, positive-definite matrix A, let
chol(A) be the lower-triangular Cholesky factor of A,
and let P be a permutation matrix so that PA reorders
the rows of matrix A in reverse order. Then, we call
rchol(A) := P(chol(PAP))P the reverse Cholesky factor
of A (i.e., the row-column reversed Cholesky factor of the
row-column reversed A). The following proposition is a
standard result for the multivariate normal distribution.

PROPOSITION 1. For the density in (6), we have
f̂ (x) = Nn(x|0, Ĉ), where Ĉ−1 = UU′, U is a sparse up-
per triangular b × b block matrix with (j, i)th block

(7) Uji =

⎧⎪⎪⎨⎪⎪⎩
D−1/2

i , i = j,

−(Bi )
′
#(j,g(i))D

−1/2
i , j ∈ g(i),

0, otherwise,

and D−1
i = D−1/2

i (D−1/2
i )′. Further, U = rchol(Ĉ−1) is

the reverse Cholesky factor of Ĉ−1.

All proofs can be found in Appendix F.

4.2 Likelihood

By integrating f̂ (x) with respect to the latent y, the gen-
eral Vecchia approximation implies a distribution for the
observed vector zo as in (5). For large ny , numerical in-
tegration with respect to the ny-dimensional vector y is
challenging (see Finley et al., 2019). Hence, we consider
the analytically integrated density instead.

PROPOSITION 2. The general Vecchia likelihood can
be computed as

(8)

−2 log f̂ (zo) =
b∑

i=1

log |Di | + 2
�∑

i=1

log |Vii |

+ z̃′z̃ − (
V−1UY z̃

)′(V−1UY z̃
)

+ nz log(2π),

where V := rchol(W), W := UY U′
Y , z̃ := U′

Zzo, and
UY := U#(y,x)• and UZ := U#(zo,x)• consist of the rows
of U corresponding to y and zo, respectively.

Note that, analogously to U = rchol(Ĉ−1) in Proposi-
tion 1, we compute V = rchol(W) as the reverse Cholesky
factor of W. This allows us to derive the sparsity struc-
ture of V in Proposition 3 below, and ensures low compu-
tational complexity for certain configurations of general
Vecchia.

Thus, for these configurations, the likelihood f̂ (zo)

(integrated over y) can be evaluated quickly for any
given value of the parameters θ and τ 2, which en-
ables likelihood-based parameter inference even for very
large datasets. Our framework is agnostic with respect to
the inferential paradigm, allowing both frequentist and
Bayesian inference. Frequentist inference can be carried
out by finding the parameter values that maximize f̂ (zo).
Appendix D details a simulation in which we compared
SGV to the exact likelihood and two composite likeli-
hood methods on estimating a spatial range parameter.
We found that SGV gave very similar parameter estimates
to the exact maximum likelihood estimates. Appendix E
demonstrates how the SGV likelihood can be used to
conduct Bayesian inference. This example considered
both numerically integrated posteriors and a Metropolis–
Hastings algorithm, based on which we obtained the pos-
terior predictive distribution of y(·) at unobserved loca-
tions.

No matter the inferential paradigm, our models can be
viewed as approximations of GP models, or as valid prob-
ability models in their own right (see (6)). All our infer-
ence is exact from the latter perspective. The error due
to the Vecchia approximation itself disappears for large
m = n − 1, and it is examined numerically for smaller m

in Section 7.

4.3 Prediction

For prediction, we can compute the posterior distri-
bution of the error-free process vector given by y|z ∼
N (μ,W−1), where μ := −W−1Uy z̃. However, this re-
quires consideration of complex issues, such as how to
guarantee fast computation of relevant summaries of this
distribution, and what ordering and conditioning strate-
gies work well in the context of prediction at observed
and unobserved locations. Thus, we refer to Katzfuss et al.
(2020) for details on how to extend the general Vecchia
framework to GP prediction.

4.4 Sparsity Structures

In the following proposition, we use connections be-
tween Vecchia approaches and DAGs (see Section 2.4 and
Appendix B) to verify the sparsity structure of U in (7)
and to determine the sparsity of W and V = rchol(W),
which must be computed for inference.

PROPOSITION 3.

1. Uji = 0 if i 	= j and xj 	→ xi .
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2. Wji = 0 if i 	= j , yj 	→ yi , yi 	→ yj , and there is no
k > max(i, j) such that both yi → yk and yj → yk .

3. Vji = 0 if j > i. For j < i, Vji = 0 if there is
no path between yi and yj on the subgraph {yi ,yj } ∪
{yk : k > i,yk has at least one observed descendant}.

Thus, U and V are upper triangular, and the sparsity of
the upper triangle depends on the Vecchia specification.
For j < i, the (j, i) block of W is not only nonzero if
j ∈ qy(i), but also if yi and yj appear in a conditioning
vector together (i.e., i, j ∈ qy(k) for some k). Note that
this sparsity structure corresponds to the adjacent vertices
in the so-called moral graph (e.g., Lauritzen, 1996, Sec-
tion 2.1.1). The matrix V is typically at least as dense as
W (assuming that all or most yk have observed descen-
dants), in that it has the same nonzeros as W plus addi-
tional ones induced by more complicated paths. Figure 1
shows examples of DAGs with the corresponding sparsity
structures of U and V.

4.5 Computational Complexity

Recall that x consists of y = (y1, . . . ,y�) and zo, where
z = (z1, . . . , z�), and yi and zi are of length ri . Let n be
the total number of individual variables in x. To simplify
the sparsity and computational complexity calculations,
assume that o = (1, . . . , �), all ri are of the same order r

(and so n ≈ br = 2�r), and that all conditioning vectors
consist of at most m subsets (of size r): |g(i)| ≤ m.

Then, it is easy to see from (7) that U has O(b ·
(mr2)) = O(nmr) nonzero elements and can be com-
puted in O(b · (m3r3)) = O(nm3r2) time. Note that this
time complexity is lower in r than in m, whose product
mr makes up the total length of the conditioning vectors.

To evaluate the likelihood in (8), we also need to com-
pute W = UY U′

Y and find its reverse Cholesky factor V =
rchol(W). Each conditioning vector is of size |g(i)| ≤ m

and so contains at most m(m − 1)/2 pairs of elements.
Therefore, from Proposition 3, W has at most O(�m2)

nonzero blocks. Since each block is of size r × r and
� =O(n/r), W has at most O(nrm2) nonzero elements.

The time complexity for obtaining a lower-triangular
Cholesky factor is on the order of the sum of the squares
of the number of nonzero elements per column in the fac-
tor (e.g., Toledo, 2007, Thm. 2.2). It can be easily verified
that the same holds for our reverse Cholesky factor V.
Thus, for any particular Vecchia approximation, the time
complexity for inference can in principle be determined
based on the corresponding DAG using Proposition 3. We
give examples in the next section.

5. SPARSE GENERAL VECCHIA (SGV)
APPROXIMATION

We now study choice C5 from Section 2.3 for fixed
choices C1–C4; that is, we assume that the grouping, or-
dering, and the conditioning index vectors q(1), . . . , q(�)

are fixed. We consider three methods that differ in their
choice of latent versus observed conditioning (C5): the
existing methods standard Vecchia (Section 3.1) and la-
tent Vecchia (used in the NNGP in Section 3.2), and a
novel sparse general Vecchia (SGV) approach:

Standard Vecchia (f̂s): qz(i) = q(i), condition only on
observed vectors zj .

Latent Vecchia (f̂l): qy(i) = q(i), condition only on
latent vectors yj .

SGV (f̂g): For each i, partition q(i) into qy(i) and
qz(i) such that j and k with j < k can only both be in
qy(i) if j ∈ qy(k).

In the terminology of Lauritzen (1996), Section 2.1.1,
SGV ensures that the corresponding DAG forms a per-
fect graph. Different versions of SGV are possible for
the same conditioning index vectors (and, in fact, stan-
dard Vecchia is one special case of SGV). Throughout
this article, we consider the following strategy that at-
tempts to maximize latent conditioning in the SGV: We
obtain the latent-conditioning index vector qy(i) for each
i = 2, . . . , � by first finding the index ki ∈ q(i) whose
latent-conditioning index vector has the most overlap with
q(i): ki = arg maxj∈q(i) |qy(j)∩q(i)|. In case of a tie, we
choose the ki for which the spatial distance between Si

and Ski
is shortest. Then, we set qy(i) = (ki) ∪ (qy(ki) ∩

q(i)), with the remaining indices in q(i) corresponding to
observed conditioning: qz(i) = q(i) \ qy(i).

The three approaches are illustrated in a toy example
with � = 7 shown in Figure 1. For all three methods, we
have the same q(1), . . . , q(�): q(2) = (1), q(3) = (1,2),
q(4) = (1,3), q(5) = (2,4), . . . . Like latent Vecchia,
SGV uses qy(2) = (1), qy(3) = (1,2), qy(4) = (1,3), as,
for example, 1 ∈ qy(3), and so qy(4) can contain both 1
and 3. However, 2 /∈ qy(4), and so SGV does not allow
both 2 ∈ qy(5) and 4 ∈ qy(5), and sets qy(5) = (4) and
qz(5) = (2).

We now establish an ordering on the accuracy of the
approximations to f (x).

PROPOSITION 4. The following ordering of Kullback–
Leibler (KL) divergences holds:

KL
(
f (x)‖f̂l(x)

) ≤ KL
(
f (x)‖f̂g(x)

) ≤ KL
(
f (x)‖f̂s(x)

)
.

Thus, the approximation accuracy for the joint distribu-
tion of x is better for latent Vecchia than for SGV, which
is better than that for standard Vecchia. Note, however,
that this does not guarantee that the KL divergence for
the implied distribution of the observations zo follows
the same ordering. For example, Proposition 4 says that
Ef (log f̂g(x)) ≥ Ef (log f̂s(x)), but that does not guaran-
tee that Ef (log

∫
f̂g(x) dy) ≥ Ef (log

∫
f̂s(x) dy). Exam-

ples of this can be found in Figure 3(d).
Another important factor is the computational complex-

ity of the different approaches. Standard Vecchia only
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conditions on observed quantities, and so for any i, j we
have yj 	→ yi , resulting in a diagonal W and V according
to Proposition 3, and hence an overall time complexity of
O(nm3r2) for standard Vecchia.

Finley et al. (2019) observed numerically that matrices
in the NNGP (which uses the latent Vecchia approach)
were less sparse than in standard Vecchia. We can exam-
ine this issue further using Proposition 3. In the toy exam-
ple in Figure 1, latent Vecchia uses qy(5) = (2,4), which
creates the path (y2,y5,y4) that leads to V2,4 	= 0. Setting
qy(6) = (3,5) creates the path (y3,y6,y7,y5), leading to
V3,5 	= 0. This results in 3 > m = 2 nonzero off-diagonal
elements in columns 4 and 5. We provide more insight
into the increased computational cost for latent Vecchia
in the following proposition.

PROPOSITION 5. Consider the latent Vecchia ap-
proach with ri = 1, o = (1, . . . , �), m ≤ n

1/d
z , and

coordinate-wise ordering for locations on an equidistant
grid in a d-dimensional hypercube with nearest-neighbor
conditioning. Then, V = rchol(W) has O(n1−1/dm1/d)

nonzero elements per column, requiring O(n2−1/dm1/d)

memory. The resulting time complexity for computing
V = rchol(W) is O(n3−2/dm2/d).

Thus, the time complexity for obtaining V is O(nm2)

in d = 1 dimensions, O(n2m) for d = 2, and approach-
ing the cubic complexity in n of the original GP as d

increases. For irregular observation locations, we expect
roughly similar scaling if the locations can be consid-
ered to have been drawn from independent uniform dis-
tributions over the domain. Also note that using reorder-
ing algorithms for the Cholesky decomposition (as op-
posed to simple reverse ordering) could lead to different
complexities, although our numerical results indicate that
this might actually increase the computational complexity
(see Figure 5(b)).

In contrast to latent Vecchia, SGV results in guaran-
teed sparsity. In the toy example, SGV sets qy(5) = (4)

and qz(5) = (2) because 2 /∈ qy(4), and qy(6) = (5) and
qz(6) = (3) because 3 /∈ qy(5), resulting in V2,4 = V3,5 =
0 (in contrast to latent Vecchia). More generally, SGV pre-
serves the linear scaling of standard Vecchia, in any spa-
tial dimension and for gridded or irregularly spaced loca-
tions.

PROPOSITION 6. For SGV, V has at most mr off-
diagonal elements per column, and so the time complex-
ity for computing V = rchol(W) is only O(nm2r2). Thus,
SGV has the same overall computational complexity as
standard Vecchia.

In summary, SGV provides improvements in approx-
imation accuracy over standard Vecchia (Proposition 4)
while retaining linear computational complexity in n

(Proposition 6). Latent Vecchia results in improved ap-
proximation accuracy but can raise the computational

complexity severely (Proposition 5), which can be infea-
sible for large n. Numerical illustrations of these results
can be found in Section 7.

6. ORDERING AND CONDITIONING

We now provide some insight into choices C2–C4 of
Section 2.3. For simplicity, we henceforth assume ri = 1
unless stated otherwise.

6.1 Ordering (C3)

In one spatial dimension, a “left-to-right” ordering of
the locations in S is natural. However, in two or more spa-
tial dimensions, it is not obvious how the locations should
be ordered. For Vecchia approaches, the default and most
popular ordering is along one of the spatial coordinates
(coord ordering). Datta et al. (2016a) only observed a neg-
ligible effect of the ordering on the quality of the Vec-
chia approximation, but Guinness (2018) showed that this
is not always the case. He proposed different ordering
schemes, including an approximate maximum-minimum-
distance (maxmin) ordering, which sequentially picks
each location in the ordering by aiming to maximize the
distance to the nearest of the previous locations. Guinness
(2018) showed that maxmin ordering can lead to substan-
tial improvements over coord ordering in settings without
any nugget or noise. We will examine the nonzero nugget
case in Section 7. Note that the MRA (Section 3.7) im-
plies an ordering scheme similar to maxmin, starting with
a coarse grid over space and subsequently getting denser
and denser.

6.2 Choosing m

For a given ordering, as part of C4 we must choose m,
the size of the conditioning vectors.

For one-dimensional spatial domains, some guidance
can be obtained for approximating a GP with a Matérn
covariance on a one-dimensional domain. If the smooth-
ness is ν = 0.5, we have a Markov process of order 1, and
so we can get an exact approximation for latent condition-
ing with m = 1 by ordering from left to right. Stein (2011)
conjectures that for smoothness ν, approximate screening
holds for any m > ν. This conjecture is explored numeri-
cally in Section 7, specifically in Figure 2(a). Note that co-
ord ordering in 1-D with m-nearest-neighbor conditioning
amounts to an AR(m) model, and the corresponding la-
tent or SGV inference is equivalent to a Kalman filter and
smoother (cf. Eubank and Wang, 2002). For very smooth
processes (i.e., very large ν), the m necessary for (approx-
imate) screening won’t be affordable any more, and alter-
native ordering and conditioning strategies might be ad-
vantageous (see Section 6.3 below).

For two or more dimensions, the necessary m will de-
pend not only on the smoothness of the covariance func-
tion, but also on the chosen ordering, the observation loca-
tions (regular or irregular), and other factors. We suggest
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starting with a relatively small m and gradually increas-
ing it using warm-starts based on previously obtained pa-
rameter estimates, until the estimates have converged to
a desired tolerance, or until the available computational
resources have been exhausted.

6.3 Conditioning

For a given ordering and m, the most common strategy
is to simply condition on the m nearest neighbors or lo-
cations (NN conditioning), although more elaborate con-
ditioning schemes have been proposed (see, e.g., Stein,
Chi and Welty, 2004, Gramacy and Apley, 2015). It can
also be advantageous in some situations to place a coarse
grid over space at the beginning of the ordering and to
always condition on this grid. Properties of this same-
conditioning-set (SCS) approach are described in Ap-
pendix C.

7. NUMERICAL STUDY

We examined numerically the propositions and claims
made in previous sections. We explored C3–C5 from Sec-
tion 2.3, with an emphasis on C5 by comparing the three
approaches from Section 5. Throughout this section, we
set ri = 1 and o = (1, . . . , �), so that each latent variable
had a corresponding observed variable. The observation
locations were equidistant grids on the unit interval or
unit square, and the true GP was assumed to have Matérn
covariance with variance σ 2, smoothness ν, and effective
range λ (i.e., the distance at which the correlation drops to
0.05). We added noise with variance τ 2, set σ 2 + τ 2 = 1,
and so the signal proportion was σ 2/(σ 2 + τ 2) = σ 2. For
example, signal proportions of 1/2 and 2/3 correspond to
signal-to-noise ratios (SNRs) of 1 and 2, respectively. We
considered coordinate-wise (coord) ordering and the ap-
proximate maximum-minimum-distance (maxmin) order-
ing of Guinness (2018). We used nearest-neighbor (NN)
conditioning for a given ordering, unless stated other-
wise. Comparisons among methods are made using the
Kullback–Leibler (KL) divergence between the approxi-
mate distribution f̂ (z) and the true distribution f (z).

First, we assumed a one-dimensional spatial domain,
D = [0,1], and only considered the natural coord order-
ing “from left to right.” The different methods from Sec-
tion 5 then essentially correspond to latent or nonlatent
AR(m) processes. From the results shown in Figure 2
with nz = 100 and λ = 0.9, we can see that latent Vecchia
and the equivalent SGV performed much better than stan-
dard Vecchia. Figure 2(a) also confirms numerically the
conjecture from Section 6.2 that (approximate) screening
holds for latent Vecchia if m > ν.

The remaining results are for a two-dimensional do-
main, D = [0,1]2. Exploring Proposition 4, Figure 3
shows KL divergences for different values of σ 2, ν, and
m, all for nz = 6400 and λ = 0.9. As we can see, the

KL divergences for the three methods roughly followed
the ordering from Section 5, with latent Vecchia perform-
ing better than SGV, which performed better than stan-
dard Vecchia. (For SNR = ∞, the methods are equiva-
lent.) The screening effect is less clear in two dimensions.
Also note that maxmin ordering often resulted in tremen-
dous improvements over coord ordering, except for stan-
dard Vecchia, where the two orderings produced similar
results.

We also considered very smooth covariances, which
are less common in geostatistics but very popular in ma-
chine learning. We explored conditioning on the same first
m variables in the maxmin ordering, which are spread
throughout the domain. Figure 4 shows that this can re-
sult in strong improvements over NN ordering for SGV.

The computational feasibility of the methods is ex-
plored in Figure 5, which examines the sparsity of the ma-
trix V. We can see that SGV keeps the number of nonzero
elements per column in V at or below m, as would be ex-
pected from Proposition 6, resulting in linear scaling as a
function of n. For latent Vecchia, V = rchol(W) is con-
siderably denser, and the computational complexity for
obtaining V scales roughly as O(n2), as expected from
Proposition 5. MMD ordering of W did not improve the
complexity for coord. Figure 5(c) shows actual compu-
tation times for obtaining V from W using the chol
function in the R package spam (Furrer and Sain, 2010)
on a 4-core machine (Intel Core i7-3770) with 3.4 GHz
and 16 GB RAM. Despite the chol function being more
highly optimized for the default MMD ordering than the
user-supplied reverse ordering, latent Vecchia with MMD
ordering is roughly two orders of magnitude slower than
SGV with reverse ordering for nz around 100,000. A fur-
ther timing study in Katzfuss et al. (2020) shows that, for
standard Vecchia and SGV, the time for computing V is
negligible relative to that for U; hence, for a given n and
m, standard Vecchia and SGV require almost the same
computation time. In contrast, latent Vecchia can be or-
ders of magnitude slower when n is large.

Figure 6 shows a comparison for large n of four meth-
ods that all scale linearly, namely SGV, standard Vec-
chia, MRA (Section 3.7), and independent blocks (Sec-
tion 3.3), using maxmin ordering where applicable. We
set D = [0,1]2, σ = τ = 1, and λ = 0.9. In Figure 6(c),
we explored the accuracy of the methods under infill
asymptotics, by simulating data on a fine 280 × 280 grid,
and then, starting with a coarse subset or subgrid of size
100 × 100, considering larger and larger subsets of the
data. It is infeasible to compute the exact KL divergence
for large nz, and so we approximated it by subtract-
ing each method’s loglikelihood from the loglikelihood
for SGV with large m = 40, all averaged over 10 simu-
lated datasets. While the time complexity for independent
blocks and MRA (see Appendix C) is only O(m2/3) of
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FIG. 2. KL divergences for Vecchia approximations of a GP with Matérn covariance on the unit interval with coord ordering and NN conditioning.
SGV is equivalent to latent Vecchia in this setting.

FIG. 3. KL divergences (on a log scale) for a Matérn covariance with smoothness ν on the unit square. Panels (a)–(c): fixed m = 5, varying signal
proportion, with symbols corresponding to (from left to right) SNRs of 0.5, 1, 2, 5, 10, 20, ∞, respectively. Panels (d)–(f): fixed SNR = 1, varying m.
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FIG. 4. KL divergences (on a log scale) for smooth covariances, comparing nearest-neighbor (NN) conditioning versus always choosing the first
m variables; nz = 400, m = 16, maxmin ordering, λ ≈ 2. For first-m conditioning, SGV and latent are equivalent.

FIG. 5. Sparsity, complexity, and actual computation times of obtaining V with m = 8, and so tm = (2m/π)1/2 ≈ 2.25 (see proof of Proposition 5).
NNZC: number of nonzero off-diagonal elements per column in V; MMD and rev.: multiple minimum degree and reverse ordering, respectively, for
Cholesky algorithm.

FIG. 6. Comparison of SGV and standard Vecchia to MRA and independent blocks.
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that for the Vecchia approaches, SGV outperformed all
other approaches even when adjusting for differences in
complexity.

8. CONCLUSIONS AND GUIDELINES

We have presented a general class of sparse GP approx-
imations based on applying Vecchia’s approximation to a
vector consisting of latent GP realizations and their cor-
responding noisy observations. Several of the most com-
monly used GP approximations proposed in the literature
are special cases of our class. We provided a formula for
fast computation of the likelihood, and we studied the
sparsity and computational complexity using connections
between Vecchia approaches and directed acyclic graphs.
We proposed a novel sparse general Vecchia (SGV),
which can dramatically improve upon the approximation
accuracy of standard Vecchia while maintaining its linear
computational complexity. In contrast, we showed that la-
tent Vecchia (which is used in the nearest-neighbor GP)
can scale quadratically in the data size in two-dimensional
space.

We now give some guidelines for using the general Vec-
chia approach in practice. In general, we recommend us-
ing our SGV approximation in the presence of nugget
or noise, and standard Vecchia if the noise term is zero
or almost zero. In one spatial dimension, left-to-right or-
dering and nearest-neighbor conditioning is most natural,
and SGV is equivalent to latent. In addition, the size m

of the conditioning vector can be chosen according to the
smoothness (i.e., differentiability at the origin) of the co-
variance function. In two-dimensional space, we recom-
mend maxmin ordering. While it is difficult to determine a
suitable m a priori, a useful approach is to carry out infer-
ence for small m, and then gradually increase m until the
inference converges or the computational resources are
exhausted. Nearest-neighbor conditioning is suitable for
low smoothness, while conditioning on the first m latent
variables is preferable for higher smoothness when there
is a large nugget. This first-m conditioning and its exten-
sions (such as the MRA) has benefits beyond approxima-
tion accuracy, such as reduced computational complexity,
exact marginal distributions for all variables, and sparse
Cholesky factor of the posterior covariance matrix. While
our methods are, in principle, applicable in more than two
dimensions, a thorough investigation of their properties in
this context is warranted and will be carried out in future
work.

The methods and algorithms proposed here are imple-
mented in the R package GPvecchia. Katzfuss et al.
(2020) extend the general Vecchia framework to GP pre-
diction at observed and unobserved locations. They also
provide further details on computational issues and tim-
ing, and an application to a large satellite dataset.

APPENDIX A: VECTOR NOTATION

We define vectors to be objects that contain an ordered
list of elements of the same type, equipped with union and
intersection operations. We generally use nonbold low-
ercase letters for vectors of integers (e.g., o,p, q). We
use bold lowercase letters (e.g., x,y, z) for vectors of real
numbers or vectors of vectors. Using vectors of vectors
makes some of the early definitions slightly cumbersome
but greatly simplifies the main unifying results of the pa-
per. Bold uppercase letters usually refer to matrices (e.g.,
C,K), and script letters (e.g., S) for vectors of locations
or vectors of vectors of locations.

For example, define y = (y1,y2,y3,y4,y5) as a vec-
tor of vectors. Subvectoring is accomplished with in-
dex vectors and uses subscript notation, for example if
o = (4,1,2) is a vector of indices, then yo = (y4,y1,y2),
respecting the ordering of the index vector. Unions of vec-
tors are vectors and are defined when the two vectors
have the same type and when the ordering of the union
is defined. For example, if z = (z1, z2), then yo ∪ z =
(y4,y1, z1,y2, z2) is a complete definition of the union of
yo and z. Likewise, the intersection y ∩ z consists of the
common elements of the two vectors and is fully defined
when the ordering of the intersection is defined.

When the situation demands more abstractness, the or-
dering of the elements of the union or intersection can be
defined via an index function # that inputs an element and
a vector and returns the index occupied by the element in
the vector. Continuing the example above, #(y4,y) = 4,
whereas #(y4,yo ∪ z) = 1. The index function is vector-
ized, meaning that #(z,y ∪ z) = (3,5) returns the vector
of indices occupied by z in y ∪ z. This allows the index
function to act as an inverse of the union operator, in the
sense that (y ∪ z)#(z,y∪z) = z.

Vectors whose elements are real numbers are consid-
ered as the usual column vectors to which vector ad-
dition and multiplication rules apply. Matrices are sim-
ply two-dimensional vectors that use double subscripting,
and all matrices are viewed as block matrices, with the
blocks defined based on context. Functions are vector-
ized with respect to vectors of locations. For example, if
S = (S1, . . . ,S�), A = K(S,S) is an � × � block matrix
with block Aij = K(Si ,Sj ). We use • to represent the
vector of all indices, and so Ai• = K(Si ,S).

APPENDIX B: REVIEW OF DIRECTED
ACYCLIC GRAPHS (DAGS)

Here we provide a brief review of DAGs (see, e.g.,
Rütimann and Bühlmann, 2009, Section 2). A directed
graph consists of vertices, say {x1, . . . ,xb}, and directed
edges (i.e., arrows). Two vertices xi and xj are called ad-
jacent if there is an edge between them. If the edge is di-
rected from xj to xi , xj is called a parent of xi , and we
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write xj → xi . If there is no directed edge from xj to xi ,
we write xj 	→ xi . A path Q is a sequence of adjacent
vertices, and a directed path follows the direction of the
arrows. A vertex xj on a path Q is said to be a collider
on Q if it has converging arrows on Q (i.e., if the two
edges in Q connected to xj both point toward it). If there
is a directed path from xj to xi , then xi is called a descen-
dant of xj . A directed graph is called a DAG if it does not
contain directed paths for which the first and last vertices
coincide.

For any three disjoint subsets A,B,C of {x1, . . . ,xb},
A and B are called d-separated by C if, for every (undi-
rected) path Q from a vertex in A to a vertex in B, there
is at least one vertex xk ∈ Q that blocks the path in one of
the following ways:

B1: xk is not a collider on Q and xk is in C, or
B2: xk is a collider on Q and neither xk nor any of its

descendants are in C.

If x follows a multivariate normal distribution (as we as-
sume here), then A and B are conditionally independent
given C if and only if they are d-separated by C.

APPENDIX C: SAME CONDITIONING SETS (SCS)

In the SCS approach, every yi has the same condition-
ing vector y1 of size r1; that is, q(i) = (1) for all i > 1.
This is the strategy employed by the MPP and FSA in
Sections 3.5–3.6 with ri = 1 and ri = r , respectively, for
i > 1. For example, one could choose the first r1 vari-
ables in the maxmin ordering, which result in a coarse
grid over D.

SCS has several advantages. First, latent Vecchia auto-
matically adheres to the SGV rules for SCS; or, in other
words, the sparsity for the latent approach can be guar-
anteed. Second, as discussed in Section 6.2, if smooth-
ness and range are large enough, no screening effect will
hold. SCS is an extension of the predictive process, which
tends to work well in such “smooth” situations, because
it is equivalent to a Nyström approximation of the lead-
ing terms of the Karhunen–Loéve expansion of y(·) (Sang
and Huang, 2012). Third, a lower computational complex-
ity can be achieved, because C(xg(i),xg(i)) = C(y1,y1) in
(6) is the same matrix for all i = 2, . . . , l and its Cholesky
decomposition only needs to be computed once. Assum-
ing r1 = rm, the cost of the Cholesky decomposition
is O((rm)3), and each Bi and Di can be computed in
O(r3

i m2) time, resulting in an overall time complexity for
SCS of O(nm2r2) (i.e., reduced by factor m relative to
the general case) if ri = r for i > 1. Fourth, the marginal
distributions of the xi (and hence also the variances) are
exact (see Section 3.6). Fifth, V−1 has the same spar-
sity structure as V, which allows fast calculation of the
joint posterior predictive distribution for a large number

of prediction locations, and extension to Kalman-filter-
type inference for massive spatio-temporal data (Jurek
and Katzfuss, 2018). All of these advantages also hold for
the MRA, which can be viewed as an iterative SCS ap-
proach at multiple resolutions (Katzfuss, 2017, Katzfuss
and Gong, 2020, Jurek and Katzfuss, 2018). However,
SCS and MRA may require r1 = O(

√
nz) for accurate ap-

proximations in two-dimensional space, which results in
a time complexity of O(n

3/2
z ) (Minden et al., 2017).

APPENDIX D: COMPARISON TO
COMPOSITE LIKELIHOOD

Using simulated data, we compared maximum like-
lihood estimation (MLE) using our SGV approach to
two composite likelihood methods, full-conditional like-
lihood (FCL) and pairwise-block likelihood (PBL). The
data were simulated from a GP model as in Section 2.1
with exponential covariance, C(s1, s2) = σ 2 exp(−‖s1 −
s2‖/α), where the process and noise variances were
known, σ 2 = 2 and τ 2 = 1, respectively, and the task was
to estimate the unknown range α.

Our first simulation study considered a FCL, defined
here as f̂ (z) = ∏n

i=1 f (zi |z−i ). As the FCL is expensive
to compute, we considered a relatively small grid of size
30 × 30 with spacing 1. We simulated 300 datasets with
true range α = 10, and for each dataset i we computed the
MLE α̂ij using each method j = 1, . . . ,5, namely exact
likelihood, FCL, and SGV with m = 10, 15, and 20. Ta-
ble 1(a) contains a summary of the results. We included
95% confidence intervals for the MSEs, based on a nor-
mal approximation of the squared errors. We also com-
puted confidence intervals for the difference in MSEs,
(α̂ij − α)2 − (α̂iJ − α)2, where J corresponds to SGV
with m = 20. FCL was not competitive with SGV.

Our second simulation study considered PBLs,∏
i∼j f (zi , zj ), where each zi corresponds to a contigu-

ous rectangle in the spatial domain, and i ∼ j means that
blocks i and j are spatial neighbors. We used a larger grid
of size 100 × 100 and a larger range parameter α = 30.
We again simulated 300 datasets and computed the MLE
of α using several settings of the PBL and our SGV. The
results are given in Table 1(b). Note that even SGV with
m = 20 performed better than PBL with 100 blocks of
size 100 each.

APPENDIX E: ILLUSTRATION OF
BAYESIAN INFERENCE

This section demonstrates how one can carry out
Bayesian inference using the general Vecchia approxima-
tion. We used SGV with m = 30 under the same settings
as in Appendix D.

First, we simulated a dataset in the setting of the 30×30
grid. Based on the prior logα ∼ N (log(10),0.62), we
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TABLE 1
Comparison of sparse general Vecchia (SGV) to composite likelihood: Estimation of range parameter from simulated

data, including 95% confidence intervals (CIs) for the difference in MSE relative to the method in the last row

(a) 30 × 30 grid

Method MSE 95% CI CI for diff.

Exact lik. 3.21 (2.60,3.81) (−0.03,0.27)

FCL 4.23 (3.48,4.97) (0.61,1.67)

SGV m = 10 3.22 (2.63,3.80) (−0.15,0.41)

SGV m = 15 3.07 (2.50,3.63) (−0.20,0.15)

SGV m = 20 3.09 (2.53,3.64) (0.00,0.00)

(b) 100 × 100 grid

Method MSE 95% CI CI for diff.

PBL 100 bl. 5.71 (4.79,6.62) (0.65,1.92)

PBL 144 bl. 6.26 (5.22,7.30) (1.05,2.63)

PBL 225 bl. 7.05 (5.73,8.37) (1.64,3.61)

SGV m = 20 4.81 (4.07,5.54) (0.03,0.74)

SGV m = 40 4.42 (3.65,5.19) (0.00,0.00)

evaluated the exact posterior f (α|zo) and the posterior
f̂ (α|zo) implied by the SGV likelihood on a fine grid
(see Figure 7(a)). Based on this discrete approximation
to the posterior, Figure 7(b) shows the posterior predic-
tive distribution f (y(s∗)|zo) at the unobserved point s∗ =
(15.5,15.5) in the center of the grid, along with the distri-
bution f̂ (y(s0)|zo) approximated using a general Vecchia
prediction method called RF-full in Katzfuss et al. (2020).
The Vecchia posteriors were almost identical to the exact
distributions.

We also simulated a dataset in the setting of the 100 ×
100 grid, randomly selecting nz = 9000 data points as ob-
served, with the remaining GP realizations used as test
data. Based on the prior logα ∼ N (log(30),0.62) and the
SGV likelihood, we ran a Metropolis–Hastings sampler
for logα with a normal proposal distribution with stan-
dard deviation 0.5 for 1200 iterations, discarding the first
200 samples and thinning the remaining by a factor of
10. We then computed posterior predictive distributions
f̂ (y−o|zo) using RF-full for the 1000 held-out test loca-
tions. Figure 7(c) shows the resulting posterior 80% in-
tervals along with the true simulated values of y−o at the
test locations. 79.8% of the intervals covered the true val-

ues, indicating that the posterior predictive distributions
obtained using general Vecchia were well calibrated.

APPENDIX F: PROOFS

In this section, we provide proofs for the propositions
stated throughout the article.

PROOF OF PROPOSITION 1. For the density in (6),
we have f̂ (x) ∝ exp(−w/2), where w = ∑b

i=1 a′
iai and

ai = (
D−1/2

i

)′
(xi − Bixg(i))

= (
D−1/2

i

)′xi + ∑
j∈g(i)

(−(
D−1/2

i

)′Bj
i xj

) =
b∑

j=1

U′
jixj ,

with U defined as in (7). Hence, w = ∑b
i=1(U

′
ix)′(U′

ix) =
x′UU′x, where Ui is the ith block of columns in U.
Because U is a nonsingular matrix, we have f̂ (x) =
Nn(x|0, Ĉ) with Ĉ−1 = UU′, which proves the first part
of the proposition. Note that a proof for a similar ex-
pression of the approximate joint density can be found
in Datta et al. (2016a), App. A2.

Then, because P is a symmetric matrix, we have P =
P′ = P−1 (and PMP results in reverse row-column order-
ing of the square matrix M). Thus, we can write PĈ−1P =

FIG. 7. Results for Bayesian inference based on general Vecchia. PPI: posterior predictive interval.
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PUU′P = PUPPU′P = (PUP)(PUP)′. The matrix PUP
is lower triangular with positive values on the diagonal,
and so it must be the Cholesky factor of PĈ−1P′ since
the Cholesky factor is the unique such lower triangu-
lar matrix. Therefore, we have U = P chol(PĈ−1P)P =
rchol(Ĉ−1). �

PROOF OF PROPOSITION 2. By rearranging the def-
inition of a conditional density, we obtain f̂ (zo) =
f̂ (x)/f̂ (y|zo), which holds for any y, and so we simply
set y = 0. Letting x0 be x with y = 0, we have

(9) f̂ (zo) = N (x0|0, Ĉ)

N (0|μ,W−1)
,

where μ := E(y|zo) and W := var(y|zo)
−1. For the

numerator in (9), using the factorization Ĉ−1 = UU′
supplied by the Vecchia approach, we have log |Ĉ| =
−2 log |U| = ∑b

i=1 log |Di | and x′
0Ĉ−1x0 = (U′x0)

′ ×
(U′x0) = z̃′z̃.

For the denominator in (9), according to Theorem 12.2
in Rue and Held (2010), we have W = UY U′

Y and μ =
−W−1UY U′

Zzo. Because W = VV′ and V is upper trian-
gular, we have log |W−1| = −2 log |V| = −2

∑
i log |Vii |.

The quadratic form can be obtained as μ′Wμ = z̃′U′
Y ×

W−1WW−1UY z̃ = (V−1UY z̃)′(V−1UY z̃). �
PROOF OF PROPOSITION 3. It can be easily verified

that rchol(A) = P(chol(PAP))P is an upper-triangular
matrix for any symmetric, positive-definite A, because
chol(·) was defined to return the lower-triangular Cho-
lesky factor. Hence, both U = rchol(C−1) and V =
rchol(W) are upper triangular. Further, W = UY U′

Y is
symmetric. Therefore, we only consider the case j < i

in the remainder of this proof.
It is well known for precision matrices in multivari-

ate normal distributions (see, e.g., Rue and Held, 2010,
Thm. 12.1) that Wji = 0 if yi and yj are condition-
ally independent given all other variables in the model
(i.e., conditional on CW = {y−ij , zo}). A similar result for
the sparsity of the Cholesky factor (see, e.g., Rue and
Held, 2010, Thm. 12.5) can be rephrased for our reverse
Cholesky decomposition (U = rchol(Ĉ−1)) to say that
Uji = 0 if xj and xi are conditionally independent given
CU = {xh(i)\j }. For V, which is the Cholesky factor of the
posterior precision matrix W (i.e., conditional on zo), we
have Vji = 0 if yi and yj are conditionally independent
given CV = {yh(i)\j , zo}. Thus, Uji = 0 if and only if xi

and xj are d-separated by CU in the DAG, and Wji = 0
and Vji = 0 if and only if yi and yj are d-separated by
CW and CV , respectively.

Note that d-separation cannot hold if xj → xi , and so
we only consider (paths between) nonadjacent xj and xi

in the remainder of the proof. Any path between such xj

and xi must pass through at least one noncollider xl with
l < i, or through a collider yk with 2k − 1 > i, because

arrows in the Vecchia approach can only go forward in
the ordering and the only parent for each zk is yk . As we
have CU = {xl : l < i, l 	= j}, this means that any path be-
tween (nonadjacent) xi and xj is either blocked by a non-
collider xl ∈ CU (condition B1) or by a collider xk /∈ CU

(B2), which proves part 1 of the proposition.
For W, as all vertices other than yi and yj are in CW ,

we only need to consider condition B1. The only paths
between yj and yi that do not contain a vertex xk ∈ CW

that is not a collider (and hence blocks the path), are paths
of the form (yj ,yk,yi ) with yj → yk and yi → yk . This
proves part 2.

For V, any path between yi and yj that passes through
CV = {yh(i)\j , zo} includes a noncollider in CV and is thus
blocked (B1). Thus, Vji can only be nonzero if there is
a path between yi and yj on the subgraph {yi ,yj } ∪ {yk :
k > i,yk has at least one observed descendant}. �

PROOF OF PROPOSITION 4. Note that for any p(i) ⊂
h(i), we have f (yi |yp(i)) = f (yi |yp(i), zp(i)), due to con-
ditional independence between zk and any other variable
in the model given yk . Thus, for latent Vecchia we can
change the conditioning vector of yi in (4) from yq(i) to
(yq(i), zq(i)) without changing the approximation. Like-
wise, for SGV we can change the conditioning vector of
yi from (yqy(i), zqz(i)) to (yqy(i), zq(i)) without changing
the approximation, since qy(i) ∪ qz(i) = q(i). Further,
note that zq(i) is a subset of (yqy(i), zq(i)), which is in turn
a subset of (yq(i), zq(i)). Thus, the proposition follows us-
ing Thm. 1 in Guinness (2018), which says that adding
variables to the conditioning vector in Vecchia approxi-
mations cannot increase the KL divergence from the true
model. �

PROOF OF PROPOSITION 5. Without loss of gener-
ality, we assume that the locations lie on a regular unit-
distance grid on the d-dimensional hypercube with n

1/d
z

unique values in each dimension, and we assume a lex-
icographic ordering in which locations are ordered first
by their first coordinate, for those with same first coor-
dinate by their second coordinate, and so forth. Let si =
(si1, . . . , sid) be the location of yi (and zi ). Consider a
pair of locations si and sj with sj = (si1 − t, sj2, . . . , sjd),
which under lexicographic ordering gives j < i when
t > 0. For sa = (si1 +1, sj2, . . . , sjd), we have a > i. Fur-
ther, ignoring edge cases, we have yj → ya when 1 ≤ t ≤
tm, where tm =O(m1/d), since the conditioning vector of
ya corresponds to the m locations roughly in a semi-ball
around sa of radius tm (e.g., tm = (2m/π)1/2 for d = 2).
Also consider sp = (si1 + 1, si2, . . . , sid), for which also
p > i. We can find a path between ya and yp on the sub-
graph {yk : k > i}, since all variables on the hyperplane
(si1 + 1, ·, . . . , ·) are connected (if m ≥ d) and have index
greater than i. We also have yi → yp . Therefore, there
is a path from yj to yi on the subgraph {yj ,yi} ∪ {yk :



VECCHIA APPROXIMATIONS OF GAUSSIAN PROCESSES 139

k > i}, which by Proposition 3 means that Vji is nonzero.
Since this is true for any sj = {si1 − t, sj2, . . . , sjd} with
1 ≤ t ≤ tm, there are O(n1−1/dm1/d) nonzero elements in
each of the nz columns of V, giving a memory complexity
of O(n2−1/dm1/d). As the time complexity for obtaining
the reordered Cholesky factor V is on the order of the sum
of the squares of the number of nonzero elements per col-
umn in V (see, e.g., Toledo, 2007, Thm. 2.2), the time
complexity of obtaining V from W is O(n3−2/dm2/d).

�
PROOF OF PROPOSITION 6. First, we show that, for

SGV, V has at most mr off-diagonal nonzero elements
per column. Using Proposition 3, that means that we
need to show that, for any j < i, there is no path be-
tween yi and yj on the subgraph G�

ij if yj 	→ yi , where

Gk
ij := {yi ,yj } ∪ {yt : max(i, j) < t ≤ k}. (Note that this

statement then also holds if we restrict the subgraph to
vertices with observed descendants.) Define Dk

i := {t :
yt is a descendant of yi in Gk

ij }, and analogously for Dk
j .

Thus, assuming that yj 	→ yi , we need to show that
D�

i ∩ D�
j = ∅, which we will do by induction. We have

Gi+1
ij = {yi ,yj ,yk}, where qy(k) can only contain either

i or j by the rules of the SGV, because j /∈ qy(i), and so
Di+1

i ∩ Di+1
j = ∅. Now, assume that Dk

i ∩ Dk
j = ∅ for

k > i. Then, for any ti ∈ Dk
i and tj ∈ Dk

j , yti and ytj can-
not be adjacent. Hence, by the rules of the SGV, qy(k +1)

can only contain either elements of Dk
i or of Dk

j , and so

Dk+1
i ∩ Dk+1

j = ∅. In summary, for the SGV and j < i,
Vji = 0 unless yj → yi , and so V has at most mr off-
diagonal elements per column.

The time complexity for obtaining the reordered Cho-
lesky factor V (and the selected inverse of W) is on the
order of the sum of the squares of the number of nonzero
elements per column in V (e.g., Toledo, 2007, Thm. 2.2).
Hence, the time complexity for computing W, its decom-
position, and its selected inverse is O(nm2r2). The time
and memory complexity for computing U is O(nm3r2)

and O(nmr) (i.e., at least as high as that for computing
V), and so SGV has the same computational complexity
as standard Vecchia. �
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