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Dimitris Bertsimas, Jean Pauphilet and Bart Van Parys

We would like to thank the discussants of our paper [6]
for their insightful comments and the authors in [11] for
their excellent work that collectively enhance our under-
standing of sparse regression. We would like to use this re-
joiner as an opportunity to emphasize some observations
made by these authors and that contribute, in our opinion,
to the dialog and provide some new insights. Throughout,
we use the notation in [6].

1. Sarwar et al. [16] provide a thorough and unified
comparison of the methods presented in both [6] and
[11], with an emphasis on computational tractability and
software. We are glad to see mixed-integer optimization
(MIO) approaches well represented in their benchmark
analysis. Yet, a decade ago, MIO techniques would not
have been included. Indeed, the sparse linear regression
problem

(1) min
w∈Rp

‖y − Xw‖2 + 1

2γ
‖w‖2

2 s.t. ‖w‖0 ≤ k,

is NP-hard. Unfortunately, the theory of NP-hardness
established in the early 1970s has contributed to the be-
lief in many scientific communities that discrete optimiza-
tion problems were intractable, which at the time and un-
til the mid-1990s was by and large justified. Since the
early 1990s, however, the field of MIO has made signif-
icant advances in our ability to model and solve high di-
mensional problems [4]. As far as best subset selection
is concerned, the papers [4, 6, 7] establish that approach-
ing sparsity exactly via MIO is computationally feasible
for n ∼ 200,000 and p ∼ 100,000. Sarwar et al. [16] also
included recent work [13, 14] that further extend the scal-
ability to n,p ∼ 106. These significant computational de-
velopments force us, in our opinion, to rethink the beliefs
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established in 1970 s that discrete optimization problems
are intractable. On the contrary, we believe that many car-
dinality problems in the field could now benefit from ad-
vances in MIO [2] and that discrete optimization meth-
ods should be included in the curriculum of graduate pro-
grams in statistics and machine learning.

2. In their excellent discussion, Chen et al. [9] pro-
vide a clarifying and structured survey of feature selection
methods. In their “additional thoughts,” they emphasize
alternative objectives to assess the quality of the selected
features, such as distributional robustness and stability. As
they recall, [1, 18] show that Lasso is equivalent to a ro-
bust linear regression problem

min
w

max
�∈U(λ)

∥
∥y − (X + �)w

∥
∥

2

= min
w

(‖y − Xw‖2 + λ‖w‖1
)
,

(2)

with U(λ) = {� : ‖�i‖2 ≤ λ}, where �i is the ith col-
umn of the matrix �. Specifically, Lasso assumes that
the columns of X are subject to adversarial noise �i

that is restricted to satisfy ‖�i‖2 ≤ λ, i ∈ [p] and finds
coefficients w that minimize the worst-case error ‖y −
(X + �)w‖2. In other words, Lasso attempts to immu-
nize (robustify) linear regression against perturbations
in the data. Note that similar results exist for ridge re-
gression but with a different noise model, that is, with
U(λ) = {� : (∑i∈[n],j∈[p] �2

ij )
1/2 ≤ λ}. Moreover, unlike

theorems about the feature selection ability of Lasso [8,
15, 17, 19], equation (2) universally holds without any
assumptions on the data. Together, this collection of re-
sults clearly indicates that �1-regularization undeniably
provides robustness and sometimes (depending on strin-
gent assumptions that are hard to verify) accurately se-
lects features. However, in the statistics community at
large, �1-regularization is mostly advertised and used as
a method that primarily induces sparsity (see [12] for an
overview). This belief plays down the importance of ro-
bustness in the practical success and relevance of Lasso.
Lasso is able to withstand noisy data in a very mathemati-
cally precise way, and real-world data is noisy. Moreover,
viewing Lasso as a feature selection term only suggests
excluding from the �1 penalty covariates that are known
to be part of the support (e.g., the intercept). By doing so,
the corresponding coefficients are no longer immunized
against noise. As rightfully observed by Chen et al. [9],
the search for sparsity should not outshine the need for
robustness.
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3. George [10] provides solid intuition on how the re-
laxed Lasso from [11] and the �0 − �2 estimators consid-
ered in [6] both balance feature selection with prediction
error. In the case of the �0 − �2 estimators (1), this trade-
off is explicitly modeled via the �0 constraint ‖w‖0 ≤ k

(for sparsity) and the �2 penalty 1
2γ

‖w‖2 (for robust-
ness). While Lasso addresses robustness only, through
�1-regularization, the relaxed Lasso proposed by Hastie
et al. [11] appears as an effective and tractable alterna-
tive which addresses the deficiencies of Lasso regarding
feature selection. Beyond the intuition, it would be in-
teresting to investigate how these two properties, sparsity
and robustness, come into play in the relaxed Lasso for-
mulation and theoretically evaluate its performance. Be-
sides sparsity and robustness, other desirable properties
are sought after in statistical estimators, such as group
sparsity, limited pairwise multicollinearlity, automatic de-
tection of nonlinear transformations, and statistical signif-
icance. On this regard, MIO modeling could be used to si-
multaneously take into account these desirable properties,
and whenever it is not possible to satisfy all these proper-
ties simultaneously, provide a guarantee that it is indeed
impossible to do so. We refer to [2], Chapter 5 and [3, 5]
for the development of this holistic regression framework.

CONCLUSIONS

In summary, we would like to thank the editorial team,
the anonymous reviewers and the discussants for their
contributions. We hope this issue will provide new in-
sights and guidance on feature selection in statistics, as
well as emphasize the importance that mixed-integer and
robust optimization should play in the future of the field.
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