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Model-Based Approach to the Joint Analysis
of Single-Cell Data on Chromatin
Accessibility and Gene Expression
Zhixiang Lin, Mahdi Zamanighomi, Timothy Daley, Shining Ma and Wing Hung Wong

Abstract. Unsupervised methods, including clustering methods, are essen-
tial to the analysis of single-cell genomic data. Model-based clustering meth-
ods are under-explored in the area of single-cell genomics, and have the ad-
vantage of quantifying the uncertainty of the clustering result. Here we de-
velop a model-based approach for the integrative analysis of single-cell chro-
matin accessibility and gene expression data. We show that combining these
two types of data, we can achieve a better separation of the underlying cell
types. An efficient Markov chain Monte Carlo algorithm is also developed.
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1. INTRODUCTION

Single-cell sequencing-based technologies have be-
come the primary tool to profile genomic features for
hundreds or even thousands of cells in parallel. The
measurement of gene expression is an imperfect sub-
stitute for the quantification of protein abundance. Al-
though the majority of single-cell genomic research
published to date focuses on characterizing gene expres-
sion at the single cell level, other single-cell sequenc-
ing technologies that capture functional genomic fea-
tures are emerging and the available datasets are grow-
ing (Rozenblatt-Rosen et al., 2017): including datasets
from single-cell ChIP-seq (Rotem et al., 2015), single-
cell methylation (Smallwood et al., 2014) and single-
cell chromatin accessibility (Buenrostro et al., 2015b,
Cusanovich et al., 2015). Different data types capture
complementary information and together they provide a
more complete view of the underlying biological process.
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Despite the fact that the data structures (genomic fea-
tures by samples/cells) are similar between single-cell ge-
nomic and bulk genomic data, the distinct characteris-
tics of single-cell genomic data poses challenges for data
analysis and opportunities for methodology development:
(a) abundance of zeros: the zeros in the data matrix can
be true biologically or false due to the failure to detect
the biological signal. Technical failure to detect the sig-
nal is commonly observed in single-cell data and is re-
ferred to as dropout for single-cell gene expression ex-
periments (Kharchenko, Silberstein and Scadden, 2014,
Zhu et al., 2018). (b) batch effect/confounding variation:
the standard balanced experimental designs are not pos-
sible for certain experimental protocols. These technical
variabilities have been demonstrated to affect single-cell
gene expression data analysis and a more comprehensive
discussion is presented in Hicks et al. (2018).

The characterization of cell types based on their ge-
nomic signatures is one of the key computational chal-
lenges in single-cell genomics as the cell identity is un-
known and needs to be inferred (Bacher and Kendziorski,
2016). The clustering methods developed so far have been
mostly focused on single-cell gene expression data, and
they can be classified as algorithm-based and probabilis-
tic model-based methods.

Algorithm-based clustering methods usually build upon
different similarity/distance metrics between the cells.
SNN-Cliq (Xu and Su, 2015) uses shared nearest neighbor
(SNN) graph based upon a subset of genes and clusters
cells by identifying and merging sub-graphs; pcaReduce
(Yau et al., 2016) integrates principal components analy-
sis and hierarchical clustering; RaceID (Grün et al., 2016)
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uses an iterative k-means clustering algorithm based on
a similarity matrix of Pearson’s correlation coefficients;
SC3 (Kiselev et al., 2017) is an ensemble clustering al-
gorithm that combines the clustering outcomes of several
other methods; CIDR (Lin, Troup and Ho, 2017) first im-
putes the gene expression profiles, calculate the dissim-
ilarly matrix based on the imputed data matrix, perform
dimension reduction by principal coordinate analysis and
finally perform clustering on the first several principal co-
ordinates; SIMLR (Wang et al., 2017) implements a ker-
nel based similarity learning algorithm, where RBF ker-
nel is utilized with Euclidean distance. The ‘Corr’ method
proposes a new cell similarity measure based on cell-pair
differentiability correlation and implements hierarchical
clustering. SAFE-clustering (Yang et al., 2018) is an-
other ensemble clustering algorithm that uses hypergraph-
based partitioning algorithms. SOUP (Zhu et al., 2019)
is a semi-soft clustering algorithm that first identifies the
set of pure cells by exploiting the block structures in the
cell-cell similarity matrix, use them to build the member-
ship matrix, and then estimates the soft memberships for
the other cells. For the analysis of single-cell epigenomic
data, such as single-cell chromatin accessibility, scABC
was proposed in Zamanighomi et al. (2018), where a
weighted K-Medoids clustering algorithm was proposed,
followed by aggregation of the reads within a cluster and
cluster reassignment by the nearest neighbor.

Probabilistic model-based approaches for clustering
single-cell data are still under-explored. DIMM-SC (Sun
et al., 2017) builds upon a Dirichlet mixture model and
is designed to cluster droplet-based single-cell transcrip-
tomic data. The benefit for model-based approaches is that
the clustering uncertainty can be quantified for each single
cell, facilitating rigorous statistical inference and biolog-
ical interpretations, which are typically unavailable from
algorithm-based clustering methods (except for SOUP).
Statistical inference of the clustering uncertainty can be
particularly important when there are cells at the inter-
mediate stage, which is expected in some biological pro-
cesses, such as the stem cell differentiation process and
carcinogenesis.

In this paper, we focus on the joint analysis of single-
cell gene expression and single-cell chromatin accessi-
bility data. Eukaryotic genomes are hierarchically pack-
aged into chromatin, and the nature of this packaging
plays a central role in gene regulation (Buenrostro et al.,
2013). ATAC-seq maps transposase-accessible chromatin
regions, and provides information for understanding this
epigenetic structure of chromatin packaging and for un-
derstanding gene regulation (Buenrostro et al., 2015a).
Single-cell chromatin accessibility (scATAC-Seq) maps
chromatin accessibility at single-cell resolution and pro-
vides insight on the cell-to-cell variation of gene regula-
tion (Buenrostro et al., 2015b).

Most current clustering methods are restricted to one
data type and do not address the increasingly common
situation where two or more types of single-cell genomic
experiments are performed on different subsamples (i.e.,
cells) from the same cell population (i.e., tissue/biological
sample) (Pollen et al., 2014, Buenrostro et al., 2015b,
Lake et al., 2018, Zamanighomi et al., 2018, Duren et al.,
2018). Given two data types obtained from the same cell
population but from different cells, our goal is to clus-
ter and match the cell types in these two data types (see
Figure 1(a)). The benefits of solving this “coupled clus-
tering” problem include the following: (1) the cell types
may be better separated combining multiple data types.
Different data types can have different power in separat-
ing the cell types (Corces et al., 2016) and combining all
the information can help us separate the cell types. More-
over, the batch effect/confounding variation is expected
to affect the data types differently and we may alleviate
this technical artifact via the integrative analysis (Zang
et al., 2016). (2) Matched clusters provide rich biologi-
cal information. Different data types provide complemen-
tary biological information and it is beneficial to match
the cell subpopulations at the cluster level (Duren et al.,
2017). The “coupled clustering” problem was first intro-
duced and tackled by the coupleNMF algorithm in Duren
et al. (2018). The coupleNMF algorithm is based on ex-
tensions of nonnegative matrix factorization (NMF). The
connection between chromatin accessibility and gene ex-
pression data builds upon prediction models trained from
bulk data with diverse cell types.

Here we propose a model-based approach to jointly
cluster single-cell chromatin accessibility and single-cell
gene expression data. Our approach has the following fea-
tures: (1) our model does not rely on training data to con-
nect the two data types; (2) The noisiness in single-cell
experiments is taken into account by explicitly modeling
the loss of biological signals; (3) How well the two data
types are matched is adaptively inferred from the data;
(4) Our model allows for statistical inference of the cluster
assignment; (5) An efficient Markov chain Monte Carlo
algorithm is developed that incorporates collapsing and
auxiliary variables.

2. STATISITCAL MODEL AND METHODS

A graphical overview of the model is presented in Fig-
ure 1(b).

2.1 Modeling Single-Cell Chromatin Accessibility
Data

Let uir denote the true status of a regulatory element
in the single-cell experiment, where uir = 1 indicates that
the element r is accessible in cell i and uir = 0 indicates
that it is not accessible. Let ũir denote the “contaminated”
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FIG. 1. (a) Schematic plot for the coupled clustering problem. (b) Graphical representation of the clustering model.

status due to the loss of biological signal in the experi-
mental process, which is commonly observed in single-
cell experiments. Let xir denote the observed data for ac-
cessibility. We propose the following model for single-
cell chromatin accessibility data:

(2.1)

ũir | uir ∼ uir Bernoulli(qi)

+ (1 − uir)Bernoulli(0),

p(xir | ũir ) = ũirf1(xir ) + (1 − ũir )f0(xir ),

where the loss of biological signal during the experimen-
tal process is modeled by a Bernoulli distribution with
probability qi , representing the capture rate, which is as-
sumed to be cell-specific. Conditioning on the status ũir ,
the observed accessibility xir follows a mixture distribu-
tion with components f1(·) and f0(·).
2.2 Modeling Single-Cell Gene Expression Data

Let vlg denote the true status of a gene in the single-
cell experiment, where vlg = 1 indicates that the gene g

is expressed in cell l and vlg = 0 indicates that it is unex-
pressed. Here we use a different notation for the cell label
to represent the fact that chromatin accessibility and gene
expression are measured on different cells. Let ṽlg denote
the “contaminated” gene status due to the loss of biologi-
cal signal in the experimental process (i.e., the “dropout”
event). Let ylg denote the observed gene expression level.

We propose the following model for single-cell gene ex-
pression data:

(2.2)

ṽlg | vlg ∼ vlg Bernoulli(ql)

+ (1 − vlg)Bernoulli(0),

p(ylg | ṽlg) = ṽlgg1(ylg) + (1 − ṽlg)g0(ylg),

where the loss of biological signal is also modeled by
Bernoulli distribution. Conditioning on the status ṽlg , the
observed gene expression ylg follows a mixture distribu-
tion with components g1(·) and g0(·).
2.3 Coupling the Two Data Types via Promoter

Activity

Let P = {(r, g), where promoter r regulates gene g}
represent the set of promoter-gene pairs, and we have
P ⊆ R × G. Here we focus on the subset of genes where
the gene is regulated by one promoter. Specifically, (r, g)

is included in P only if gene g has a unique promoter r

in RefSeq. This yields 5320 pairs of (r, g) for inclusion in
P in human. To link the two data types, we introduce an-
other layer of random variables in the hierarchical model:

(2.3)

vlg | ulr ∼ ulr Bernoulli(πl1)

+ (1 − ulr)Bernoulli(πl0),

where (r, g) ∈ P,
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where ulr is the unobserved promoter status for cell l and
gene g in the gene expression data. The additional layer
brings the necessary stochasticity to connect the two data
types: given that the promoter is accessible (i.e., ulr = 1),
the probability that the regulated gene being expressed is
πl1; On the other hand, the probability that the gene being
expressed is πl0 when the promoter is not accessible. We
assume that πl1 ≥ πl0. This is biologically meaningful as
the gene is more likely to be expressed when the promoter
is accessible.

2.4 The Model for Clustering

Let zik, k = 1, . . . ,K denote the cluster assignment for
cell i in the accessibility data, that is, zik = 1 or 0 depend-
ing on whether cell i belongs to cluster k or not. Similarly,
let zlk, k = 1, . . . ,K denote the cluster assignment for cell
l in the gene expression data.

Let RP denote the set of promoters represented in P

and R−P denote the other regulatory regions. Let GP de-
note the set of genes represented in P and G−P denote
the other genes.

Regulatory elements r ∈ R. We assume the following
clustering model:

(2.4) uir | zik = 1 ∼ Bernoulli(ωkr),

where the random variable ωkr denote the probability of
regulatory region r to be accessible in cluster k.

Genes g ∈ GP . Gene g is linked to promoter r and the
distribution vlg | ulr is specified in the previous section.
We assume the following clustering model:

(2.5)
ulr | zlk = 1 ∼ Bernoulli(ωkr),

for g ∈ GP and (r, g) ∈ P.

The accessibility data and the gene expression data are
connected at the cluster level, and ω·r represent the clus-
ter centers. The multiple-layer random variables incorpo-
rate the inherent stochasticity in the biological system. For
r ∈ RP , we use both the accessibility and the gene expres-
sion data to estimate ω·r ; And for r ∈ R−P , we use the
accessibility data alone to estimate ω·r .

Genes g ∈ G−P . These genes are not linked to the ac-
cessibility data and we assume the following clustering
model:

(2.6) vlg | zlk = 1 ∼ Bernoulli(ωkg), for g ∈ G−P ,

where ωkg is the cluster-specific probability of gene g to
be expressed, for g ∈ G−P . We acknowledge the misuse
of notation ω, which represents both the cluster-specific
regulatory region activity and the cluster-specific gene
activity. For g ∈ G−P , we use the gene expression data
alone to estimate ω·g .

2.5 Priors for qi , ql , πl1 and πl0

We assume the following flat priors for qi and ql :

qi ∼ Beta(α = 1, β = 1),

ql ∼ Beta(α = 1, β = 1).

We assume the following flat priors for πl1 and πl0:

πl0 ∼ Beta(α = 1, β = 1),

πl1 | πl0 ∼ 1πl1>πl0 Beta(α = 1, β = 1).

Acknowledging the misuse of notation, we use
1πl1>πl0 Beta(·) to represent the truncated beta distribu-
tion. As discussed previously, this prior specification re-
flects the assumption that a gene is more likely to be ex-
pressed when the promoter is accessible.

2.6 Priors for ω and More Flexibility

It can be desirable to introduce additional flexibility in
ω·r , r ∈ RP . Instead of setting ω·r , r ∈ RP to be the same
in the two data types, we may assume that ωacc·r and ω

exp·r
are different but related. In this case, the joint distribution
for ωacc

kr and ω
exp
kr is specified by the following conditional

probability:

(2.7)

ωacc
kr ∼ Beta(μ = μ0, ν = ν0),

ω
exp
kr | ωacc

kr∼ Beta(μ = ωacc
kr , ν = ν1),

⎫⎪⎬
⎪⎭ for r ∈ RP ,

ν0 = 2, ν1 ∼ unif[0,50],
where the beta distributions are parametrized by the mean
μ and precision ν. The key is the precision parameter ν1,
which represents how well the two data types are coupled
and is learned adaptively from the data. When ν1 is large,
ω

exp
kr is expected to be close to ωacc

kr , and the two data types
are coupled well. An alternative specification for ωacc

kr and
ω

exp
kr is the multivariate beta distribution (Olkin and Ru-

bin, 1964). However, we have found that the multivariate
beta distribution does not seem to work well in practice
for the joint model.

The priors for ωacc
kr , r ∈ R−P and ω

exp
kg , g ∈ G−P are as

follows:

ωacc
kr ∼ Beta(μ = μ0, ν = ν0), for r ∈ R−P ,

ω
exp
kg ∼ Beta(μ = μ1, ν = ν0), for g ∈ G−P .

In practice, we set μ0 = μ1 = 0.5, and the priors for
ωacc

kr and ω
exp
kg (for g ∈ G−P ) are assumed to be flat.

2.7 The Mixture Components

For scRNA-Seq data, we fit a two-component gamma
mixture model for the nonzero entries, through pooling
log2(TPM+1) over all the samples, and then the spike
at 0 is subsequently merged with the mixture component
that has a smaller mean. For scATAC-Seq data, as the read
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count matrix is very sparse with the majority nonzero en-
tries less than 5, we set f1(x) = 0 if x = 0 and f0(x) = 0
if x > 0. In the results section, we also implemented our
model for bulk DNase-Seq and bulk RNA-seq data. For
bulk DNase-Seq data, we fit a two component gamma
mixture model for the nonzero entries, through pooling
log 2(accessibility fold change + 1) over all samples, and
the spike at 0 is subsequently merged with the mixture
component that has a smaller mean. For bulk RNA-Seq
data, we fit a two component gamma mixture model,
through pooling log 2(FPKM + 1) over all samples, and
the spike at 0 is subsequently merged with the mixture
component that has a smaller mean. The gamma mixture
models are estimated with the expectation-maximization
(EM) algorithm as implemented in the R package mix-
tools (Benaglia et al., 2009).

2.8 Summary of the Clustering Model for the Joint
Analysis

Here we summarize the model (Figure 1(b)) that cou-
ples scATAC-Seq and scRNA-Seq data.

We start from the coupled features in the two data types,
where r ∈ RP is a promoter region and g ∈ GP is a gene
that is uniquely mapped to r . ωkr is the cluster-specific ac-
cessibility activity for region r in cluster k, and ur is the
true accessibility status for region r in a cell for scATAC-
Seq and scRNA-Seq data. If the cell is assigned to cluster
k (zk = 1), we draw ur from a Bernoulli distribution with
probability ωkr (equations (2.4) and (2.5)). The random
variable ωr connects the two data types. We assume that
ωacc

r (scATAC-Seq) and ω
exp
r (scRNA-Seq) are different

but dependent, to allow for more flexibility, and their dis-
tributions are specified by equation (2.7). The followings
are the other components for the coupled features in the
model:

• scATAC-Seq: ũr is the “contaminated” accessibility
status of region r due to the loss of biological signal in
the experimental process, and ũr | ur follows a mixture
of Bernoulli distributions, specified by equation (2.1);
xr is the observed scATAC-Seq data, xr | ũr follows a
mixture distribution, specified by equation (2.1).

• scRNA-Seq: vg is the true gene expression status for
gene g regulated by region/promoter r , and vg | ur fol-
lows a mixture of Bernoulli distributions, specified by
equation (2.3). ṽg is the “contaminated” gene expres-
sion status of gene g due to the loss of biological signal
in the experimental process, and ṽg | vg follows a mix-
ture of Bernoulli distributions, specified by equation
(2.2). yg is the observed scRNA-Seq data, and yg | ṽg

follows a mixture distribution, specified by equation
(2.2).

Next we discuss the uncoupled features in scATAC-Seq
data, where r ∈ R−P . The data generating model is the

same as that for r ∈ RP , except that we use scATAC-Seq
data alone to estimate ωacc

r for these features.
Finally, we discuss the uncoupled features in scRNA-

Seq data, where g ∈ G−P . ωkg is the cluster-specific gene
expression activity for gene g in cluster k, and vg is the
true gene expression status for gene g in a cell for scRNA-
Seq data. If the cell is assigned to cluster k (zk = 1), we
draw vg from a Bernoulli distribution with probability ωkg

(equation (2.2)). Specifications of ṽg | vg and xg | ṽg are
the same as that for the coupled features. We use scRNA-
Seq data alone to estimate ω

exp
g for these features.

3. STATISTICAL INFERENCE

We implement Markov chain Monte Carlo (MCMC) for
statistical inference. To improve the mixing, we incorpo-
rate the collapsed Gibbs sampler and introduce auxiliary
variable:

Collapsed Gibbs Sampler

In practice, we found that simple Gibbs sampling can
get trapped at some local areas of the posterior proba-
bility. We implement the collapsed Gibbs sampler (Liu,
Wong and Kong, 1994, Liu, 1994) by integrating out uir ,
ulr , vlg , and mixing is greatly improved:

ũir | zik = 1 ∼ Bernoulli
(
ωacc

kr qi

)
, for r ∈ R,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṽlg | zlk = 1 ∼ Bernoulli
(
ω

exp
kr qlπl1 + (

1 − ω
exp
kr

)
qlπl0

)
,

for g ∈ GP and (r, g) ∈ P,

ṽlg | zlk = 1 ∼ Bernoulli
(
ω

exp
kg ql

)
,

for g ∈ G−P .

Auxiliary Variable

The clusters in the two data types can be mismatched,
depending on the initialization. Although the posterior
probability will be higher when the clusters are correctly
matched, it is unlikely for Gibbs moves to escape from
such mismatches, given the high dimension of ω. To
achieve more efficient exploration of the alignment be-
tween clusters, we introduce an auxiliary variable h, a
permutation of 1, . . . ,K , representing how gene expres-
sion clusters are matched to the accessibility clusters. We
sample from h in MCMC.

The following are the details for our MCMC.
Update ũir . Let ηkir ≡ ωacc

kr qi . The variable can be sam-
pled directly from

p(ũir | ·) ∝ f1(xir )
ũir f0(xir )

1−ũir

×
K∏

k=1

[
(ηkir )

ũir (1 − ηkir)
1−ũir

]zik .

Update ṽlg for g ∈ GP . Let λklg ≡ ω
exp
kr qlπl1 + (1 −

ω
exp
kr )qlπl0, where (r, g) ∈ P . The variable can be sampled
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directly from

p(ṽlg | ·) ∝ g1(ylg)
ṽlgg0(ylg)

1−ṽlg

×
K∏

k=1

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]zlk .

Update ṽlg for g ∈ G−P . Let ηklg ≡ ω
exp
kg ql . The vari-

able can be sampled directly from

p(ṽlg | ·) ∝ g1(ylg)
ṽlgg0(ylg)

1−ṽlg

×
K∏

k=1

[
(ηklg)

ṽlg (1 − ηklg)
1−ṽlg

]zlk .

Update ωacc
kr for r ∈ RP . Let ηkir ≡ ωacc

kr qi . The vari-
able can be updated by the Metropolis-Hastings (MH) al-
gorithm:

p
(
ωacc

kr | ·)
∝ (

ωacc
kr

)ν0μ0−1(
1 − ωacc

kr

)−ν0μ0+ν0−1

×
nacc∏
i=1

[
(ηkir)

ũir (1 − ηkir)
1−ũir

]zik

× B
(
ν1ω

acc
kr ,−ν1ω

acc
kr + ν1

)(
ω

exp
kr

)ν1ω
acc
kr −1

× (
1 − ω

exp
kr

)−ν1ω
acc
kr +ν1−1

,

where B(·) is the beta function, and nacc is the number of
cells in single-cell chromatin accessibility data.

Update ωacc
kr for r ∈ R−P . The variable can be updated

by the MH algorithm:

p
(
ωacc

kr | ·) ∝ (
ωacc

kr

)ν0μ0−1(
1 − ωacc

kr

)−ν0μ0+ν0−1

×
nacc∏
i=1

[
(ηkir )

ũir (1 − ηkir )
1−ũir

]zik .

Update ω
exp
kr for g ∈ Gp and (r, g) ∈ P . The variable

can be updated by the MH algorithm:

p
(
ω

exp
kr | ·) ∝ (

ω
exp
kr

)ν1ω
acc
kr −1(

1 − ω
exp
kr

)−ν1ω
acc
kr +ν1−1

×
nexp∏
l=1

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]zlk ,

where nexp is the number of cells in single-cell gene ex-
pression data.

Update ω
exp
kg for g ∈ G−P . The variable can be updated

by the MH algorithm:

p
(
ω

exp
kg | ·) ∝ (

ω
exp
kg

)ν0μ1−1(
1 − ω

exp
kg

)−ν0μ1+ν0−1

×
nexp∏
l=1

[
(ηklg)

ũlg (1 − ηklg)
1−ũlg

]zlk .

Update qi . The variable can be updated by the MH al-
gorithm:

p(qi | ·) ∝ ∏
k,r

[
(ηkir )

ũir (1 − ηkir )
1−ũir

]zik .

Update ql . The variable can be updated by the MH al-
gorithm:

p(ql | ·) ∝ ∏
k

{ ∏
g∈GP

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]

× ∏
g∈G−P

[
(ηklg)

ṽlg (1 − ηklg)
1−ṽlg

]}zlk

.

Update πl0. The variable can be updated by the MH
algorithm:

p(πl0 | ·)
∝ 1πl0≤πl1

∏
k

{ ∏
g∈GP

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]}zlk

.

Update πl1. The variable can be updated by the MH
algorithm:

p(πl1 | ·)
∝ 1πl1≥πl0

∏
k

{ ∏
g∈GP

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]}zlk

.

Update ν1. The variable can be updated by the MH al-
gorithm:

p(ν1 | ·) ∝ 10≤ν1≤50
∏

k,r∈RP

[
B

(
ν1ω

acc
kr ,−ν1ω

acc
kr + ν1

)

× (
ω

exp
kr

)ν1ω
acc
kr −1(

1 − ω
exp
kr

)−ν1ω
acc
kr +ν1−1]

.

Update zik . For each sample i, (zik)k=1,...,K follows
multinomial distribution, and can be sampled directly:

p(zi· | ·) ∝ ∏
k,r

[
(ηkir )

ũir (1 − ηkir )
1−ũir

]zik .

Update zlk . For each sample l, (zlk)k=1,...,K follows
multinomial distribution, and can be sampled directly:

p(zl· | ·) ∝ ∏
k

{ ∏
g∈GP

[
(λklg)

ṽlg (1 − λklg)
1−ṽlg

]

× ∏
g∈G−P

[
(ηklg)

ṽlg (1 − ηklg)
1−ṽlg

]}zlk

.

Update h. The variable can be updated by the MH al-
gorithm (a proposal h′ is obtained by randomly switching
two entries in h):

p(h | ·)
∝ ∏

k

∏
r∈RP

(
ω

exp
hkr

)ν1ω
acc
kr −1(

1 − ω
exp
hkr

)−ν1ω
acc
kr +ν1−1

.

After h is updated, we shuffle ωexp and z according to
h, to match the clusters in the two data types.

Identifiability of the Cluster

The label switching problem arises when taking a
Bayesian approach to clustering using mixture models
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(Diebolt and Robert, 1994, Richardson and Green, 1997).
The problems are mainly caused by the nonidentifiability
of the components under symmetric priors, which leads to
so-called label switching in the MCMC output (Stephens,
2000). We implement the Equivalence Classes Represen-
tatives algorithm (Iterative version 1) to relabel the clus-
ter assignment matrix z in MCMC through the R pack-
age label.switching (Papastamoulis and Iliopoulos, 2010,
Rodríguez and Walker, 2014, Papastamoulis, 2016). The
algorithm only requires z as the input.

Variable Selection Before Clustering

It may be infeasible in practice to implement MCMC
on the whole dataset with all the features. In Sections 5.1,
5.2 and 5.3, we performed variable selection before we
implemented our clustering model. Although we may
lose information in the clustering step, performing vari-
able selection speeds up the computation and the num-
ber of variables becomes more balanced in the two data
types after variable selection. The number of variables
in chromatin accessibility data is much larger compared
with that in gene expression data. Without variable se-
lection, the clustering result may be dominated by the
chromatin accessibility data. To select the relevant vari-
ables, we first apply simple clustering methods with just
one data type (Zamanighomi et al., 2018), and then select
cluster-specific genes/regions (Zamanighomi et al., 2018,
Love, Huber and Anders, 2014). We select equal number
of variables in each cluster to balance the number of vari-
ables across the clusters. In Sections 5.1, 5.2 and 5.3, we
selected 1000 unlinked features (500 cluster-specific fea-
tures in scATAC-Seq and 500 cluster-specific features in
scRNA-Seq); And for the linked features, we selected 500
cluster-specific features in scATAC-Seq and 500 cluster-
specific features in scRNA-Seq.

4. SIMULATION STUDIES

4.1 Simulation Setup

In the simulated data, we assume that all the features
are linked. For simplicity of notation, we use j to repre-
sent the feature pair in the two data types. The number
of samples nacc = 100, and nexp = 100. The number of
features p = 100. The number of clusters K = 2. The fol-
lowings are the simulation scheme:

Generate ωacc. 20% of the features are differential
across the clusters: ωacc

kj = 0.8 for k = 1 and j = 1, . . . ,

10; ωacc
kj = 0.2 for k = 2 and j = 1, . . . ,10; ωacc

kj = 0.8
for k = 2 and j = 11, . . . ,20; ωacc

kj = 0.2 for k = 1
and j = 11, . . . ,20. For j = 21, . . . ,100, we generated
ωacc

1j = ωacc
2j ∼ Beta(μ = 0.5, φ = 2).

Generate ωexp. We generate ω
exp
kj ∼ Beta(μ = ωacc

kj , φ =
10) for j = 1, . . . ,20. We generate ω

exp
1j = ω

exp
2j ∼

Beta(μ = ωacc
1j , φ = 10) for j = 21, . . . ,100.

Generate zacc and zexp. The cluster labels are generated
with equal probability.

Generate uacc. We generate uacc
ij from Bernoulli(ωacc

kj ) if
zacc
ik = 1.
Generate ũacc. We generate ũacc

ij from Bernoulli(qi) if
uacc

ij = 1 and set ũacc
ij = 0 otherwise. We set qi = 0.5 for

i = 1, . . . , nacc.
Generate uexp. We generate u

exp
lj from Bernoulli(ωexp

kj ) if

z
exp
lk = 1.
Generate ṽexp. We generate ṽ

exp
lj from Bernoulli(θl1 =

qlπl1) if u
exp
lj = 1, and from Bernoulli(θl0 = qlπl0) if

u
exp
lj = 0.

Generate x. We generate xij from N (0,0.82) if ũacc
ij =

0, and generate xij from N (2,0.82) if ũacc
ij = 1.

Generate y. We generate ylj from N (0, σ 2) if ṽ
exp
lj = 0,

and generate ylj from N (2, σ 2) if ṽ
exp
lj = 1.

4.2 Simulation Result

We cluster the samples by assignment to the cluster
label with the maximum marginal posterior probability.
The simulation results are present in Table 1. To quan-
tify the clustering results, we used three criterions: purity,
Rand index and normalized mutual information (NMI).
We considered three simulation settings. The trends for
the three criterions are very similar over different simu-
lation settings. Compared with the first setting (σ = 0.8,
θl1 = 0.6, θl0 = 0.1), the second setting has a larger vari-
ance (larger σ ) in the mixture component for the gene ex-
pression data, and the third setting has a higher drop-out
rate (smaller θl1). We implemented our clustering model
either separately for the two data types (“Model, acc only”
and “Model, exp only”) or jointly (“Model, acc joint”
and “Model, exp joint”). As expected, compared with k-
means, the model-based approach achieves better cluster-
ing result. In the first simulation setting, combining the
information from both the accessibility and gene expres-
sion data (“Model, acc joint” and “Model, exp joint”)
leads to better clustering, compared with implementing
the model with the data types separately (“Model, acc
only” and “Model, exp only”). In the second and third
simulation settings, gene expression data is much noisier
and has lower power to separate the cell types: the purity
for clustering with gene expression data alone is close to
0.5, which is the expected purity for random assignment.
Incorporating the information from the accessibility data,
the clustering results for gene expression data improve
significantly. Moreover, we did not observe a decrease in
the clustering performance for the accessibility data. This
is likely due to the fact that all the model parameters are
learnt adaptively from the data in the model-based frame-
work.
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TABLE 1
Result of simulation study. NMI: normalized mutual information. The simulation results for 100 independent runs were summarized

Simulation Method Purity Rand index NMI

σ = 0.8, θl1 = 0.6, θl0 = 0.1 k-means, acc only 0.704 (0.009) 0.596 (0.008) 0.158 (0.013)
k-means, exp only 0.711 (0.009) 0.599 (0.007) 0.162 (0.011)
Model, acc only 0.807 (0.007) 0.695 (0.008) 0.318 (0.013)
Model, acc joint 0.848 (0.005) 0.744 (0.006) 0.403 (0.011)
Model, exp only 0.778 (0.008) 0.662 (0.008) 0.262 (0.013)
Model, exp joint 0.836 (0.005) 0.727 (0.006) 0.375 (0.010)

σ = 1.6, θl1 = 0.6, θl0 = 0.1 k-means, acc only 0.704 (0.009) 0.596 (0.008) 0.158 (0.013)
k-means, exp only 0.590 (0.005) 0.515 (0.003) 0.030 (0.004)
Model, acc only 0.812 (0.006) 0.698 (0.007) 0.323 (0.012)
Model, acc joint 0.821 (0.006) 0.709 (0.007) 0.342 (0.012)
Model, exp only 0.596 (0.006) 0.519 (0.003) 0.035 (0.004)
Model, exp joint 0.705 (0.006) 0.586 (0.004) 0.138 (0.007)

σ = 0.8, θl1 = 0.4, θl0 = 0.1 k-means, acc only 0.704 (0.009) 0.596 (0.008) 0.158 (0.013)
k-means, exp only 0.574 (0.005) 0.508 (0.002) 0.020 (0.003)
Model, acc only 0.807 (0.006) 0.693 (0.007) 0.314 (0.012)
Model, acc joint 0.811 (0.006) 0.699 (0.007) 0.325 (0.013)
Model, exp only 0.588 (0.006) 0.516 (0.003) 0.031 (0.004)
Model, exp joint 0.696 (0.006) 0.580 (0.005) 0.131 (0.008)

5. APPLICATION TO REAL DATA

5.1 In Silico Mixture of Single Cells

Next, we evaluate our method by jointly clustering
scATAC-Seq and scRNA-Seq data. We took 233 K562
and 91 HL60 scATAC-Seq samples (Buenrostro et al.,
2015b), and 42 K562 and 54 HL-60 deeply sequenced
scRNA-seq samples (Pollen et al., 2014). We perform in
silico mixture of the single cells and use the true cell label
as benchmark to evaluate the performance of the cluster-
ing methods. We first see if we can correctly match the
two cell lines in scATAC-Seq and scRNA-Seq data. We
implemented the model and use 0.5 as the threshold for
posterior probability as there are two classes. The two cell
types are perfectly separated and correctly matched in the
two data types (Figure 2(a)).

We then downsampled the scRNA-Seq samples, mim-
icking single-cell experiments with shallow sequencing
depth. We implemented the drop-out model (Pierson and
Yau, 2015). Denote hij the number of reads for gene
j in cell i, and let μij = log2(hij + 1). The drop out

probability (Pierson and Yau, 2015) pij = exp−λμ2
ij . The

downsampled read count h′
ij = 0 if gene j is dropped

out in sample i, and otherwise h′
ij = hij . The parameter

λ controls the drop-out rate. In the downsampling pro-
cedure, we chose different λs for the two cell types, so
that the distributions for the number of expressed genes
are more similar. We set λ = 0.0025 for K562 cells, and
λ = 0.00182 for HL60 cells. For scATAC-Seq samples,
we implemented a similar downsampling scheme with
λ = 0.025 for both cell types as the number of zero en-
tries are similar.

After downsampling, it is hard to separate K562 and
HL60 using scRNA-Seq or scATAC-Seq alone (Fig-
ure 2(b)). Using our model-based approach, the two cell
types are separated reasonably well and the cell types
are correctly matched in the two data types (Figure 2(c)).
The cluster purities for scATAC-Seq and scRNA-seq sam-
ples are 82.5% (259/314) and 85.4% (82/96). One ad-
vantage of our clustering method is that the model-based
framework enables statistical inference of the cluster as-
signment. The distribution for the posterior probability
of cluster assignment for scATAC-Seq data is shown in
(Figure 2(d)). If we use a more stringent threshold (0.95)
for the posterior probability of cluster assignment and do
not cluster those cells with higher uncertainty, the clus-
tering purity for scATAC-Seq samples improves to 86.1%
(237/275).

5.2 Retinoic Acid Induction of Mouse Embryonic
Stem Cells

This data set is from a recent experiment in our lab,
where mouse embryonic stem cells (mESC) were treated
with Retinoic Acid (RA) and the cells were harvest at in-
duction day 4. Both scATAC-Seq (420 cells) and scRNA-
Seq (464 cells) data are available under the GEO database
with accession numbers GSE115968 and GSE115970.
We compared the result of our model-based analysis to
that of our previous analysis using coupleNMF (Duren
et al., 2018). While coupleNMF connects the two data
types based on prediction models trained from bulk data,
our model-based approach does not rely on pre-trained
prediction models. In general, the clustering results are
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FIG. 2. Results for in silico mixture of single cells. (a) Clustering table for model-based approach. (b) Clustering table for k-means clustering,
downsampled data. (c) Clustering table for model-based clustering, here we cluster by maximum marginal posterior probability of clustering
assignment. (d) Distribution for the posterior probability of clustering assignment (left). Clustering table for model-based approach (right), here
we use 0.95 as the threshold: we only cluster cells that have maximum marginal posterior probability greater than 0.95.

quite comparable between the two methods. For scATAC-
Seq data, the clustering result is quite similar, with only
29 among 420 cells clustered differently. For scRNA-Seq
data, the clustering result is more different, with 48 cells
among 464 cells clustered differently. Visualization of the
clustering result is presented in Figure 3(b). The visual-
ization result for coupleNMF is slightly different from
the plots in (Duren et al., 2018), due to the randomness
in t-SNE algorithm. The major difference is the cluster
assignment for clusters 1 and 3, where 18 scATAC-Seq
cells assigned to cluster 3 by coupleNMF are assigned
to cluster 1 by our model, and 38 scRNA-Seq cells as-
signed to cluster 1 by coupleNMF are assigned to cluster
3 by our model. For a more detailed comparison, we com-
pared the clustering result via transcriptional factor (TF)
motif score in scATAC-Seq data and TF gene expression
in scRNA-Seq data. The genes Ebf1, Gata4 and Rfx4 are
important TFs for the stem cell differentiation process and
were identified as signatures for the clusters in Duren et
al. (2018). Cluster 1 cells tend to have higher TF motif
score and gene expression level for Ebf1, lower TF mo-
tif score and gene expression level for Rfx4, and cluster
3 cells are the opposite. The 18 cells that are clustered
differently in scATAC-Seq data tend to have intermediate
levels of motif score for Ebf1 and Rfx4. For scRNA-Seq
data, separation of the clusters seems slightly better in our
model, based on the expression levels of Ebf1 and Rfx4.

5.3 Demonstrating the Potential for Batch Effect
Correction with a Bulk Data Example

The purpose of this example is to demonstrate that by
combining chromatin accessibility and gene expression
data, we may be able to correct for technical variation,
which is commonly observed in single-cell data (Hicks et
al., 2018). Although our modeling framework is designed
for single-cell data, it can be applied to bulk data as well.

We tested our method with a collection of three cell
types (fibroblasts, epithelial and endothelial cells) from
the ENCODE Project Consortium (Dunham et al., 2012,
Sloan et al., 2015) and the Roadmap Project (Kundaje et
al., 2015). These are bulk DNase-Seq and bulk RNA-Seq
samples. The three cell types are well separately using
DNase-Seq data (Figure 4(a)). However, using RNA-Seq
data alone, it seems hard to separate the three cell types
(Figure 4(a) and (b)). The observation that RNA-Seq sam-
ples are hard to separate is likely due to technical reasons
as the samples are processed on different batches from
different laboratories. However, we did not observe the
trend of the samples to cluster by laboratories (Supple-
mentary Material Figure S2 (Lin et al., 2020)). Combin-
ing DNase-Seq data, we are able to achieve a good separa-
tion of the three cell types in RNA-Seq data (Figure 4(c)).
To obtain the clustering table in Figure 4(c), we imple-
mented our model in a stepwise manner: (1) we first clus-
ter DNase-Seq samples with k-means (the clustering re-
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FIG. 3. Results for RA induction of mESC. (a) comparison of the clustering table, our model-based approach vs. coupleNMF. (b) t-SNE plot for
visualization of the clustering result. (c) Boxplots for the motif score and expression level for the transcriptional factors Ebf1, Gata4 and Rfx4.

sult is similar when we implement our model on DNase-
Seq data alone), (2) then we estimate the model param-
eters using DNase-Seq data alone with the cluster labels
fixed to the result in the first step, (3) and finally we clus-
ter RNA-Seq samples via the model with the parameter
ωr fixed to the posterior mean in the second step. The
benefit of the stepwise approach is mostly computational,
as the chain converges much faster with some parameters
fixed. When one data type is strong at separating the cell
types, we do not lose much information by implementing
the stepwise approach. The stepwise approach also sug-

gest an option to combine our model-based approach with
other clustering methods.

6. CONCLUSIONS

Unsupervised methods, such as dimension reduction
and clustering are essential to the analysis of single-cell
genomic data as the cell types need to be inferred. Model-
based clustering methods have the advantage of quantify-
ing the uncertainty in the cluster assignments and they are
under-explored in the area of single-cell genomics. Com-
bining the information across different types of genomic
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FIG. 4. Results for the three cell types bulk data example. (a) Principal Component Analysis (PCA) for fibroblast, epithelial and endothelial
samples, using log 2(fold change + 1) of accessible regions in DNase-Seq data (left) and log 2(FPKM + 1) of all genes in RNA-Seq data (right). (b)
Clustering table using k-means clustering algorithm for the RNA-Seq samples. (c) Clustering table (left) using k-means clustering algorithm for the
DNase-Seq (fibroblast, epithelial and endothelial) samples. Clustering table (right) using the model-based approach, where all RNA-Seq samples
(fibroblast, epithelial and endothelial) are assigned to the DNase-Seq clusters with the highest posterior probability.

features can provide rich biological insight and can lead
to better separation of the cell types. We have developed
a model-based approach that is specifically designed for
single-cell genomic data and can jointly cluster single-cell
chromatin accessibility and single-cell gene expression
data. Our modeling framework is general and it can be ex-
tended to other types of single-cell genomic data, such as
single-cell methylation data. The R package is available
at https://github.com/cuhklinlab/scACE.
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