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Bayes, Oracle Bayes and Empirical Bayes
Bradley Efron

Abstract. This article concerns the Bayes and frequentist aspects of empir-
ical Bayes inference. Some of the ideas explored go back to Robbins in the
1950s, while others are current. Several examples are discussed, real and ar-
tificial, illustrating the two faces of empirical Bayes methodology: “oracle
Bayes” shows empirical Bayes in its most frequentist mode, while “finite
Bayes inference” is a fundamentally Bayesian application. In either case,
modern theory and computation allow us to present a sharp finite-sample
picture of what is at stake in an empirical Bayes analysis.

Key words and phrases: Finite Bayes inference, g-modeling, relevance,
empirical Bayes regret.

1. INTRODUCTION

Empirical Bayes is the newest addition to the statis-
tician’s arsenal of inferential methodologies. By now,
though, new isn’t very new. Robbins’ 1951 introduc-
tion of compound decision procedures marks a start-
ing point, with the name “empirical Bayes” attached
in his 1956 paper. The resulting era has provided us
with more than 65 years of experience and exploration.
Zhang (2003) gives an excellent brief review of Rob-
bins’ work and subsequent developments.

Considering the enormous gains potentially avail-
able from empirical Bayes methods, the effects on sta-
tistical practice have been somewhat underwhelming.
A paucity of appropriate data sets has been part of the
bottleneck. To be effective, empirical Bayes techniques
require large numbers of parallel estimation or testing
problems. Modern scientific technology excels in this
direction, but before the introduction of microarrays in
the 1990s, large-scale parallel inference problems were
thin on the ground. The big data era should be a favor-
able one for empirical Bayes applications.

That being said, more data by itself might not fully
open the floodgates. Empirical Bayes has suffered from
a philosophical identity problem. Not firmly attached
to either frequentism or Bayesianism, expositions of
empirical Bayes typically hover uncertainly around the
middle. In practice, empirical Bayes analysis employs
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both frequentist and Bayesian inferential techniques.
The main purpose of this paper is to clarify its dual
nature. The basic ideas go back to the 1950s, but sub-
stantial improvements in theory—and enormous im-
provements in computation—enable a sharper picture
to emerge. A second purpose is to review some of the
current technology and show it in action, with an em-
phasis on precise finite-sample performance.

We will work in the following simplified frame-
work: unobserved parameters θi have each indepen-
dently generated an observation xi according to a
known probability kernel p(x | θ),

(1) xi
ind∼ p(xi | θi), i = 1,2, . . . ,N.

Normal and Poisson distributions will be featured, xi ∼
N (θi,1) and xi ∼ Poi(θi), these being the most famil-
iar and also the most amenable choices. It is desired to
estimate the θ ’s. Robbins’ key idea, and the launching
point for empirical Bayes theory, is that the entire data
set x = (x1, x2, . . . , xN) can profitably be employed in
the estimation of each θi .

Section 2 introduces “oracle Bayes,” as in Jiang and
Zhang (2009), Brown and Greenshtein (2009), and oth-
ers, an artificial construction we will use here to em-
phasize the frequentist side of empirical Bayes appli-
cations. Later examples, both genuine and simulated,
develop the Bayesian side of the story, a salient differ-
ence being whether the statistician is interested in indi-
vidual inferences as opposed to some omnibus measure
of accuracy for the entire vector θ = (θ1, θ2, . . . , θN).
“Finite Bayes,” Section 6, makes the individual infer-
ence problem explicit.
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Empirical Bayes procedures typically add the as-
sumption that the parameters θi in (1) have been in-
dependently drawn from some hidden prior density

(2) θi
ind∼ g(θ), i = 1,2, . . . ,N.

This raises the fundamental question of estimating g(·)
from the observed data set x. Nonparametric estimates
are available (Kiefer and Wolfowitz, 1956, Laird, 1978,
Koenker and Mizera, 2014) but here we will emphasize
parametric modeling as in Efron (2016). (Section 6 in-
cludes some comments on nonparametric methods.)

The simplest case, where g(θ) is assumed to be
normal, relates to the James–Stein estimator. Morris
(1983) provided a normality-based theory of empiri-
cal Bayes confidence intervals. A more general but less
exact approach to posterior intervals is discussed in
Section 6, where the Type 3 bootstrap methodology of
Laird and Louis (1987) plays a role. Posterior interval
inference emphasizes the Bayesian side of empirical
Bayes theory.

The marginal density f (x) obtained from (1)–(2),

(3) f (x) =
∫
T

g(θ)p(x | θ) dθ,

T the space of possible θ values, is central to em-
pirical Bayes procedures, since (x1, x2, . . . , xN) is no
more than a random sample from f (·). In certain cases,
and in fact in most of the familiar empirical Bayes ap-
plications, only f (·) need be estimated, thus avoiding
the difficult deconvolution problems of estimating g(·).
This is true for the oracle Bayes setup of Section 2.
Both f -modeling and g-modeling—in the terminology
of Efron (2014), that is, modeling f (x) or g(θ)—are
discussed in what follows, the latter inherently more
attuned to the Bayesian side of empirical Bayes.

Most of the methodology reported in this paper is
not new. Technical matters will mostly be deferred to
the remarks of Section 8, clearing the way for a broad
discussion of the Bayesian and frequentist aspects of
empirical Bayes applications. This is not a survey arti-
cle. It reflects my own point of view while skimping,
with apologies, on much of the current resurgence of
work on empirical Bayes methods.

2. ORACLE BAYES

Suppose we observe a normal version of model (1),

(4) xi
ind∼ N (θi,1), i = 1,2, . . . ,N,

and use the data set x = (x1, x2, . . . , xN) to form es-
timates θ̂1, θ̂2, . . . , θ̂N , our goal being to minimize the

expected average mean square error (ASE)

(5) ASE = Eθ

{
N∑

i=1

(θ̂i − θi)
2
/

N

}
.

The expectation here is over model (4), with the θi’s
fixed.

Using the maximum likelihood estimates (MLEs)
θ̂i = xi yields

(6) ASEMLE = 1.

However, a friendly Oracle has told us the order statis-
tic of the true θi values, that is, their ordered values
from smallest to largest

(7) θord = {
θ(1), θ (2), . . . , θ (N)},

but not which observation x goes with which θ , allow-
ing us to do better.

The oracle Bayes setup (4)–(5) is pursued in Jiang
and Zhang (2009) and Brown and Greenshtein (2009),
where sharp asymptotic bounds of compound and em-
pirical Bayes procedures are developed. The name “or-
acle Bayes” is more picturesque than Robbins’ original
“compound” nomenclature, and is used here to empha-
size the kind of finite-sample risk calculations that fol-
low, as opposed to asymptotics.

Let ḡ(θ) denote the discrete density putting proba-
bility 1/N on each point θ(i),

(8) ḡ(θ) =
N∑

i=1

δ
(
θ − θ(i))/N,

δ(·) the delta function at zero. Thanks to the Oracle we
can compute eḡ(x), the Bayes posterior expectation of
θ given x, for prior ḡ(·),

(9) eḡ(x) =
N∑

i=1

θ(i)φ
(
x − θ(i))/ N∑

i=1

φ
(
x − θ(i)),

with φ(x) the standard normal density exp{−x2/2}/√
2π . The estimates

(10) θ̂i = eḡ(xi)

will beat ASEMLE = 1. A standard argument shows
that the resulting ASE is the squared-error Bayes risk
for estimating a single θ from x ∼ N (θ,1), given
prior ḡ(θ). (Rule (9), θ̂i = eḡ(xi), gives minimum ASE
among “separable rules” θ̂i = e(xi), where e(·) is a
fixed function not depending on i; see Section 2.1 of
Jiang and Zhang, 2009.)

In the example of Figure 1, θord comprises N = 1500
values located in “two towers,” 500 between −1.7 and



BAYES, ORACLE BAYES AND EMPIRICAL BAYES 179

FIG. 1. Two towers example: N = 1500 parameters θi are known to follow the Oracle’s solid red histogram, 500 in the left tower, 1000

in the right. We observe xi
ind∼ N (θi ,1) for i = 1,2, . . . ,1500 (dashed black histogram) and wish to estimate (θ1, θ2, . . . , θ1500). Using the

Oracle’s information reduces ASE by more than 40%; empirical Bayes methods allow us to do almost as well without the Oracle’s help.

−0.7, and 1000 between 0.7 and 2.7, as shown by the
solid red histogram. The black dashed histogram in-
dicates 1500 xi values from a particular realization of
(4). (The position of the towers was chosen to make the
marginal density of the xi ’s just barely bimodal.)

Formula (28) of Section 3, applied to the ora-
cle Bayes estimation rule (9), gave expected average
squared error

(11) ASEḡ = 0.563

for the two towers prior ḡ. Compared with ASEMLE =
1.0, the Oracle’s information has saved us more than
40% of the average estimation error.

Of course, real-life oracles are in short supply. This
is where empirical Bayes makes its entrance: the full
data set x = (x1, x2, . . . , xN) is used to form an esti-
mate ĝ(·) of the empirical density ḡ(·), from which we
calculate its Bayes posterior expectation,

(12)

eĝ(x) =
∫
T

θĝ(θ)φ(x − θ) dθ/∫
T

ĝ(θ)φ(x − θ) dθ,

yielding estimates θ̂i = eĝ(xi).
These cannot be as accurate as the oracle Bayes es-

timates eḡ(xi), but the empirical Bayes regret may be

surprisingly small. The g-modeling methods of Table 1
in Section 4 give

(13) EBregret = ASEĝ − ASEḡ = 0.008,

so ASEĝ = 0.571 is still more than 40% less than
ASEMLE. Effectively, we have fashioned our own ora-
cle from the data. The EBregret formula in Section 4
suggests regret declining as 1/N with sample size.
Reducing N from 1500 to 150 increases EBregret to
about 0.08, giving ASEḡ

.= 0.64, still much less than
ASEMLE.

All of these inferences are frequentist in nature. First
of all, ASE is a frequentist criterion. Moreover, the
Bayesian assumption θi

ind∼ g(θ) (2) plays only a mo-
tivational role behind ḡ or ĝ, and is irrelevant to their
application. In Figure 1, for example, the θ ’s of the left
tower might relate to traffic accidents and those of the
right to flood damage claims, or there might be dozens
of other θ types among the 1500. Even so, the 40%
reduction in ASE could still be meaningful, say to an
insurance actuary planning next year’s rates.

The Bayesian side of empirical Bayes emerges when
we take an estimated prior ĝ(θ) seriously for the infer-
ence of an individual parameter θi , perhaps through the
posterior density

(14) ĝ(θi | xi) = ĝ(θi)p(xi | θi)/f̂ (xi),
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f̂ the marginal density (3) corresponding to ĝ. Now
we wouldn’t want to mix traffic accidents with flood
claims.

This brings up the question of relevance: what cases
can legitimately be combined in an empirical Bayes
analysis? An example of the tension between omnibus
accuracy—that 40% reduction—and individual rele-
vance will be taken up in Section 7 in the context of an
fMRI study. Efron and Morris (1972) considered rele-
vance questions in terms of the James–Stein estimator,
perhaps the best-known empirical Bayes construction.
See also Chapter 7 of Efron and Hastie (2016). Sec-
tion 6 here, on “finite Bayes,” directly examines the
estimation of a single θi of interest within an empirical
Bayes framework.

3. BAYES RISK AND REGRET

The oracle Bayes model looks more familiar if we
let the number of cases N go to infinity in (1)–(2).
Then ḡ(θ) (8) converges to g(θ), and the inference for
any one θi follows from the usual single-case Bayesian
setup,

(15) θ ∼ g(θ) and x | θ ∼ p(x | θ).

From this viewpoint, standard Bayes is oracle Bayes,
where past experience has provided the oracle.

The next two paragraphs review Bayesian estimation
of θ for model (15). We assume that x given θ is unbi-
ased with variance V (θ),

(16) x | θ ∼ (
θ,V (θ)

)
,

and denote the posterior expectation and variance of θ

given x by

(17) θ | x ∼ (
eg(x), vg(x)

);
θ̂ = eg(x) is the Bayes estimate of θ under squared er-
ror loss. Its overall Bayes risk Rg is

(18)

Rg = E
{
(θ̂ − θ)2}

=
∫
T

∫
X

(
eg(x) − θ

)2
p(x | θ)g(θ) dθ

=
∫
X

vg(x)f (x),

where f (x) is the marginal density (3) and X is the
sample space of the observations x.

Now suppose that instead of eg(x), we must use
some other estimate θ̂ = ê(x). This increases the over-

all risk versus prior g(θ) to

(19)

R(g, ê) = E
{(

ê(x) − θ
)2}

= E
{(

ê(x) − eg(x) + eg(x) − θ
)2}

= Rg + E
{(

ê(x) − eg(x)
)2}

,

so our regret is

(20) R(g, ê) −Rg =
∫
X

(
ê(x) − eg(x)

)2
f (x) dx.

The unbiased estimate ê(x) = x has Bayes risk

(21) R(g, ê) =
∫
T

V (θ)g(θ) dθ ≡ Vg,

the average variance. Formula (20) provides a conve-
nient expression for Rg that we will use later.

LEMMA 3.1.

(22) Rg = Vg −
∫
X

(
x − eg(x)

)2
f (x) dx.

The difference between x and eg(x) determines the
amount of Bayesian savings available.

Tweedie’s formulas (Efron, 2011) provide useful ex-
pressions for eg(x) and vg(x). Suppose p(x | θ) in (15)
is a one-parameter exponential family,

(23) p(x | θ) = eθx−ψ(θ)p0(x),

with natural parameter θ , sufficient statistic x, nor-
malizing function ψ(θ), and base density p0(x). Let
l(x) be the log of the marginal density f (x) (3) and
l0(x) = logp0(x). Tweedie’s formulas give convenient
expressions for eg(x) and vg(x) (17),

(24)
eg(x) = E{θ | x} = l̇(x) − l̇0(x),

vg(x) = Var{θ | x} = l̈(x) − l̈0(x),

the dots indicating first and second derivatives with re-
spect to x. See Remark A of Section 8.

The normal case (4) has densities p(x | θ) equaling

(25) e−(x−θ)2/2/
√

2π = eθx−θ2/2φ(x),

so p0(x) in (23) is φ(x) and l0(x) = −x2/2− log
√

2π .
Tweedie’s formulas become

(26) eg(x) = x + l̇(x) and vg(x) = 1 + l̈(x).

(See Remark B of Section 8 for xi ∼ N (θi, σ
2), σ 2

known.) From (18), we obtain the overall Bayes risk
Rg ,

(27)

Rg =
∫ ∞
−∞

(
1 + l̈(x)

)
f (x) dx

= 1 −
∫ ∞
−∞

l̇(x)2f (x) dx,
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FIG. 2. Posterior expectation eḡ(x) (9) for the oracle prior ḡ(·) of Figure 1; vertical dashed bars indicate ± one posterior standard

deviation vḡ(x)1/2. Dashed red line is main diagonal. Small triangles show the indicated percentiles for the marginal density fḡ(x).

the final expression obtained by integrating l̈(x) =
f̈ (x)/f (x) − (ḟ (x)/f (x))2. It can also be written as

(28) Rg = 1 −
∫ ∞
−∞

(
x − eg(x)

)2
dx

using (26), this being the same as Lemma 3.1 (22) since
Vg = 1 in situation (4).

Figure 2 shows eḡ(x) (9), the posterior expectation
E{θ | x} for the oracle prior (8). Numerical integration
of formula (28) gives (11),

(29) ASEḡ =Rḡ = 0.563.

The dashed vertical green bars indicate Bayes posterior
variability

(30) eḡ(x) ± vḡ(x)1/2.

To restate a previous point, Figure 2 is a purely fre-
quentist construction: it depends only on θord (7) and
not on any Bayesian assumptions regarding the θi ’s,
such as (2). Assumption (2) becomes crucial if we use
the figure for statements of posterior inference such as

(31) Pr
{
θi ∈ eḡ(xi) ± 1.96vḡ(xi)

1/2 | xi

} .= 0.95,

as discussed in Section 6.

4. f -MODELING AND LINDSEY’S METHOD

We would like to estimate the Bayes risk Rḡ , or ASE
(5), from the observed data x = (x1, x2, . . . , xN), with-
out the help of an oracle. Looking at Figure 1, a simple
procedure suggests itself:

1. Estimate the marginal density f (x) (3) by a
smooth curve f̂ (x) drawn through the bar tops of the
black dashed histogram.

2. Estimate the conditional expectation eḡ(x) =
E{θ | x} according to (26),

(32) ê(x) = x + d

dx
log f̂ (x).

3. Estimate Rḡ using Lemma 3.1 (22).

Step 1 is a definitional statement of f -modeling.
Nonparametric or semiparametric techniques are avail-
able, but efficiency can be crucial here. A parametric
approach using Lindsey’s method, as in Section 5.2 of
Efron (2010), is particularly easy to implement. The
sample space X is partitioned into K bins; for bink we
compute the count yk of observations it contains,

(33) yk = #{xi in bink},
and also its centerpoint x(k). Figure 1 has K = 109
bins, each of width 0.10, with yk proportional to the
height of the black bars.
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In the computations that follow, f = (f1, f2, . . . ,

fK) will represent a discrete probability distribution
for observation x,

(34) fk = Pr{x ∈ bink},
with f̄ = (f̄1, f̄2, . . . , f̄K) denoting the marginal den-
sity induced by θord (7) and f̂ = (f̂1, f̂2, . . . , f̂K) the
density corresponding to f̂ (x); similarly, we write ê =
(ê1, ê2, . . . , êK) for the vector of estimates (32) evalu-
ated at the bin centers x(k).

Lindsey’s method uses Poisson regression to esti-
mate f (x). The counts yk are taken to be independent
Poisson variates with expectations proportional to fk ,

(35) yk
ind∼ Poi(N · fk) for k = 1,2, . . . ,K;

logf is assumed to have a linear form

(36) logf = Mβ,

M a given K × p structure matrix and β an unknown
p-dimensional parameter vector; finally f̂ is estimated
by Poisson regression,

(37) f̂ = glm(y ∼ M, poisson)$ fit/N

in R notation.

The three-step algorithm was carried out using the
data from the black dashed histogram of Figure 1, with

(38) M = ns(x(),df = 7),

x() = (x(1), x(2), . . . , x(K)) the vector of bin centers and
“ns” indicating natural splines, here invoked with 7 de-
grees of freedom. It gave estimated Bayes risk (22)

(39) R̂ = 1 −
K∑

k=1

f̂k(x(k) − êk)
2 = 0.541.

Its actual ASE versus θord from the Oracle was, using
(11) and (20),

(40) R(ḡ, ê) = Rḡ +
K∑

k=1

f̄k(êk − ēk)
2 = 0.580.

So EBregret = 0.580 − 0.563 = 0.017.
The fitting procedure is illustrated in the left panel

of Figure 3: open circles plot the log counts versus bin
centers (ignoring zeros),

(41)
(
x(k), log{yk/N}), k = 1,2, . . . ,K;

the black curve plots f̄k , the Oracle’s true marginal
density (11); and the red dashed curve plots f̂k , the es-
timated density from Lindsey’s method (37).

FIG. 3. Estimating Bayes risk (ASE) from the sample of N = 1500 observations in Figure 1. Left panel: Open circles log{yk/N}; black
solid curve log{f̄k}, true oracle marginal density; red dashed curve log{f̂k} from f -modeling. Right panel: Corresponding estimates of
e(x) = E{θ | x}; green dotted curves are from g-modeling.
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TABLE 1
Simulation study of 100 samples (4), N = 1500, from θord in Figure 1. Estimated Bayes risk R̂ (39) and actual Bayes risk (ASE) R(ḡ, ê)

(40) computed using f - and g-modeling (both methods employed natural spline models with 7 degrees of freedom); g-modeling reduced
EBregret by more than half. “Formula EBregret” used f -modeling as in Lemma 4.1 (47) and g-modeling as in Remark F of Section 8. The

value EBregret = 0.008 in (13) is from the entry 0.0082 here

Estimated True True Formula
Bayes risk Bayes risk EBregret EBregret

f g f g f g f g

mean 0.557 0.589 0.581 0.571 0.0184 0.0082 0.0119 0.0064
stdev 0.024 0.018 0.007 0.003 0.0074 0.0031 0.0010 0.0011

It looks like a close fit, but going from f̂ (x) to
ê(x) (32) (using finite differences of log f̂k) exacer-
bates small errors, especially near the extreme values
of x. This is seen in the right panel of Figure 3, where
the true ē(x) is compared with ê(x). The error in (40),∑

f̄k(êk − ēk)
2, is mitigated by the small values of f̄k

near the extremes, but is still substantial.
A second pair of estimates f̂ (x) and ê(x) are shown

as the green dotted curves in Figure 3. These are based
on g-modeling as described in Section 5, where expo-
nential family models are applied to g(θ) rather than
f (x). The prior g(θ) is hidden in empirical Bayes ap-
plications, which makes g-modeling inherently more
formidable than f -modeling, but often less noisy.

That is the case here. Table 1 reports on a simula-
tion study in which 100 samples x = (x1, x2, . . . , xN),
N = 1500, were drawn according to (4) with the θ val-
ues equaling θord in Figure 1 and the fitting done as in
(37); R̂ and R(ḡ, ê), (39) and (40), were computed for
each sample, for both f - and g-modeling. The table
lists means and standard deviations for the 100 trials;
g-modeling was consistently less noisy and more ac-
curate. In particular, the EBregret R(ḡ, ê) − Rḡ was
halved by g-modeling.

In addition to estimating the Bayes risk (39) from the
observed data x, we might wish to estimate the empir-
ical Bayes regret R(ḡ, ê) −Rḡ ,

(42) EBregret =
K∑

k=1

f̄k(êk − ēk)
2.

This is more difficult since regret is the difference
of two risks. A useful but not fully dependable delta
method formula is discussed next.

Let μk = Nfk so that yk
ind∼ Poi(μk) for k = 1,2,

. . . ,K in (35), or more succinctly,

(43) y ∼ Poi(μ).

Poisson generalized linear models (GLMs) assume that
the vector log(μ) = (· · · log(μk) · · · ) is equivalent to
form (36),

(44) log(μ) = Mβ,

where M is a known K × p structure matrix and β is
an unknown p-dimensional parameter vector. (p = 8
in (37)–(38), including the intercept term.)

Also let Ṁ be the N × p matrix

(45) Ṁ = DM,

where D is an operator that differentiates the rows
of M . For ease of application, if x() is a regular grid
of points with spacings 	 then we can take D to be the
K × K matrix having kth row

(46)
(

0,0, . . . ,0,− 1

2	
,0,

1

2	
,0, . . . ,0

)
,

the nonzeros in places k − 1 and k + 1 (with modifica-
tions at k = 1 and K).

LEMMA 4.1. A delta method estimate for EBregret
is

ÊBregret

= 1

N
trace

{(
M ′ diag(f̂ )M

)−1(
Ṁ

′
diag(f̂ )Ṁ

)}
,

(47)

diag(f̂ ) the diagonal matrix with entries f̂k .

A derivation is given in Remark B of Section 8.
Lemma 4.1 approximates (êk − ēk)

2 by an estimate of
Var(êk), ignoring bias. Bias, however, is a major factor
in the example of Figure 1, where the smooth model
(38) is poorly matched to the discontinuous two towers
prior. For the 100 trials involved in Table 1, ÊBregret
from (47) averaged 0.0119, compared to 0.0184 for the
true EBregret.
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TABLE 2
Simulation study of 100 samples (4), N = 3200, from fixed θord determined by (48); true ASE Rḡ = 0.489; see Section 6. Both f - and
g-modeling employed natural spline models with 5 degrees of freedom. Now f -modeling is more competitive, and the sample-based

EBregret formulas are more accurate

Estimated True True Formula
Bayes risk Bayes risk EBregret EBregret

f g f g f g f g

mean 0.481 0.494 0.496 0.493 0.0068 0.0036 0.0060 0.0032
stdev 0.014 0.013 0.005 0.001 0.0052 0.0014 0.0002 0.0008

A less pathological situation is the gamnormal ex-
ample featured in Section 6, where θord is determined
by

(48) θi
ind∼ Gamma9/3 for i = 1,2, . . . ,N = 3200,

Gamma9 a gamma variate with 9 degrees of freedom,
and xi

ind∼ N (θk,1) as before. It has oracle ASE Rḡ =
0.489.

A simulation study similar to that in Table 1 was run
for situation (48), with the results reported in Table 2.
Here both f - and g-modeling relied on natural splines
with 5 degrees of freedom. Now f -modeling was more
competitive, though it still gave larger and more vari-
able realizations of EBregret. Formula (47) averaged
0.0060 compared to 0.0068 for the average true regret.
A data-based formula for estimating EBregret—which
does include a bias term—is discussed in Section 8. It
performed moderately well in Table 1 and Table 2.

5. POISSON OBSERVATIONS AND g-MODELING

The very earliest empirical Bayes papers—Fisher,
Corbet and Williams (1943), Good and Toulmin
(1956), Robbins (1956)—involved Poisson observa-
tions xi ,

(49)
θi

ind∼ g(θ),

xi
ind∼ Poi(θi) for i = 1,2, . . . ,N.

Poisson data is more interesting than the normal case
(4) in the sense that there is more than one obvious path
to follow.

Robbins provided a notable Poisson formula for
eg(x) = E{θ | x},
(50) eg(x) = (x + 1)f (x + 1)/f (x),

where f (x) is the marginal density of x,

(51) f (x) =
∫
T

p(x | θ)g(θ) dθ,

p(x | θ) = e−θ θx/x! for x = 0,1,2, . . . . See for exam-
ple, Chapter 6 of Efron and Hastie (2016). Similar rea-
soning gives the conditional variance vg(x) = Var{θ |
x},
(52) vg(x) = eg(x)

(
eg(x + 1) − eg(x)

)
.

Formulas (50) and (52) provide an impetus for f -
modeling: in an empirical Bayes situation, where g(·)
is unknown in (49), we need only estimate f (·) to ap-
proach the Bayes estimate and its risk.

Corbet’s butterfly data, Table 3, has a claim to be-
ing the initial vehicle for empirical Bayes analysis.
Alexander Corbet, prominent naturalist, had been trap-
ping butterflies in Malaysia (then Malaya) for two
years in the early 1940s: 118 very rare species had been

TABLE 3
Corbet’s butterfly data. After two years in Malaysia, Corbet had trapped 118 species just one time each, 74 species twice each, etc.,
N = 501 species in total. He asked Fisher to calculate how many new species would be seen if trapping continued for another year

x 1 2 3 4 5 6 7 8 9 10 11 12
y 118 74 44 24 29 22 20 19 20 15 12 14

x 13 14 15 16 17 18 19 20 21 22 23 24
y 6 12 6 9 9 6 10 10 11 5 3 3
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trapped just once each, 74 twice each, etc., as shown in
the table,

(53) yx = #{species having xi = x}
reported for x = 1,2, . . . ,24. The total number in the
table is N = 501 = ∑

yx . Corbet asked R. A. Fisher
how many new species he could expect to see if he con-
tinued trapping for one more year. We will return to the
answer at the end of this section.

We assume model (49), that species i is observed ac-
cording to a Poisson distribution having expectation θi ,
but with an important modification: that xi is only ob-
served if it falls into

(54) X = {1,2, . . . ,24};
that is, xi follows a truncated Poisson distribution,

(55) θi
ind∼ g(θ), xi

ind∼ PoiX (θi),

PoiX (θ) having exponential family density function

(56) p(x | θ) = e−θ θx/(x!Pθ) for x ∈X ,

where Pθ = ∑
X e−θ θx/x!. Truncation modifies the

marginal density f (x) and the effective prior density
g(θ), but Robbins’ formulas (50) and (52) remain valid
as stated; see Remark D.

The points in Figure 4 plot y versus x from Table 3.
A smooth curve N · f̂ (x) has been fit to the points by

Lindsey’s method (37), using a natural spline model on
X with five degrees of freedom,

(57)
f̂ = glm(y ∼ ns(X, df = 5),

poisson)$ fit/N,

with k in (33) the same as x here; notice that the Pois-
son assumption in (57) is distinct from that in (49). The
fit is excellent: chi-squared = 12.2 on 18 = 24 − 6 de-
grees of freedom.

The famous (or notorious) Zipf’s law predicts

(58) yx = y1/x for x = 1,2, . . . ,

plotted as the light dashed curve in Figure 4. This also
fits reasonably well: chi-squared 28.1 on 23 = 24 − 1
degrees of freedom, p-value 0.21. Zipf’s law interacts
in a surprising way with Robbins’ formula (50): if f (x)

is proportional to 1/x then, from (50),

(59) eZipf
g (x) = x.

That is, the Bayes estimate E{θ | x} is identical to the
“MLE” θ̂ = x. (The quotes are a reminder that θ̂ = x

is not exactly the MLE for a truncated Poisson distri-
bution, a distinction ignored in the next paragraph.)

The Poisson family has variance V (θ) = θ in (16),
so that Vg (21) equals

∫
T g(θ)θ dθ , the overall expec-

tation of θ ; this is the same as the marginal expectation

FIG. 4. Corbet’s butterfly data. Red points are the (x, y) data from Table 3; solid black curve is natural spline Poisson regression fit, 5
degrees of freedom (57). Light green dashed curve follows Zipf’s law: ŷx = y1/x.
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FIG. 5. Solid black curve is Robbins’ estimate (62) for E{θ | x} based on natural spline estimate f̂ (x) in Figure 4; red dashed curve is
g-modeling estimate described in the text. It closely follows Zipf’s estimate E{θ | x} = x.

of x, suggesting the estimate

(60) V̂g = x̄

for use in (22), equaling 6.60 for the butterfly data.
Lemma 3.1 then gives Bayes risk

(61) Rg = 6.60 − ∑
X

fx

(
x − eg(x)

)2
,

the second term, or Bayes savings, depending on the
discrepancy between eg(x) and x = e

Zipf
g (x).

The solid black curve in Figure 5 shows

(62) êg(x) = (x + 1)f̂ (x + 1)/f̂ (x)

from the Robbins f -modeling estimate in Figure 4.
Substituting fx = f̂ (x) and eg(x) = êg(x) in (61)
yields the risk estimate

(63) R̂g = 6.60 − 2.33 = 4.27.

This looks suspect. Robbins’ formula has magnified
the small bumps seen in Figure 4 into large waves in
Figure 5, particularly at the right-hand side where the
counts are small, enlarging the negative term in (61).
With a sample size of only N = 501, it is easy to
believe that estimates (62) and (63) are dangerously
noisy.

The red dashed curve in Figure 5 is based on g-
modeling; that is, an estimate of the prior ĝ(θ) has been

obtained from the butterfly data by a method described
below, directly yielding the posterior expectation

(64) eĝ(x) = Eĝ{θ | x}.
Now R̂g = 6.60 − 0.048 = 6.55 which perhaps seems
more reasonable.

Poisson inference problems are often better phrased
in terms of the natural parameter

(65) λ = log θ.

This is attractive here since the butterfly data is concen-
trated at small values, where θ itself is a blunt instru-
ment. Tweedie’s formulas (24) for the Poisson family
are

(66)
eg(x) = E{λ | x} = ˙lgamma(x + 1) + l̇(x),

vg(x) = Var{λ | x} = ¨lgamma(x + 1) + l̈(x),

the same holding for the truncated Poisson, Remark D.
Here lgamma is the log gamma function, the dots indi-
cating first and second derivatives, and l(x) = logf (x)

as before. See Section 2 of Efron (2011).
Figure 6 is the version of Figure 5 that applies to λ

rather than θ . The same f -modeling estimate f̂ (x) that
gave ê(x) from Robbins’ formula (50) now gives the
solid black curve “fmod,” using (66) with l(x) replaced
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FIG. 6. Estimates of E{λ | x}, λ = log θ , butterfly data. Black solid curve: f -modeling estimate, Tweedie’s formula using f̂ from Figure 4.
Red dashed curve: g-modeling estimate as explained in text. Green dotted curve: MLE (x, logx).

by l̂(x) = log f̂ (x). Likewise, the same g-modeling es-
timate ĝ(θ) for the prior density g(θ) now gives the red
dashed curve “gmod” for Ê{λ | x} using Bayes rule,

(67) Eĝ{λ | x} =
∫
T log θĝ(θ)p(x | θ) dθ∫

T ĝ(θ)p(x | θ) dθ
.

It closely tracks the light dotted green MLE curve
(x, logx), the logarithmic version of Zipf’s law.

Table 4 shows estimates of Bayes risk Rg—or, more
directly for the population of 501 species in Table 3,
the ASE (5)—and of the empirical Bayes regret (13)
for λ, for both f - and g-modeling. The risk esti-
mates are not very different, 0.316 versus 0.334, the
latter being nearly the same as that for Zipf’s rule
λ̂ = logx. Lemma 4.1’s estimate EBregret = 0.0024
for f -modeling seems small, but was verified by a

TABLE 4
Estimates of Bayes risk Rg and empirical Bayes regret EBregret

for λ = log θ , butterfly data. f -modeling: Rg using (18), EBregret
from Lemma 4.1 (47). g-modeling: Rg using (18), EBregret as

described in Remark F

Bayes risk Rg EBregret

f -modeling 0.316 0.002
g-modeling 0.334 0.018

bootstrap simulation: 200 multinomial samples y(j) of
size N = 501 were drawn from f̂ ; f̂ (j) and ê(j), (57)
and (62), were calculated; and regret estimated accord-
ing to the last term in (20). The 200 bootstrap regret
estimates averaged 0.0026. Regret associated with g-
modeling was estimated by a method described in Sec-
tion 8, Remark F.

The basic idea of g-modeling (Efron, 2016) is sim-
ple: the prior density g(θ) is modeled as a low-
dimensional exponential family, for example,

(68) loggβ(θ) =
J∑

j=0

βjθ
j ;

gβ(·) induces a marginal density fβ(x) as in (3); fi-
nally, ĝ = g

β̂
(·) is found by numerical maximization

of the log likelihood,

(69) β̂ = arg max
β

{
N∑

i=1

logfβ(xi)

}
.

Some details appear in Remark F of Section 8.
For the butterfly data, g(θ) was assumed to follow

a natural spline with five degrees of freedom; this is a
version of (68) with the powers θj replaced by a dif-
ferent set of basis polynomials, B-splines Hastie, Tib-
shirani and Friedman (2009), Chapter 5. Table 5 shows



188 B. EFRON

TABLE 5
The g-modeling estimate of E{λ | x} in Figure 6. Comparison of
the posterior standard deviation of λ given x with the frequentist

root mean square error of E{λ | x}

x E{λ | x} sd{λ | x} Freq RMSE

2 0.40 0.731 0.078
6 1.74 0.432 0.033

10 2.27 0.313 0.024
14 2.59 0.260 0.019
18 2.84 0.237 0.024
22 3.05 0.229 0.058

the resulting estimate of the posterior mean and stan-
dard deviation of λ given x.

The final column gives the frequentist root mean
square errors (RMSEs) of Ê{λ | x}, the red dashed
curve in Figure 6, which are seen to be rather small.
Empirical Bayes estimation, more than full Bayes,
encourages frequentist calculations of accuracy. Re-
mark F reviews the RMSE calculations.

The estimate of prior density g(θ) obtained by max-
imum likelihood in the natural spline model is graphed
in the left panel of Figure 7. Actually, ĝ(θ) has been
transformed to a density g̃(λ) for λ = log θ , that is,
g̃(λ) = ĝ(θ)θ , to avoid the pile-up of g(θ) near θ =
0. The right panel shows the estimated cdf Ĝ(θ) =

∫ θ
0 ĝ(t) dt , again plotted versus λ. Speaking loosely, λ

is close to uniform between −1 and 3.
The red vertical bars in Figure 7 indicate ± one fre-

quentist root mean square error. We see that, as usual,
the cdf is estimated more accurately than the density
itself. Empirical Bayesian estimation of quantities be-
yond the scope of f -modeling are permitted by g-
modeling, for instance, P̂r{θ ≤ 1 | x = 3} (calculated
to be 0.126 here).

Empirical Bayes can be said to begin with Corbet’s
question to Fisher: “How many new species can I ex-
pect to find in one more year of trapping?” It can be
shown that the expected number of new species in t

years of additional trapping, say new(t), is

(70) E
{
new(t)

} = N

∫
T

e−θ 1 − e−θt/2

1 − e−θ
g(θ) dθ.

See Remark G. The solid curve in Figure 8 shows the
g-modeling values of new(t), with frequentist standard
deviation indicated by vertical bars. At year t = 1 we
get

(71) E
{
new(1)

} = 47.6 ± 4.4.

Good and Toulmin’s (1956) nonparametric f -modeling
estimate, indicated by red dots in Figure 8, gave
45.2 ± 9.3. See Section 11.5 of Efron (2010).

FIG. 7. Left panel: Estimated prior density for λ = log θ , butterfly data, based on natural spline model with 5 degrees of freedom for g(θ).
Right panel: Corresponding estimate of cdf. Red bars indicate ±1 root mean square frequentist error; see Remark F.
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FIG. 8. Estimated number of new butterfly species captured in t additional years of trapping, obtained by substituting g-modeling estimate
ĝ(θ) in (70). Red dots show Good and Toulmin’s nonparametric f -modeling estimate; green vertical bars indicate ±1 frequentist RMSE for
the solid curve.

Once again, the assumption θi
ind∼ g(θ) (2) plays only

a motivational role here; ĝ(θ) in Figure 7 estimates
ḡ(θ), the empirical density of θord (7), regardless of
θord’s provenance. We don’t have a butterfly oracle for
guidance but Table 4 says we hardly need one. The
more-Bayesian side of empirical Bayes analysis shows
itself in the next section, where we consider posterior
inferences for individual parameters θi .

6. FINITE BAYES INFERENCE

We return to empirical Bayes model (1)–(2),

(72) θi
ind∼ g(θ) and xi

ind∼ N (θi,1)

for i = 1,2, . . . ,N , with g(·) unknown and the θi un-
observed. One more x has been observed, independent
of the N other observations, say

(73) x0 ∼ N (θ0,1),

with the unobserved θ0 drawn independently from g(·).
Our goal is to assess the posterior distribution of θ0
given x0 and x = (x1, x2, . . . , xN). Unlike ASE in Sec-
tion 2, now we are specifically interested in θ0, not
some omnibus loss function over all the θi’s.

An example appears in Figure 9: x0 = 5, while of the
N = 50 others x = (x1, x2, . . . , xN), 47 are less than 5.
What can we say about θ0? This can be called the finite

Bayes inference problem. If N were infinity we could
deconvolute x to learn g(θ) exactly, and then use Bayes
rule to calculate g(θ0 | x0)—which is to say that stan-
dard Bayes is finite Bayes with N = ∞.

A fully Bayesian approach to the finite Bayes prob-
lem would begin by putting a hyperprior h(g) on the
choice of g(·). This is the Bayes empirical Bayes ap-
proach of Deely and Lindley (1981). Choosing h(·)
is an uncertain task, however, and having done so it
still can be difficult to compute the resulting poste-
rior distribution for θ0. Instead, we will employ em-
pirical Bayes g-modeling estimates ĝ(·), g-modeling
being necessary here for the calculation of ĝ(θ0 | x0).
Now the assumption that all the θ ’s are generated from
θ ∼ g(·) is crucial. It is what makes the “sibling” obser-
vations x1, x2, . . . , xN relevant to the inference of θ0.

Morris (1983) considered the question of setting ac-
curate empirical Bayes confidence intervals in the case
where the prior density is normal, the James–Stein
case. In the simplest situation, we have

(74) θi
ind∼ N (0,A), xi | θi

ind∼ N (θi,1),

for i = 1,2, . . . ,N , A unknown, so that

(75) θi | xi ∼N (Cxi,C)
[
C = A/(A + 1)

]
.
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FIG. 9. Finite Bayes inference. We observe x0 = 5 and N = 50 other values x1, x2, . . . , xN indicated by the histogram. All 51 xi ’s are
obtained independently as in (72). What can we say about θ0, the parameter that produced x0?

The James–Stein rule θ̂i = Ĉxi substitutes the unbiased
estimate

(76) Ĉ = 1 − (N − 2)
/ N∑

i=1

x2
i

for C. Looking at (75), this suggests

(77) Ĉxi ± z(1−α/2)Ĉ1/2

as a level 1−α posterior interval for θi given xi , where
z(α) is the standard normal quantile �−1(α), for exam-
ple, z(0.95) = 1.96.

The trouble, as Morris points out, is that (77) doesn’t
take into account the variability of Ĉ as an estimate
of C. A wider interval,

(78) Ĉxi ± z(1−α/2)

{
Ĉ + 2

N − 2

[
xi(1 − Ĉ)

]2
}1/2

,

is necessary to give more accurate 1−α coverage. With
N = 20, Ĉ = 1/2, and xi = 3, for example, (78) is 22%
wider than (77). Interval (78) approximates what we
would get from a full Bayesian analysis of (74) that
began with an uninformative hyperprior on A.

Morris’ intervals are based on the assumption of a
Gaussian prior. Here we will discuss g-modeling ap-
proaches to more general finite Bayes inference prob-
lems, substituting computer power for mathematical
analysis in going from the equivalent of (77) to (78).

The finite Bayes computations of this section pro-
ceed in five steps:

1. Data set x gives an estimated prior density ĝ(θ)

by g-modeling.
2. The estimated marginal density f̂ (x) = ∫

T ĝ(θ) ×
p(x | θ) dθ is computed.

3. Parametric bootstrap data sets x∗ = (x∗
1 , x∗

2 , . . . ,

x∗
N) are drawn from f̂ (·),

(79) x∗
i

ind∼ f̂ (·) for i = 1,2, . . . ,N.

4. Data set x∗ gives ĝ∗(θ) using the same g-model
as in Step 1.

5. Some large number B of bootstrap priors ĝ∗(·)
are averaged to give a corrected prior,

(80) g̃(θ) = 1

B

B∑
j=1

ĝ∗j (θ).

The idea here, taken from Laird and Louis (1987),
is that the bootstrap distribution of ĝ∗(θ) mimics the
posterior variability of g(θ) given x in a full Bayesian
analysis that began with an uninformative hyperprior
h(g). If so, the corrected posterior density

(81) g̃(θ0 | x0) = g̃(θ0)p(x0 | θ0)/f̃ (x0)

—here f̃ (x0) = ∫
T p(x0 | θ)g̃(θ) dθ , with p(x | θ) =

φ(x − θ)—approximates g(θ0 | x0) from a full Bay-
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FIG. 10. Solid black curve: Corrected posterior density g̃(θ0 | x0 = 5) from the 50 observations xi in Figure 9, using model ns(θ,df = 5).
Green dotted curve: Estimated prior g̃(θ) (80) B = 1000. Red dashed curve: Likelihood φ(θ − x0). Light beaded curve: True posterior
density g(θ0 | x0) based on Gamma9/3 prior.

esian analysis. The averaging process in (80) will usu-
ally make g̃ broader than ĝ.

The solid black curve in Figure 10 graphs g̃(θ0 |
x0 = 5) from the 50 observations in Figure 9. It as-
sumed model (72), and was computed using the five-
step algorithm; the g-model was a natural spline with
five degrees of freedom, with B = 1000 in (80). The
green dotted curve is g̃(θ), while the red dashed curve
is the likelihood function φ(θ0 − x0) for θ0 given just
x0 = 5—that is, ignoring the 50 sibling observations.
Not ignoring them has a powerful effect on our beliefs
concerning θ0: g̃(θ0 | x0) has its maximum at θ0 = 3.8,
compared to the MLE 5, and puts only 18% of its pos-
terior probability above 5.

The gamnormal example (48) comprises N = 3200
values θi obtained from a Gamma9/3 distribution
(mean = 3 and variance = 1) and 3200 correspond-
ing observations xi

ind∼ N (θi,1). The first 50 xi ’s are
those in the histogram of Figure 9. A light black beaded
curve in Figure 10 traces the true posterior density
g(θ0 | x0 = 5) based on the Gamma9/3 prior; g̃(θ0 | x0)

is seen to be reasonably accurate considering its basis
of only 50 siblings.

Correction (80) is impactful in this case, both g̃(θ)

and g̃(θ0 | x0 = 5) being more than 25% wider than

the uncorrected versions. Increasing the number N of
sibling observations, from 50 to 100,200, . . . ,3200,
quickly decreases correction effects, as seen in Table 6.
Even for N = 50, g̃(θ0 | x0) was only a modest im-
provement over the uncorrected ĝ(θ0 | x0) as far as
comparisons with the true g(θ0 | x0) go.

Correction method (80) has its critics—Carlin and
Gelfand (1991) and Section 5 of Efron (1996)—who
provide more accurate but also more involved boot-
strap algorithms. Applied to the Morris Gaussian prior
situation (74), (80) gives corrections similar to (78),
for example, 27% dilation compared to 22% in the ex-
ample following (78). Laird and Louis (1987) provide
some favorable simulation results. As Table 6 suggests,
correction effects are likely to be small when N is in

TABLE 6
Ratio of spreads of corrected densities g̃(θ) (80) compared to
uncorrected g-model estimates ĝ(θ), assuming natural spline
model with df = 5. Data x is first N observations of the 3200
gamnormal draws. Each g̃(·) based on B = 1000 bootstrap

replications. “Spread” is distance between αth and (1 − α)th
quantiles, averaged over α = 0.90,0.80,0.70,0.60

N 15 25 50 100 200 400 800 1600 3200
ratio 1.55 1.45 1.27 1.11 1.06 1.04 0.96 0.97 0.96
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FIG. 11. Smoothed posterior percentiles 2%,5%, . . . ,98% of corrected estimates g̃(θ0 | x0 = 5) based on first N siblings, gamnormal
example, as N increases. Points at extreme right are percentiles of true posterior g(θ0 | x0 = 5) for θ ∼ Gamma9/3. See Remark H.

the thousands range. In any case, the bootstrap repli-
cations ĝ∗j (·) (80) can also be used to assess frequen-
tist standard errors—of ĝ(θ | x), Ê{θ | x}, etc.—which
will be the same as the Laird–Louis assessments of
Bayesian accuracy.

How many sibling observations are enough? An an-
swer must depend on the shape of the true prior density
g(θ) and the assumptions of the g-modeling procedure.
In the gamnormal example, employing a natural spline
model with df = 5, useful results were obtained for N

as small as 15.
This doesn’t mean that larger values of N are point-

less. Figure 11 graphs the percentiles of the corrected
posterior densities g̃(θ0 | x0 = 5) as N increases from
15 to 3200 in the gamnormal example; B = 1000 boot-
straps for each N . (There has been some smoothing;
see Remark H.) What is perhaps surprising is that some
“learning” is going on even for large N , as seen most
vividly in the decline of the 0.98 percentile curve.

Points at the extreme right of Figure 11 show per-
centiles of the true posterior density g(θ0 | x0 = 5).
These are not quite the same as what we would get by
extending the figure’s range toward N = ∞. The class
of prior densities obtainable from natural spline mod-
els with five degrees of freedom does not include the
Gamma9/3 density, causing a small amount of model-
ing bias.

Nonparametric g-modeling is an appealing remedy
for modeling bias: in empirical Bayes situations such
as (49)–(72), we find the prior distribution that max-
imizes the likelihood of the observed data x with-
out restrictions on the form of g(·). Impressive the-
oretical work on nonparametric maximum likelihood
(NPMLE) solutions (Kiefer and Wolfowitz, 1956,
Laird, 1978) still left the problem computationally
forbidding. Progress in convex optimization (Gu and
Koenker, 2016) has now crossed that river. Extensive
theoretical and computational calculations in Jiang and
Zhang (2009) demonstrate excellent performance for
NPMLE methods, for model (72), in terms of the ASE
criterion (5). If p(x | θ) is N (θ,1) in (15), then it turns
out that E{θ | x} is monotone increasing in x. Koenker
and Mizera (2014) use methods that enforce mono-
tonicity on Ê{θ | x} to improve the efficiency of non-
parametric g-modeling methods.

Application of g-modeling to the full gamnormal
data set, N = 3200, were carried out using natural
spline models ns(θ,df) with df = 5,20, and 80. The
last of these approximates NPMLE. Figure 12 shows
the resulting uncorrected estimates ĝ(θ). For df = 80,
ĝ(θ) is almost a discrete distribution supported on three
points, in agreement with Laird’s characterization of
NPMLE solutions. The three ĝ(·) estimates had EBre-
gret 0.008, 0.009, and 0.006, respectively. The oracle
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FIG. 12. Prior density estimates ĝ(θ) based on all N = 3200 gamnormal observations. For natural spline g-models and degrees of freedom
5, 20, and 80. Light black dotted curve is the true prior density Gamma9/3.

ASE (5) was 0.489, making empirical Bayes regret
negligible in this case.

In the normal theory empirical Bayes model (72), the
marginal density f (x) is always smooth, but the prior
density g(θ) can be smooth (the gamnormal model) or
unsmooth (the two towers example of Figure 1). This
makes g-modeling inherently more problematic than
f -modeling. The model choice ns(θ,df = 5) in Fig-
ure 12 is a bet on smoothness. Our estimation formulas
for Bayes risk and EBregret can assist in the betting
process. My own preference has been to test out quite
smooth models first, and hope they give satisfactory re-
sults, at least in the sense that the predicted marginal
density f̂ (x) is a reasonable fit to the observed data.
That being said, there is no denying the subjective na-
ture of the model-fitting process.

The g-model choice ns(θ,df = 5) for the two towers
example gave a bimodal ĝ(·) estimate, with the nodes
correctly centered on the separate towers but with some
nonzero probability between them. A referee carried
out the NPMLE calculation for Figure 1. ĝ(·) was sup-
ported on three points, θi = −1.25,1.15,2.40, with
weights approximately 0.25, 0.42, 0.33, a good match
to the oracle.

Matching is less important for omnibus criteria such
as ASE. From Robbins to the present, most empiri-
cal Bayes work has been carried out in an omnibus

setting, which can be taken, perhaps, as a rationale
for the NPMLE. NPMLE is less attractive in a fi-
nite Bayes framework, or whenever individual infer-
ences are needed, where its extreme graininess pro-
duces unattractive posterior distributions.

Making a bet on smoothness doesn’t rule out incor-
porating discrete atoms into g-modeling. Section 21.4
of Efron and Hastie (2016) illustrates a two-sample mi-
croarray analysis where the g-model includes an atom
at θ = 0, to accommodate the presumably large propor-
tion of “null” genes, and a ns(θ,df = 5) component for
the non-null cases, a so-called “spike and slab” prior.

In the finite Bayes setup, the sibling observations
xi are related to the object of interest θ0 through the
Bayesian relationship θi ∼ g(·) for i = 0,1,2, . . . ,N .
Suppose instead the relationship is through a regression
model

(82) θi = c′
iβ (i = 0,1,2, . . . ,N),

where the ci are known covariate vectors and β is an
unknown parameter vector. Under mild conditions, as
N → ∞ the MLE θ̂ converges in distribution to the
true value θ0. This isn’t the case for the finite Bayes sit-
uation, where the best we can hope for is convergence
to the true posterior density g(θ0 | x0). In this sense,
sibling observations are weaker than regression obser-
vations xi = c′

iβ + εi but, as Figure 10 shows, they can
still have a powerful effect on our beliefs about θ0.
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7. RELEVANCE

We return to the question of relevance raised at the
end of Section 2: which other cases are relevant to our
beliefs concerning a particular parameter θ0?

Questions of relevance can be especially pressing
when the individual observations are accompanied by
covariate information. Such a situation is illustrated in
Figure 13: 12 children, six dyslexic and six normal
controls have received a DTI (diffusion tensor imag-
ing) scan, measuring fluid flow at N = 15,443 brain
locations or voxels. Each voxel provided a two-sample
statistic z comparing dyslexics with normal controls,
with

(83) zi ∼N (δi,1), i = 1,2, . . . ,N = 15,443,

to a good approximation; δi is the effect size for
voxeli , and of course the investigators were interested
in voxels having δi much different than zero. (See
Schwartzman, Dougherty and Taylor, 2005 and Sec-
tion 15.6 of Efron and Hastie, 2016.)

The left panel of Figure 13 plots the zi vertically ver-
sus di , the voxel distance from the back of the brain.
The large red dot indicates “voxel0,” a location where
effect size δ0 is of particular interest. It has coordinates

(84) (d0, z0) = (60,3.0).

What can we say about δ0, based on (84) and the
15,442 other (di, zi) observations?

The distance covariate induces substantial regression
effects, raising or lowering the entire distribution of z-
values for varying values of d . A smoothing spline with
13 degrees of freedom, c(d), fit to zi as a function of
di , appears as the solid red curve in the left panel. Sub-
tracting c(d) from the observations zi yields standard-
ized values xi ,

(85) xi = zi − c(di).

In what follows, we will analyze the model

(86) xi ∼N (θi,1)
(
θi = δi − c(di)

);
see Remark I. Since c(d0 = 60) = 0.70, we have

(87) θ0 = δ0 − 0.70

as the parameter of interest, with the red dot corre-
sponding to

(88) x0 = z0 − 0.70 = 2.30.

The adjusted points (di, xi) plotted in the right panel
seem better behaved, but still with some heterogene-
ity visible as a function of d . We wish to calculate a
finite Bayes posterior distribution for θ0. First though,
we have to decide which of the N − 1 other points xi

FIG. 13. DTI data. Left panel: z-values zi plotted vertically versus voxel distance from back of the brain di ; red curve c(d) is smoothing
spline, df = 13; large red dot (d0, z0) = (60,3.0). What is the posterior distribution of δ0, the expectation of z0? Right panel: Vertical axis is
xi = zi − c(di); now the red dot at d0 = 60, x0 = 3.0 − 0.7 = 2.3. The expectation of x0 is θ0 = δ0 − 0.7.
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TABLE 7
Five choices of the sibling set for
x0, from N − 1 = 15,442 other

points (di , zi ), DTI data

(1) All 15,442 others.
(2) Those with 40 ≤ d ≤ 80.
(3) Those with 50 ≤ d ≤ 70.
(4) Those with 55 ≤ d ≤ 65.
(5) Those with d = 60.

are legitimate siblings for x0. All of them? Only those
with 50 ≤ d ≤ 70? Only those with d = 60?

Uncorrected g-modeling estimates ĝ(θ0 | x0 = 2.3)

were computed using a natural spline model with five
degrees of freedom, and with five different choices of
the sibling set as described in Table 7. The resulting
estimated posterior densities ĝ(θ0 | x0 = 2.3) appear in
Figure 14, numbered as in that list. In this case, choice
(1), using all 15,442 others as siblings, moves the esti-
mated conditional distribution of θ0 given x0 = 2.3 to
the left, compared with the more restrictive choices (2)
through (5). Table 8 provides some numerical compar-
isons: E{θ0 | x0} increases from 0.557 for choice (1) to
1.32 for choice (5), while the posterior probability of
θ0 exceeding 2.3 goes from 0.036 to 0.197.

Restricting the sibling set in the name of greater rel-
evance can potentially destabilize the estimated poste-

rior density ĝ(θ0 | x0). This is seen in Table 8, where
decreasing the sample size N increases the frequen-
tist standard error of the estimated posterior expecta-
tion E{θ0 | x0}, most noticeably for the smallest set,
N = 186.

None of this is very reassuring. Adjusting for covar-
iates—going from the left panel to the right in Fig-
ure 13—is helpful in strengthening relevance, but at
least in this example it is not a cure. At some level,
the choice of relevant siblings is a scientific question
rather than a purely statistical one. Perhaps we can ex-
pect the neuroscientists who provided the DTI data to
say what relevance means here; perhaps not. In Bayes
(as opposed to empirical Bayes) applications, the asser-
tion of a prior density g(θ) amounts to a statement of
an infinite catalog of perfectly relevant siblings. Empir-
ical Bayes applications like that in Figure 13 illustrate
the sometimes heroic nature of such statements.

There are situations where purely statistical evidence
might cast doubt on relevance, for example in Figure 9,
where 47 of the 50 putative siblings lie to the left of the
index case x0 = 5. A procedure for allowing discordant
values of x0 to “opt out” of an empirical Bayes analysis
is described in Section 4 of Efron (1996): we assume
that the prior density g(θ) is a mixture of two compo-
nents, a main one gA(θ) and a much broader opt-out
alternative gB(θ),

(89) g(θ) = hAgA(θ) + hBgB(θ),

FIG. 14. g-modeling estimates of ĝ(θ0), the finite Bayes posterior density for θ0 (87) for the five choices of sibling set shown in Table 7.
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TABLE 8
Top 2 rows: Finite Bayes posterior expectation and standard deviation of θ0 (87) for the 5 decreasing choices of sibling set shown in

Table 7. 3rd row: Frequentist standard error of the top-row estimate; see Remark F. 4th row: Estimated posterior probability that θ0 exceeds
2.3. 5th row: Sample sizes N of the five choices in Table 7

(1) (2) (3) (4) (5)
All 40–80 50–70 55–65 60

E{θ0 | x0 = 2.3} 0.557 0.735 1.15 1.40 1.32
sd{θ0 | x0 = 2.3} 0.692 0.747 0.796 0.769 0.779
frequentist sd(E) 0.043 0.048 0.051 0.060 0.146
Pr{θ0 > 2.3 | x0 = 2.3} 0.036 0.048 0.109 0.186 0.197
N 15,443 10,462 5249 2401 186

hA and hB = 1 − hA being the respective hyperprior
probabilities. This gives marginal density f (θ) (3),

(90) f (x) = hAfA(x) + hBfB(x),

with fA(x) and fB(x) the respective marginals. In
what follows, we will set

(91) fB(x) = f0(x)/c,

where f0(x) is a given, very broad, density function
and c is a constant to be determined.

Bayes rule yields posterior probabilities hA(x) and
hB(x) given x, with

(92)
hA(x)

hB(x)
= hA

hB

fA(x)

fB(x)
= c

hA

hB

fA(x)

f0(x)
,

or equivalently,

(93) hB(x) =
[
1 + c

hA

hB

fA(x)

f0(x)

]−1
.

Since it is always true that hB = ∫
X hB(x)f (x) dx, we

get the identity

(94) hB =
∫
X

f (x)

[
1 + c

hA

hB

fA(x)

f0(x)

]−1
dx.

This determines c, and also hB(x) (93).
The opt-out analysis was applied to the situation in

Figure 10, where the observed data is x = (x1, x2, . . . ,

x50), with the following specifications:

• hA = 0.95 and hB = 0.05.
• f0(x) = 1 for all x.
• fA(x) equal f̃ (x) the marginal density obtained

from g̃(·), the green dotted curve. (See Remark J.)

• The expectation with respect to the marginal f (x) in
(94) replaced by

(95)
1

50

50∑
i=1

[
1 + c

hA

hB

fA(xi)

f0(xi)

]−1
.

Then (93) gave hB(5) = 0.088 as the estimated prob-
ability that x0 = 5 is not from the same model (72)
that produced x1, x2, . . . , x50. In terms of Figure 10,
the posterior distribution of θ0 given x0 = 5 and x can
be thought of as a mixture that is 91.2% of the solid
black posterior curve and 8.8% of the red dashed like-
lihood; the posterior probability that θ0 exceeds 5 rises
from 18% to 21%.

Relevance disappears as a concern in settings such as
the oracle Bayes framework of Section 2, which used
the omnibus loss function (5). Omnibus loss criteria,
analyzed frequentistically, have been the norm in the
compound Bayes literature: this perhaps explains Den-
nis Lindley’s cryptic comment, “There’s nobody less
Bayesian than an empirical Bayesian.” In modern ap-
plications, however, omnibus estimates are often used
to make Bayesian inference for individual parameters,
as discussed in our final example (reawakening ques-
tions of relevance).

The prostate data comprises genetics activity mea-
surements for 6033 genes, comparing prostate can-
cer subjects with normal controls (see Section 15.1 of
Efron and Hastie, 20161). Each gene provides a z-value
zi . Empirical Bayes analysis begins as in (72):

(96) θi ∼ g(θ) and zi | θi ∼ N (θi,1).

The histogram of the zi ’s looks like a slightly heavy-
tailed N (0,1) distribution.

1Here the original z-values have been divided by 1.06 to improve
the accuracy of model (96), 1.06 being the empirical null estimate
of standard error. The zi ’s are not independent but this doesn’t un-
dermine the analysis that follows, as argued in Section 15.5.
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FIG. 15. Empirical Bayes analysis of the prostate data. Left panel: g-model estimate ĝ(θ) of prior density puts probability 0.942 on
θ = 0 with the remaining 0.058 distributed as shown. Right panel: g-model estimate of local false discovery rate f̂dr(z); dashed curve from
f -modeling. Rugplot indicates the 22 genes having f̂dr(z) ≤ 0.20.

A spike and slab g-model was fit to the data, with the
spike at θ = 0 and the slab based on a natural spline
function with five degrees of freedom. The MLE prior
density ĝ(θ) is shown in the left panel of Figure 15. It
puts probability 0.942 on θ = 0; the 0.058 slab proba-
bility falls off quickly for θ on both sides of zero. So
most of the genes are null, that is, do not respond dif-
ferently in the cancer patients, and even the non-null
genes have mostly modest θi values. The Bayes risk
Rg (22) was estimated to be 0.115 with estimated re-
gret 0.001, calculated as in Remark F of Section 8.

The right panel of Figure 15 shows fdr(z), the local
fase discovery rate

(97) fdr(z) = Pr{θ = 0 | z},
estimated directly from Bayes rule plugging in ĝ(θ) for
g(θ),

(98) f̂dr(z) = 0.942φ(z)/f̂ (z),

with φ(z) the standard normal density and f̂ (z) the
marginal density (3) corresponding to ĝ(θ). (As a
check, f (z) was also estimated by f -modeling, using
a ns(z,df = 6) model as in Section 5.2 of Efron, 2010;
the resulting fdr(z) estimate was nearly the same.)

This is the kind of useful analysis that has raised in-
terest in empirical Bayes methodology. It is of the om-
nibus, frequentist type, where relevance is not a con-
cern. However, it is irresistible to apply the results to
the identification of “interesting” genes. Twenty-two of
the genes had f̂dr(zi) ≤ 0.20, a conventional threshold,
these being indicated by the dashed rugplot in the right
panel. The names of the 22 genes would be conveyed to
the investigators, which is just what they want to know,
of course.

Now we are back in the finite Bayes framework of
Section 6. There is a tacit assumption that the 6032
“other” genes are relevant to inferences for any one
gene of interest. This is not far-fetched in a microar-
ray kind of fishing expedition, and in any case there is
no obvious conditioning covariate like d in Figure 13
to worry about. But it is a strong assumption.

In an era of massive data collection, statistical prac-
tice has necessarily moved toward a more aggres-
sive use of indirect evidence–the “other” genes in the
prostate data example. The possible costs of aggression
may be more obvious in an empirical Bayes analysis
than in its full Bayesian counterpart, but this is more a
virtue than a defect.
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8. REMARKS

This section expands on some of the points raised in
the article.

A. Tweedie’s formula (24). Differentiating pθ(x) (23)
with respect to x,

(99)
ṗ(x | θ) = ∂p(x | θ)

∂x

=
(
θ − ∂

∂x
logp0(x)

)
pθ(x),

gives the derivative of the marginal density f (x) =∫
T p(x | θ)g(θ) dθ ,

(100)
ḟ (x) =

∫
T

(
θ − ∂

∂x
logp0(x)

)
× p(x | θ)g(θ) dθ.

Therefore l(x) = logf (x) has

(101)
l̇(x) =

∫
T (θ − ∂

∂x
logp0(x))p(x | θ)g(θ) dθ∫
T p(x | θ)g(θ) dθ

= E{θ | x} − ∂

∂x
logp0(x),

or

(102) E{θ | x} = l̇(x) − l̇0(x),

Tweedie’s formula (24). This demonstrates the neces-
sary fact that Tweedie’s formula gives the same value
of E{θ | x} as direct application of Bayes rule.

B. Tweedie’s formula for x ∼ N (θ,σ 2). With σ 2

known, (26) becomes

(103)
eg(x) = x + σ 2 l̇(x) and

vg(x) = σ 2(
1 + σ 2 l̈(x)

)
.

C. Lemma 4.1. Formula (47) will be justified here us-
ing discrete notation as in (34). A well known result for
generalized linear models says that a small change dy
in the observed data vector produces a change dβ̂ =
β̂ − β in the estimated parameter vector β̂ in model
(44) according to the local linear relation

(104)
β̂ − β

.= G−1M ′dy

where G = M ′ diag(Nf )M.

Then l̂ = Mβ̂ and l = Mβ follow

(105) l̂ − l
.= MG−1M ′dy,

and l̂
· = Dl̂ follows

(106) l̂
· − l· .= ṀG−1M ′dy.

Tweedie’s formula (24) says that the kth coordinate
estimate êk satisfies

(107) êk − ek = l̂·k − l̇k
.= Ṁ ′

kG
−1M ′dy,

where Ṁk is the kth row of Ṁ . Since y has covariance
matrix diag(Nf ), then, ignoring bias, we get

(108)

E
{
(êk − ek)

2}
= Ṁ ′

kG
−1M ′ diag(Nf )MG−1Ṁk

= Ṁ ′
kG

−1Ṁk.

The expected value of EBregret (24) is

(109)

E{EBregret} .=
K∑

k=1

fkṀ
′
kG

−1Ṁk

= trace
K∑

k=1

G−1Ṁ ′
kfkṀk,

which gives

(110)
E{EBregret} .= 1

N
trace

{[
M ′ diag(f )M

]−1

× [
Ṁ

′
diag(f )Ṁ

]}
.

Lemma 4.1 is obtained by plugging in f̂ for f .

D. Truncation. Suppose x is observed (and known to
have occurred) only if x ∈ A, some predetermined sub-
set of the original sample space X , this being the def-
inition of data truncation. This changes the marginal
density from f (x) to fA(x) = f (x)/π for x ∈ A, with
π = ∫

A f (y) dy, making a corresponding change in
Robbins’ estimate (50),

(111) eg(x) = (x + 1)fA(x + 1)/fA(x).

Truncation also changes the prior density g(θ)—see
Remark G—accounting for the change in Robbins’
rule. Since now x = (x1, x2, . . . , xN) is a random sam-
ple from fA(x), maximum likelihood methods such as
(57) will correctly estimate (111).

Truncation affects the distribution p(x | θ) (1),

(112)
pA(x | θ) = p(x | θ)/P (θ)(

P(θ) = Pr{x ∈ A | θ}).
The truncated version of an exponential family density
(22) is

(113) pA(x | θ) = eθx−(ψ(θ)+logP(θ))p0(x),

a different exponential family but one having the same
base density p0(x), and therefore the same function
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l0(x) = logp0(x). The truncated version of Tweedie’s
formulas (24) are

(114)
eg(x) = l̇A(x) + l̇0(x) and

vg(x) = l̈A(x) + l̈0(x).

In the estimated version êA(x) = l̂·A(x)+ l̇0(x), the sec-
ond term is the same as that for the untruncated êg(x),
while the first term is estimated directly from x, with-
out specific attention to A. The same goes for v̂A(x).
In particular, expression (66) can be used just as stated.

E. g-modeling. The details of g-modeling are spelled
out in Efron (2016). Here is a brief description pertain-
ing to the simplified situation where both the θ space
T and the x space X are finite and discrete,

(115)
T = {θ(1), θ(2), . . . , θ(m)} and

X = {x(1), x(2), . . . , x(K)}.
(Continuous xi ’s such as those in the gamnormal exam-
ple of Section 6 are discretized by binning (33).) The
g-model consists of a p-parameter exponential family,

(116) g = eQβ−φ(β),

Q a given m×p structure matrix having rows q ′
j , β an

unknown p-dimensional parameter vector, and φ(β) =
log(

∑
eqj β).

For the butterfly analysis, X = {1,2, . . . ,24} and
θ(j) = exp(λ(j)), with

(117) λ() = {−3,−2.8,−2.6, . . . ,4}.
The gamnormal examples used

(118)
X = {−1.6,−1.4, . . . ,8.0} and

T = {0,0.2,0.4, . . . ,7.0}.
Both examples used natural spline models with five de-
grees of freedom, Q = ns(T ,ds = 5) (and including a
column of ones in Q).

Let P be the K × m matrix (pkj ) where

(119) pkj = Pr{x = x(k) | θ = θ(j)}.
The marginal density f (β) induced by g(β) is

(120) f (β) = Pg(β).

The count vector y = (y1, y2, . . . , yK), yk = #{xi =
x(k)}, is a sufficient statistic having a K-category multi-
nomial distribution

(121) y ∼ MultK
(
N,f (β)

)
.

Estimation of β from (121) is obtained by penalized
maximum likelihood,
(122)

β̂ = arg max j

{(
K∑

k=1

logfk(β)

)
− c0

( p∑
1

β2
l

)1/2}
,

c0 = 0.1 for the butterfly data and 1.0 for the gamnor-
mal examples.

F. g-modeling estimated regret. Suppose γ is a func-
tion of θ , γ = h(θ), and we are interested in estimating
its posterior expectation,

(123) E(γ )(x) = E
{
h(θ) | x}

.

Continuing in the discrete setup (115), define hj =
h(θ(j)), Ek = E(γ )(x = x(k)), etc.,

(124)

ukj = hjpkj , vkj = pkj , and

ūk =
m∑

j=1

ukjgk, v̄ =
m∑

j=1

vkjgj

(v̄k = fk). Then Bayes rule gives

(125) Ek = ūk/v̄k.

If ĝ is an estimate of g, the estimate Êk equals

(126)

Êk =
∑m

j=1 uij ĝj∑m
j=1 vij ĝj

= Ek

1 + ∑
j

ukj

ūk
(ĝj − gj )

1 + ∑
j

vkj

v̄k
(ĝj − gj )

.= Ek +
m∑

j=1

Tkj (ĝj − gj ),

where

(127) Tkj = Ek

(
ukj

ūk

− vkj

v̄k

)
.

Corollary 1 of Efron (2016) gives delta method ap-
proximations for the bias vector and covariance matrix
of ĝ,

(128) ĝ − g ∼̇ (Bg,Cg),

based on model (116) and (121). Letting T be the K ×
m matrix (Tkj ) (126) then gives approximate bias and
covariance for Ê as an estimate of E,

(129) Ê − E∼̇(
T Bg,T CgT

′).
The frequentist expected root mean square error at

x = x(k) is

(130) rmsek = [
(T Bg)

2
k + (

T CgT
′)

kk

]1/2
.

The last column in Table 5 came from (130), with
h(θ) = log θ .
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If we take h(θ) = θ in (123), that is, γ = θ , then
Ek equals ek = E{θ | x = x(k)}, and likewise Êk = êk .
From (42) (with g = ḡ), we get an approximation for
the expected empirical Bayes regret from g-modeling,

(131) ÊBregret =
K∑

k=1

fk rmse2
k.

The last columns of Table 1 and Table 2 came from
(131).

G. Formula (70). Suppose that there were actually S

butterfly species in Malaysia, each with its own Pois-
son parameter θi , but that Corbet only observed those
with xi ∼ Poi(θi) greater than zero (ignoring truncation
for xi > 24). If g+(θ) is the density function applying
to all S species, then truncation gives the density

(132) g(θ) = cg+(θ) · (
1 − e−θ )

,

since Pr{xi > 0 | θi} = 1 − e−θi .
The expected total number of species Corbet ob-

served is

(133) E{N} = S ·
∫
T

g+(θ)
(
1 − e−θ )

,

leading to the estimate c = S/N in (132). Assuming
that the capture occurrences of each species follow
a Poisson process over time with intensity parameter
θi/2—so expected number θi in two years—gives

(134) E
{
new(t)

} = S ·
∫
T

g+(θ)e−θ (
1 − e−θt/2)

dθ,

e−θ (1− e−θt/2) being the probability of not being seen
in the first two years and then being seen in the next
t years. Together, (132)–(134) give formula (70). The
frequentist standard error (71) was obtained using a
variant of (130).

H. Figure 11. The 3200 gamnormal xi ’s were ran-
domly permuted six times. A version of Figure 11 was
calculated for each permutation, and these were aver-
aged to give the final Figure 11. This smoothed out ir-
regularities, though all six graphs looked quite similar.

I. The DTI data. The observations xi (86) are defi-
nitely not independent, as nearby brain voxels produce
correlated observations. Correlation doesn’t affect the
values of g-modeling or f -modeling estimates, but it
does affect their accuracy. In Table 8, the values in
rows 1, 2, and 4 remain plausible, but the frequentist
standard errors in row 3 are too small.

J. The opt-out analysis. It could be argued that tak-
ing fA(·) = f̃ (·) in (95) errs since f̃ (·) assesses the

density of all the xi ’s including those from fB(·). Us-
ing hAfA(x) = f (x) − hBfB(x), a second iteration of
(95) was carried out, this time with

(135) f̃A(x) = f̃ (x) − 0.088/ĉ

0.912
.

It gave ĥB = 0.090. Subsequent iterations made little
difference.

K. g-modeling in R. A g-modeling R package, de-
convolveR, is available from CRAN via cran.r-
project.org/package=deconvolveR.
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