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Automated versus Do-It-Yourself Methods
for Causal Inference: Lessons Learned
from a Data Analysis Competition1
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Abstract. Statisticians have made great progress in creating methods that
reduce our reliance on parametric assumptions. However, this explosion in
research has resulted in a breadth of inferential strategies that both create
opportunities for more reliable inference as well as complicate the choices
that an applied researcher has to make and defend. Relatedly, researchers ad-
vocating for new methods typically compare their method to at best 2 or 3
other causal inference strategies and test using simulations that may or may
not be designed to equally tease out flaws in all the competing methods. The
causal inference data analysis challenge, “Is Your SATT Where It’s At?”,
launched as part of the 2016 Atlantic Causal Inference Conference, sought to
make progress with respect to both of these issues. The researchers creating
the data testing grounds were distinct from the researchers submitting meth-
ods whose efficacy would be evaluated. Results from 30 competitors across
the two versions of the competition (black-box algorithms and do-it-yourself
analyses) are presented along with post-hoc analyses that reveal information
about the characteristics of causal inference strategies and settings that affect
performance. The most consistent conclusion was that methods that flexibly
model the response surface perform better overall than methods that fail to
do so. Finally new methods are proposed that combine features of several of
the top-performing submitted methods.
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1. INTRODUCTION

In the absence of a controlled randomized or natural
experiment,2 inferring causal effects involves the diffi-
cult task of constructing fair comparisons between ob-
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1Discussed in 10.1214/18-STS684; 10.1214/18-STS680;
10.1214/18-STS690; 10.1214/18-STS689; 10.1214/18-STS679;
10.1214/18-STS682; 10.1214/18-STS688

2We use natural experiment to include (1) studies where the
causal variable is randomized not for the purposes of a study (for
instance, a school lottery), (2) studies where a variable is random-
ized but the causal variable of interest is downstream of this (e.g.,
plays the role of an instrumental variable), and (3) regression dis-
continuity designs.
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servations in the control and treatment groups. Since
these groups can differ in substantive and nonobvi-
ous ways researchers are incentivized to control for
a large number of pretreatment covariates.3 However,
appropriately conditioning on many covariates either
requires stronger parametric assumptions about the re-
lationship between these potential confounders and the
response variable or a sufficiently flexible approach to
fitting this model. This tension has motivated a ver-
itable explosion in the development of semiparamet-
ric and nonparametric causal inference methodology in
the past three decades. How should applied researchers
who rely on these tools choose among them? This pa-
per explores a new approach for comparing a wide
variety of methods across a broad range of “testing
grounds”: a causal inference data analysis competition.
Overall we find strong evidence that approaches that
flexibly model the response surface dominate the other
methods with regard to performance.

2. MOTIVATION FOR CAUSAL INFERENCE
COMPETITION

Methodology for causal inference has been devel-
oped for a wide range of applications and leverages
diverse modeling and computational techniques. The
richness of the literature in this area—while offering
numerous options to researchers—can also make it
challenging to identify the most useful methodology
for the task at hand. There are several issues that fur-
ther complicate this choice.

2.1 Shortcomings of Existing Literature That
Compares Performance of Causal
Inference Methods

While many papers have been written in the past
few decades proposing innovative technology, there are
shortcomings to this medium as a way of providing in-
formation to researchers in the field about what method
will be best for them. Strong performance of a method
in a paper written by its inventor is encouraging but
should be interpreted cautiously for the reasons dis-
cussed in this section.

3We note that some have cautioned against this temptation due
to the potential for some variables to amplify the bias that remains
when ignorability is not satisfied (Pearl, 2010; Middleton et al.,
2016; Steiner and Kim, 2016). Others have pushed back, citing ev-
idence that it is rare to find situations when it is not preferable to
condition on an additional pretreatment covariate (Ding and Mira-
trix, 2014).

Few methods compared and unfair comparisons.
Authors of causal inference methods papers most of-
ten compare their method to just a few competitors.
Typically comparisons are made to more traditional,
and thus perhaps less “cutting edge,” methods. More-
over, even when more sophisticated competitors are in-
cluded in the mix we suspect that, despite the best of
intentions, these papers are still likely to be biased to-
ward showing better performance for the method being
introduced for several reasons.

First, the authors of such papers are likely more
knowledgeable about their own method than the com-
petitors included in the empirical comparisons. For
example, an author might compare his/her proposed
method to naïve implementation of a method (see, for
instance, Hill, 2011) or to an “off-the-shelf” version of
a model that requires careful manipulation of tuning
parameters for optimal performance. Second, authors
may use metrics to evaluate methods that inadvertently
bias their results toward favoring the method they pro-
pose. For instance, they might focus on bias rather than
root mean squared error or they may ignore confidence
interval coverage.

Testing grounds not calibrated to “real life.”
Methodological papers often compare the performance
of a newly proposed approach to existing methods in
the context of simulated data sets.4 These approaches
often test just a few different types of data generating
mechanisms. Moreover, attempts are not always made
to calibrate these simulations to data that researchers
typically encounter in practice, with a mix of types of
variables (continuous, categorical, binary) and origi-
nating from joint distributions that may not be easily
defined in a simulation paradigm. For instance, ob-
served data from real studies are not likely to follow
a multivariate normal distribution, though this distribu-
tion is often used to create simulated testing grounds.5

On the other end of the spectrum, some researchers
who develop methods are quite justifiably motivated by

4Real (i.e., not simulated) observational data sets are sometimes
used to motivate the issue but cannot point to a winner in the case
of disparate findings.

5A compromise position uses real data for covariates or possi-
bly the treatment and then simulates the rest of the data (outcome
and possibly treatment assignment; for example see Hill, 2011).
Another compromise models the response surface using a highly
saturated parametric model with many interactions and polynomial
terms and uses that to simulate outcome data (e.g., see Kern et al.,
2016).
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the inference problems they encounter while collabo-
rating with subject-area experts. Consequently, simula-
tions designed to test these methods may be very highly
tuned to mimic real life data but in a highly specialized
setting. While it is natural to make sure that a method
works in the specific scenarios for which it is designed,
this doesn’t necessarily help a general researcher un-
derstand how it might perform more broadly.

Some papers focus instead on the theoretical, typi-
cally asymptotic, properties of their method. However,
it may be equally difficult to map these mathematical
properties to a given data set “in the trenches” where
the sample sizes may be smaller than those required by
the theory or other regularity conditions and distribu-
tional assumptions may not hold.

Yet another option for data to use as a testing
ground are constructed observational studies (see, e.g.,
LaLonde and Maynard, 1987; Hill, Reiter and Zanutto,
2004; Shadish, Clark and Steiner, 2008). These are
studies that capitalize on data from both a randomized
experiment and from an observational study or survey
with similar participants and measures collected from
a similar time period. Constructed observational stud-
ies work by replacing the randomized control group
from the experiment with the observational data and
checking to see if it is possible to use observational
study design or analysis methods to get an estimate of
the treatment effect that is similar to the experimental
benchmark. While these studies, by construction, have
the advantage of being highly calibrated to real world
studies, they have several disadvantages. First, each
represents only one type of data generating process
(DGP) (though possibly with minor variations if mul-
tiple comparison groups are used). Second, we never
know in these studies whether ignorability is satisfied
for the constructed study; therefore if an observational
method is not able to recover the experimental treat-
ment effect we cannot ascertain whether this is because
ignorability was not satisfied or the model fit the data
poorly. Finally, since the comparison is between two
estimates it is not clear how to assess whether the ob-
servational estimate is “close enough” to the experi-
mental benchmark.

File drawer effect. Understanding of the relative
performance of methods can be biased due to the “file
drawer effect” (Rosenthal, 1979). Researchers search-
ing for the best method for their problem won’t have
access to information on inconclusive comparisons
since such results are unlikely to have been published.

2.2 Attempts to Address These Shortcomings
through Our Competition

The “2016 Atlantic Causal Inference Conference
Competition” (henceforth referred to simply as the
“competition”) was initiated as an attempt to address
the limitations of the current literature. We discuss each
concern outlined above in the context of this competi-
tion.

Few methods compared and unfair comparisons.
The primary goal of the competition was to combat
the issues of few and unfair comparisons. First, we
had a broad call and received submissions for 30 dif-
ferent methods.6 Each method was submitted by a re-
searcher or team of researchers who we assume is
knowledgeable about that method. As discussed more
below, competition participants either implemented the
method themselves or submitted a black-box version
of the method that they felt would work across the
range of settings to be tested. In either case, we assume
that those submitting were sufficiently invested in that
method’s success to submit a competent implementa-
tion of the method. Furthermore, we analyze method
performance by considering a variety of performance
metrics across a wide array of data features.7

Finally, the creators of this causal competition come
from diverse fields and are accustomed to different
types of data structures and norms regarding the accep-
tance of structural and parametric assumptions. This
informs aspects of the simulation such as the mag-
nitude of effects relative to unexplained variability,
prevalence of nonlinearities or high-order interactions,
numbers and kinds of covariates deemed reasonable
to satisfy ignorability, average size of treatment ef-
fects, and range of biases in misspecified models. This
should reduce the potential for the choice of type of
data structure to favor one type of method over another.

6We actually received a few more submissions than that, how-
ever, we only present results for methods from submitters who were
willing to provide a description of the method. In addition, there
were two nearly identical BART submissions so we only evaluate
one of those and count only one toward this total.

7This approach is similar to a Kaggle competition (Carpenter,
2011) though there was no public leaderboard or repeat submis-
sion opportunities provided; these can induce better performance
(Athanasopoulos and Hyndman, 2011) but also lead to overfit-
ting to the test data (Wind and Winther, 2014). Indeed, there have
been several prominent examples of crowdsourcing scientific tools
(Vanschoren et al., 2014; Ranard et al., 2014; Paulhamus et al.,
2012).
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A few other competitions have been run in the causal
inference area. For instance, Guyon has organized sev-
eral competitions for determining which of several can-
didate features was causally linked with an outcome
(Guyon et al., 2008); these have focused on finding the
causes of effects or determining temporal ordering of
variables. As far as we can tell, our competition is the
first with the more common statistical focus of estimat-
ing the effect of a cause in observational studies across
a range of complications with regard to data features.

Testing grounds not calibrated to real life. As ex-
plained in more detail later in the paper, our sim-
ulations are built on covariates selected from a real
data set. Therefore this part of the data is calibrated
to “real life.” In fact, we chose a group of covari-
ates that we thought might plausibly be included in
a hypothetical study of the effect of birth weight on
IQ—this helped to mimic the types of natural corre-
lations between covariates typical in an observational
study. We then simulated data from a wide variety of
DGPs that reflect features of the data thought to be
important for causal inference estimation: degree of
nonlinearity, overlap/imbalance, percent treated, align-
ment between assignment mechanism and response
surface, and treatment effect heterogeneity. We hope
the breadth of these simulation settings will at least
have meaningful overlap with the breadth of observa-
tional data used in causal analyses occurring in practice
today.

File drawer effect. Perhaps the most potent antidote
to this potential problem is that we have published
the code we used to create the simulations and evalu-
ate the results on GitHub at https://github.com/vdorie/
aciccomp/tree/master/2016. Therefore, anyone can test
whatever method they want on the data using the eval-
uation metric of their choice.

3. NOTATION AND ASSUMPTIONS

We consider the causal effect of binary treatment
Z, with Z = 0 indicating assignment to control and
Z = 1 indicating assignment to treatment. Yi(0) is the
outcome that would manifest for person i if Zi = 0;
Yi(1) is the outcome that would manifest for person i

if Zi = 1. Individual-level causal effects are defined as
the difference between these “potential outcomes,” for
example, Yi(1) − Yi(0) (Rubin, 1978). The observed
outcome is defined as Y = (1 − Zi)Yi(0) + ZiYi(1).

3.1 Estimands

Research often focuses on average causal effects
across subpopulations of convenience or interest. We
can formalize the average treatment effect as E[Y(1)−
Y(0)] = E[Y(1)] − E[Y(0)]. When this expectation is
taken over the analysis sample this estimand is referred
to as the sample average treatment effect (SATE). Pop-
ular variants of this estimand restrict it by averaging
over only those in the treatment group or conversely the
control group to obtain, respectively, the sample aver-
age effect of the treatment on the treated (SATT) or the
sample average effect of the treatment on the controls
(SATC). Analogs of these treatment effects exist for the
full population however these will not be addressed in
this competition for reasons discussed below.

3.2 Structural Assumptions

Unfortunately we can never directly observe Y(1)

for observations assigned to control or Y(0) for ob-
servations assigned to treatment. Thus, these treatment
effects are not identified without further assumptions.
The most common assumption invoked to identify
these effects is the so-called ignorability assumption
(Rubin, 1978), which is also known as “selection on
observables,” “all confounders measured,” “exchange-
ability,” the “conditional independence assumption”
and “no hidden bias” (see Barnow, Cain and Gold-
berger, 1980; Greenland and Robins, 1986; Lechner,
2001; Rosenbaum, 2002). A special case of the ignora-
bility assumption occurs in a completely randomized
experiment in which Y(0), Y (1) ⊥ Z. This property
implies E[Y(a) | Z = a] = E[Y(a)], which allows for
identification of the above estimands solely from ob-
served outcomes.

Observational studies typically rely on the more gen-
eral form of the ignorability assumption, Y(0), Y (1) ⊥
Z | X. This allows for independence between poten-
tial outcomes and the treatment indicator conditional
on a vector of covariates, X. Thus identification can
be achieved because E[Y(a) | Z = a,X] = E[Y(a) |
X]. An average treatment effect can then be unbi-
asedly estimated by averaging the conditional expec-
tation E[Y(1) − Y(0) | X] = E[Y(1) | Z = 1,X] −
E[Y(0) | Z = 0,X] over the distribution of X. To ob-
tain the ATT (or ATC), this averaging is performed
over the distribution of X for the treatment (or con-
trol) group. Although ignorability is typically an un-
satisfying assumption to have to make, in the absence
of randomized experiments or other environmental or
structural conditions that give rise to various types of

https://github.com/vdorie/aciccomp/tree/master/2016
https://github.com/vdorie/aciccomp/tree/master/2016
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natural experiments (regression discontinuity designs,
instrumental variables) few options are left.

Typically researchers invoke an even stronger as-
sumption referred to as “strong ignorability.” This adds
an assumption of overlap or “common support.” For-
mally this requires that 0 < Pr(Z = 1 | X) < 1 for all
X in the sample. If this fails to hold, then we may have
neighborhoods of the confounder space where there
are treated but no controls units or vice versa. That
is, empirical counterfactuals (Hill and Su, 2013) may
not exist for all observations. Since many causal infer-
ence methods rely on some sort of modeling of the re-
sponse surface, failure to satisfy this assumption forces
stronger reliance on the parametric assumptions of the
response surface model.

In the language of causal graphs (Pearl, 2009a,
2009b), we can say that in our data generating pro-
cess, the set of observed covariates X form an admis-
sible back-door adjustment set from the outcome Y to
the treatment Z. Therefore, by our construction, the
causal effect is identifiable and can be estimated from
the observed covariates X. We assume throughout that
these covariates represent variables measured pretreat-
ment or that could not be affected by the treatment.
This leaves the problem of which statistical method is
best suited for this task, which is the main focus of the
challenge and of this paper.

3.3 Parametric Assumptions

Even if we can assume ignorability, estimating
causal effects without bias still requires estimating ex-
pectations such as E[Y(1) | X] and E[Y(0) | X]. Esti-
mating these conditional expectations can be nontriv-
ial, especially in high dimensions, which is why there
has been such a strong focus in the causal inference lit-
erature in the past few decades on appropriate ways to
do so without making strong parametric assumptions
(Kurth et al., 2006; Hill, 2011). This competition has a
strong focus on how to achieve reliable and unbiased
causal inference in an observational setting where the
parametric assumptions may be difficult to satisfy.

4. TESTING GROUNDS: DATA AND GENERATIVE
MODELS

Our goal was to generate data sets that are both use-
ful in distinguishing between methods but that also ex-
hibit the types of features typical of data from real stud-
ies. We describe our specific choices regarding creating
the testing grounds and the logistics of the competition
in this section.

4.1 Embedded Assumptions and Design Choices

We imposed a small set of assumptions on all DGPs
in the competition to make the competition practical
and not overly complex.

Ignorability. We assumed ignorability throughout.
Approaches to nonignorable assignment of the treat-
ment need to rely on an understanding of the context
and the science of the problem. Given that we are sim-
ulating our treatment and outcome we would either
have had to invent “science” for how they were related
to the covariates and each other or else map them to
an existing scientific theory. The former would require
submitters to guess at our invented science. The latter
would require a great deal of subject matter expertise
and which could unfairly bias some teams and theories
over others.

Estimand. We needed to specify a causal estimand
for researchers to estimate. We chose the effect of the
treatment on the treated because most causal infer-
ence methods can easily target this estimand whereas
a few do not naturally target the average treatment ef-
fect across the entire sample or population. We focused
on the sample average treatment effect for the treated
(SATT; Hartman et al., 2015) because quite a few pop-
ular methods (e.g., matching) lack natural variance es-
timators for population estimands (Abadie and Imbens,
2006).

Overlap for the inferential group. Given our focus
on SATT, to satisfy the overlap assumption we only
need to ensure that empirical counterfactuals exist for
all treated units. When the estimand of interest is SATT
and overlap does not exist for the treatment group,
many researchers would opt to reduce or reweight the
inferential group (i.e., the set of treated observations
about which we will make inferences) to those for
whom overlap is satisfied (Hirano and Imbens, 2001;
Hirano, Imbens and Ridder, 2003; Crump et al., 2009;
Hill and Su, 2013). However, these approaches change
the causal estimand. Given that it seems fair to allow
for such a change in the causal estimand and yet some
estimands are inherently easier to estimate than others,
we decided that it would be too complicated to make
the competition fair if we included settings in which
common support for the inferential group was not sat-
isfied.

Simulating treatment and outcome. To help calibrate
our simulations to the type of data that might be an-
alyzed by an empirical researcher, we used covari-
ates from a real study (discussed below). We decided
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to simulate both the treatment assignment and the re-
sponse due to two considerations. First, it allowed us
to easily satisfy the ignorability assumption. Second, it
allowed us to manipulate specific features of the data
such as balance, overlap and nonlinearity of the model
in ways that are directly measurable. This enabled ex-
ploration of the relationship between features of the
data and method performance.

4.2 Calibration to “Real Data”

Using an existing, real-world data set allowed us to
incorporate plausible variable types as well as natu-
ral associations between covariates into the simulation.
We used data from the Collaborative Perinatal Project
(Niswander and Gordon, 1972), a massive longitudi-
nal study that was conducted on pregnant women and
their children between 1959 to 1974 with the aim of
identifying causal factors leading to developmental dis-
orders. The publicly available data contains records of
over 55,000 pregnancies each with over 6500 variables.

Variables were selected by considering a subset that
might have been chosen for a plausible observational
study. Given the nature of the data set we chose to
consider a hypothetical twins study examining the im-
pact of birth weight on a child’s IQ. We chose covari-
ates that a researcher might have considered to be con-
founders for that research question. After reducing the
data set to complete cases, 4802 observations and 58
covariates remained. Of these covariates, three are cat-
egorical, five are binary, 27 are count data and the re-
maining 23 are continuous.

4.3 Simulation Procedure and “Knobs”

We posit a data generating process (DGP) for the po-
tential outcomes and the treatment assignment condi-
tional on the covariates that factors their joint distri-
bution as p(Y (1), Y (0),Z|X) = p(Y (1), Y (0) | X)×
p(Z|X). Henceforth, we refer to p(Y (1), Y (0) | X) as
the response surface and p(Z|X) as the assignment
mechanism. This factorization reflects our assumption
of an ignorable treatment assignment, because in it
p(Y (1), Y (0) | Z,X) = p(Y (1), Y (0) | X).

The assignment mechanism and response surface
were generated according to a number of tunable
parameters. Both models consisted of “generalized
additive functions,” in which the contribution of co-
variates was first passed through a transformation func-
tion and then added or multiplied together. An ex-
ample of such a function that includes two covari-
ates is f (xi) = f1(xi1) + f2(xi2) + f3(xi1)f4(xi2),

where xik represents the kth covariate for the ith in-
dividual and xi is the vector of all such covariates for
that individual. Here each fj might consist a sum of
polynomial terms, indicator functions, or step func-
tions. Moreover, the sum of these terms could sub-
sequently be passed through a “link” function, as in
g(xi) = exp(f3(xi1) + f4(xi2) + f3(xi1)f4(xi2)), per-
mitting the output to be bounded or highly nonlinear.

Since the functions are generated randomly, the set
of parameters that control the simulation framework
essentially define a model over DGPs. We refer to spe-
cific values of these parameters as simulation “knobs.”
These knobs were adjusted to create simulation sce-
narios that produced structured deviations from ideal-
ized experiments to meaningfully test causal inference
methods. All combinations of knobs yield 216 scenar-
ios. Concern about the ability to test multiple repli-
cations in that many scenarios led us to focus on the
most interesting 77 combinations by eliminating cases
that were trivial or redundant, such as simple linear
models or unconfounded treatment and response. Con-
test participants were told that there were 77 differ-
ent scenarios, but that only 20 data sets would be used
for the do-it-yourself portion of the competition. They
were also told that there was a continuous outcome, a
binary treatment indicator and 58 covariates. Finally,
they were informed that ignorability held throughout,
that the observations in any given data set were iden-
tically and independently distributed, and that not all
covariates were confounders. For each of the 77 black-
box scenarios, 100 independent replications were cre-
ated, yielding 7700 different realizations.

The competition call described the simulation knobs
as: (1) degree of nonlinearity, (2) percentage of treated,
(3) overlap, (4) alignment, (5) treatment effect hetero-
geneity and (6) magnitude of the treatment effect. Full
details of the simulation framework can be found in
Appendix A.1; We provide an overview here (link to
the R package that reproduces these datasets provided
above).

After generating the data sets we also created a set of
variables describing them, which are divided into what
we call “oracle” and “nonoracle” variables, based on
whether they would be available to a researcher with
real-world data. We give examples of these metrics be-
low, and provide a full list in the online supplement
Section 1.2 (Dorie et al., 2019).

Degree of nonlinearity. In the absence of nonlin-
ear response surfaces and assuming ignorability, triv-
ial estimation strategies such as ordinary linear regres-
sion are able to produce unbiased causal estimates.
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We are more interested in scenarios where the sim-
plest methods fail (many authors discuss the prob-
lems that occur with nonlinear response surfaces, in-
cluding Imbens, 2004; Hill and Su, 2013; Gelman and
Hill, 2007; Feller and Holmes, 2009). Therefore we in-
clude nonlinearities in both the response surface and
the assignment mechanism. In both cases, the non-
linearity is introduced by including higher order mo-
ments of individual covariates, interactions between
covariates and nonadditive functions of the covariates.
We allow the functional form of the covariates [the
fj (x) terms from above] to include up to three-way-
interactions and third-order polynomial terms, three-
way-interactions and step functions, or remain linear.
In general we restrict ourselves to additive models,
however, when simulating response surfaces we op-
tionally include a term that exponentiates a linear com-
bination of covariates through the gk(x) term. An ex-
ample of a variable that measures the degree of nonlin-
earity in a given data set is Pearson’s R2 when regress-
ing the observed outcome Y on the observed, nontrans-
formed covariates X. Across the 7700 different real-
ization this metric ranges between 0.02 and 0.93, with
quartiles, [0.26,0.37,0.48].

Percentage of treated. Given that the estimand of
interest is the effect of the treatment on the treated,
any estimation approach might be challenged by hav-
ing a low percentage of controls relative to the treated
(Abadie and Imbens, 2006). We had two basic settings
for this knob. In one setting the expected value for the
percentage of treated was 35%, and in the other setting
the expected value was 65%. In the low-treatment set-
ting, 95% of simulations had percentages of treatment
between 0.20 and 0.38, while in the high-treatment set-
ting 95% of simulations were between 0.41 and 0.67.
The difference in ranges is a result of the overlap set-
ting discussed next.

Overlap for the treatment group. Despite deciding
that overlap would be enforced for the treatment ob-
servations in all simulated data sets, we still wanted to
explore the impact of having controls that are dissim-
ilar from all treated units with regard to confounders.
This type of lack of overlap can be particularly chal-
lenging for methods that rely on models since many
methods will attempt to extrapolate beyond the range
of common support.

Thus we created low overlap settings in which we
selected a “corner” of the covariate space and forcibly
prevented observations with extreme values on several
variables from receiving the treatment, regardless of

whether they had a high propensity score; that is, we
forced the propensity score for these observations to
be zero. The more complicated the definition of this
neighborhood, the more difficult it is for any method
to identify the neighborhood as one that is fundamen-
tally different from those where overlap exists and to
avoid unwarranted extrapolation. We then included the
covariate interactions in the response surface to ensure
alignment on them (see alignment discussion below).

One way we measure overlap is by calculating mean
Mahalanobis distance between nearest neighbors with
opposite treatment in the ground-truth covariate space
(i.e., the space in which the covariates have been trans-
formed by the polynomial expansions used in the true
assignment mechanism and response surface). This
yields an oracle metric, since in general a practitioner
will not have access to the true polynomial expansions.
The quartiles of this metric for the cases where the
overlap knob was set to 1 are [3.73,4.31,4.99]; the
quartiles of the oracle metric for the cases where the
overlap knob was set to 0 are [4.16,4.75,5.50].

Balance, defined as equality of covariate distribu-
tions across treatment groups, is a related concept
to overlap since lack of overlap always implies lack
of balance. However, imbalance can exist even when
treatment and control groups have perfect overlap.
While we did not specifically target imbalance as a
knob, we made sure that imbalance was achieved as
a by-product of our specification of the treatment as-
signment mechanism.

A simple oracle metric of imbalance is the Euclidean
norm of the distance between the mean of the control
units and the mean of the treated unit in the ground-
truth covariate space. On this metric our simulation set-
tings varied, with quartiles of [0.78,1.30,2.68].

Alignment. The only covariates that have the poten-
tial to cause bias in our estimation of treatment effects
are those that play a role in both the assignment mech-
anism and the response surface. For instance, when a
covariate enters into the response surface or but not
the assignment mechanism (or vice versa), including
that covariate in the estimation of the treatment ef-
fect may increase that estimator’s efficiency but should
not impact the bias. Moreover, the functional form of
the covariate is important. For instance, suppose age
enters linearly only into the DGP of the assignment
mechanism, however, it enters both linearly and with
a squared term into the DGP of the response surface.8

8When we say that a covariate enters linearly into the model for
the assignment mechanism we mean that it enters linearly into the
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If we include age linearly in our estimation strategy we
should remove the bias that would be incurred by ex-
cluding it; from a bias perspective we do not need to
account for the squared term. However, if the squared
term is included in the data generating process of both
the assignment mechanism and the response surface,
then we need to condition on the squared term our esti-
mation strategy. Following Kern et al. (2016), we refer
to the correspondence between the assignment mecha-
nism and response surface as alignment. Another fram-
ing of this issue is that the degree of alignment reflects
the dimension of the confounder space.

The degree of alignment has several implications.
The first implication is that we can create more or less
potential for bias conditional on an initial set of co-
variates by creating more or less “alignment” between
the assignment mechanism and the response surface.
The second is that if the number of true confounders
is small relative to the number of available covariates
it may be difficult for a method to sort out which vari-
ables are the most important to privilege. The third is
that approaches that differentially privilege covariates
that are strong predictors of either the treatment assign-
ment or the response, but not both, may be at a disad-
vantage relative to those that are able target the true
confounders.

We varied the amount of alignment by altering the
frequency with which terms appeared in both mod-
els. This allowed us to create scenarios in which each
model was highly complex, but only a specific fraction
of terms in each model was a confounding term. An or-
acle metric we used to reflect the degree of alignment
is the correlation between the logit of the true assign-
ment score p(Z | X) and the outcome Y . Based on this
metric, the degree of alignment varied widely. The ab-
solute value of this correlation ranged from near 0 to
about 0.94 with a median at approximately 0.29.

Treatment effect heterogeneity. There is no reason
to believe that any given treatment affects all obser-
vations in the same way. However, parallel response
surfaces, which yield constant treatment effects, are
easier to fit than nonparallel response surfaces. Creat-
ing heterogeneous treatment effects, or, equivalently,
departures from parallel response surfaces adds to the
computational and statistical challenges for causal in-
ference methods. Treatment effect heterogeneity was
created in our simulations by allowing certain terms in

part of the model equated to the inverse logit of the propensity
score.

the response surface to have a different coefficient for
E[Y(1) | X] than for E[Y(0) | X].

An oracle measure used to capture this heterogeneity
is the standard deviation of the treatment effect func-
tion E[Y(1) − Y(0) | X] across units within a setting,
normalized by the standard deviation of the outcome
within the same setting. This metric varies across set-
tings from 0 to 2.06 with quartiles at [0.47,0.73,1.01].
Since treatment effects are all represented in standard
deviation units with respect to the outcome measure,
this represents a considerable amount of variability in
the amount of heterogeneity that is present in any given
data set. For 200 realizations with treatment hetero-
geneity knob set to 0 the standard deviation is exactly 0.

Overall magnitude of the treatment effect. Confer-
ence participants were alerted that the magnitude of
the SATT would vary across settings. While this was
true by default, we did not explicitly have a knob
that directly manipulated the magnitude of the treat-
ment effect. Rather the other knobs implicitly created
variation in this magnitude. The median SATT across
7700 realizations was 0.68 while the interquartile range
stretched from 0.57 to 0.79 (again these are in standard
deviation units with respect to the outcome).

4.4 Issues Not Addressed

As the first competition of its kind, we limited the
scope of the problems addressed. We hope the authors
of future competitions will find creative ways to ex-
plore some of the issues, described below, that we did
not.

Nonbinary treatment. Binary treatments are com-
mon in real studies though by no means the only type
of causal variable of interest. With regard to ignorabil-
ity and overlap, binary treatments have the advantage
of weaker and more transparent assumptions; two po-
tential outcomes are easier to conceptualize and create
overlap for than many potential outcomes. Moreover,
in the absence of a linear relationship between treat-
ment and outcome it can be difficult to find a simple
characterization of the treatment effect.

Noncontinuous response. Disciplines vary dramati-
cally in the extent to which their typical response vari-
ables are continuous or not. Test scores and other con-
tinuous measures are common in fields like educa-
tion, however, political science and medicine often fo-
cus on binary outcomes (vote, survival). Noncontinu-
ous responses can complicate causal inference because
typical models have parameters that are not collapsi-
ble (Greenland, Robins and Pearl, 1999); that is, the
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marginal and conditional expectations from such mod-
els are not equal.

Non-IID data. Data with heterogeneous errors or
correlations between responses are common. A method
that cannot be generalized beyond the assumption
of independent and identically distributed data has
severely limited viability.

Varying data size or number of covariates. Varying
the number of observations, the number of covariates,
or the ratio of the two has the potential to strongly af-
fect the performance of methods.

Covariate measurement error. Measurement error in
the covariates can lead to biased estimates of the treat-
ment effect. Few if any standard causal inference meth-
ods routinely accommodate this complication.

Weakening the underlying assumptions of this com-
petition. In addition to the issues above, future com-
petition organizers might consider ways to violate our
key assumptions of ignorability and overlap for the in-
ferential group.

4.5 Competition Logistics

This data analysis challenge was announced to the
mailing list of the Atlantic Causal Inference Confer-
ence of about 800 people and on the conference web-
site on April 21, 2016 (http://jenniferhill7.wixsite.com/
acic-2016/competition). Links were also distributed to
several machine learning listserves and posted on a
widely read statistics blog that attracts readers from di-
verse disciplines.

5. CAUSAL INFERENCE SUBMISSIONS AND KEY
FEATURES

We received 15 submissions for the DIY portion of
competition and 15 for the black-box section. Two of
the DIY submissions were not adequately described by
the submitters and are thus omitted.9

5.1 Features of Causal Inference Methods

The submitted methods differed substantially in their
approaches. However, across the corpus of approaches
to causal inference in observational studies there are
a handful of features that have emerged as useful for
distinguishing between methods. We outline these and

9The organizers were not allowed to submit methods to the com-
petition; however, for the black-box competition we included a sim-
ple linear model using main effects to create a baseline for compar-
ison (as distinct from the “created” methods described later).

then use them to create a taxonomy by which to clas-
sify methods in Table 1. Additional details are provided
in Appendix A.2.

Stratification, matching, weighting. A strong focus
of the causal inference literature over the past few
decades has been on preprocessing data to reduce re-
liance on parametric assumptions (Scharfstein, Rot-
nitzky and Robins, 1999; Bang and Robins, 2005;
Sekhon, 2007). Stratification, matching and weighting
all attempt to create treatment and control groups with
similar covariate distributions. If sufficient balance can
be achieved, then estimation of the treatment effect can
either proceed without a model or if a model is used,
the estimate from the model should be fairly robust to
misspecification.

In its purest form, stratification (or subclassification)
creates balance by restricting comparisons of outcomes
between treatment and control groups within the same
cell of the contingency table defined by all of the co-
variates (Rosenbaum and Rubin, 1984). Variants of this
have been proposed that stratify instead within leaves
of a regression tree (Athey and Imbens, 2016; Wager
and Athey, 2015).

Matching handpicks a comparison group for the
treated by choosing only those control observations
that are closest with regard to a given distance met-
ric; comparison units that are not similar enough to the
treated are dropped from the analysis (Stuart, 2010).
The most popular distance metric currently is the
propensity score although other choices exist (Rubin,
2006).

Weighting for causal inference is very similar to the
type of weighting typically performed in the survey
sampling world (Little, 1988). Similar to matching,
the goal of weighting is to create a pseudo-population
of controls that have a joint distribution of covari-
ates that is similar to the joint distribution of co-
variates for the inferential group (Rosenbaum, 1987;
Robins, 1999). Thus, controls are reweighted to look
like treated observations when estimating the ATT, or
vice versa when estimating the ATC (Imbens, 2004;
Kurth et al., 2006). To estimate the ATE, both groups
can be reweighted to reflect the covariate distribution
of the full sample.

Modeling of the assignment mechanism. Many
methods that work to reduce reliance on parametric as-
sumptions require accurate modeling of the treatment
assignment mechanism, often because they incorporate
the propensity score (Rosenbaum and Rubin, 1983).
The propensity score, defined as the probability that an

http://jenniferhill7.wixsite.com/acic-2016/competition
http://jenniferhill7.wixsite.com/acic-2016/competition
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TABLE 1
Summary of methods. First block are do-it-yourself methods and second block are black-box. Within blocks, methods are in

alphabetical order

PS PS RS RS
Method name ST MC WT PS NP VS RS NP VS EN

Ad Hoc X X
Bayes LM X
Calibrated IPW X X
DR w/GBM + MDIA 1 X X X X X
DR w/GBM + MDIA 2 X X X X X
IPTW estimator X X X X
GLM-Boost X X
LAS Gen Gam X X X X X
Manual X X X
MITSS X X X X
ProxMatch X
RBD TwoStepLM X X X
Regression Trees X X X X X
VarSel NN X X X X X X X
Weighted GP X X

Adj. Tree Strat X X X X
Balance Boost X X X
BART X X
calCause X X X
CBPS X X X
h2o Ensemble X X X X X X
LASSO + CBPS X X X X X
Linear Model X
MHE Algorithm X
SL + TMLE X X X X X X X X
teffects ra X
teffects ipw X X
teffects ipwra X X X
teffects psmatch X X
Tree Strat X X X X
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individual receives the treatment given its covariates,
Pr(Z | X), serves as a balancing score. Within the class
of observations with the same balancing score, treat-
ment assignment is ignorable.

The propensity score is typically incorporated into
a causal analysis through stratification, matching, or
weighting. For instance, one can stratify based on
values of the propensity score, use the difference in
propensity scores as the distance metric in matching,

or weight on functions of the propensity score. The
propensity score is also an important component of the
Targeted Maximum Likelihood Estimation (TMLE)
(van der Laan and Robins, 2003; van der Laan and Ru-
bin, 2006) approach used in several of the submitted
methods. TMLE is an approach to more efficiently esti-
mating the causal effect and can be particularly helpful
in situations with high-dimensional nuisance parame-
ters.
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Modeling of the response surface. If ignorability
holds and sufficiently balanced treatment and control
groups have been created using stratification, match-
ing, or weighting then a simple difference in mean out-
comes across groups will provide an unbiased estimate
of the treatment effect. A parallel argument, however,
is that if the response surface is modeled correctly it
is not necessary to preprocess the data in this way
(Hahn, 1998; Hill, 2011). Many causal inference ap-
proaches model both the assignment mechanism and
the response surface. While some approaches submit-
ted fall either formally or informally under a “dou-
ble robust” classification (Robins and Rotnitzky, 2001;
van der Laan and Robins, 2003), we prefer to catego-
rize methods separately by whether they model the as-
signment mechanism or the response surface since it is
beyond the scope of our efforts to decide whether each
method “formally” qualifies as doubly robust.

Nonparametric modeling of the assignment mecha-
nism or response surface. Almost every modern-day
causal inference approach involves either modeling of
the assignment mechanism (typically, although not al-
ways, to estimate the propensity score) or modeling of
the response surface. However, flexible modeling of
the assignment mechanism was largely ignored until
the past decade, particularly in the context of propen-
sity score estimation, because it was seen by many
primarily as a means to an end for achieving good
balance (Lee, Lessler and Stuart, 2010; Westreich,
Lessler and Funk, 2010). If subsequent matched, re-
weighted, or subclassified samples failed to achieve a
given threshold for balance the model was typically
modified by, for instance, adding or removing interac-
tions and quadratic terms, or performing transforma-
tions of inputs until adequate balance was achieved. In
recent years, however, more attention has been given
to estimation of propensity scores using methods that
require less strict parametric assumptions than tradi-
tional methods such as logistic or probit regression
(e.g., Westreich, Lessler and Funk, 2010).

Nonparametric modeling of the response surface has
also received some attention over the past decade (Hill,
2011; Wager and Athey, 2015; Taddy et al., 2016). This
is an alternative to approaches that try to create bal-
anced samples so that estimation methods are robust to
misspecification of the response surface.

Variable selection. Researchers often have access to
far more potential confounders than are realistic to in-
clude in any given analysis. It can be helpful to ex-
clude variables that are not true confounders. Variable

selection techniques such as LASSO (Tibshirani, 1996)
and the elastic net (Zou and Hastie, 2005) can help re-
duce the scope of the estimation problem to true con-
founders, so that more complicated algorithms can be
used on the terms that really matter.10

Ensemble methods. It is unrealistic to expect that
any one causal inference method can to perform well
across all potential settings. Ensemble methods miti-
gate this concern by running each of several methods
on a data set. Relative performance of the methods is
evaluated using cross-validation or model averaging.
Then either the estimate from the best method is cho-
sen or estimates from several methods are combined
in a weighted average where the weights are based on
relative performance (Dietterich, 2000).11

5.2 Overview of Submissions

Table 1 summarizes the methods submitted in terms
of the above features. Many submissions involved
novel or complex approaches. Most explicitly esti-
mated a propensity score. Most fit a model to the
response surface. More than half used some sort of
weighting. Matching was almost entirely absent from
the black-box portion of the competition, while tech-
niques like variable selection were scattered through-
out. The black-box methods and their submitters favor
sophisticated nonparametric modeling techniques.

The success of the competition and academic value
in understanding its results owe entirely to the large
number of high quality submissions from researchers
in this field. We are incredibly grateful to all re-
searchers who submitted something to our competition
in the hopes of furthering discussion on methodology
and best practices for making causal inferences from
observational data. A full list of participants is in the
online supplement Section 1.3 (Dorie et al., 2019).

5.3 Top Performers

The results of the competition are fully elaborated
in Section 6. In this section, we describe in a bit more

10Some of the submissions are based on machine learning tech-
niques that implicitly perform variable down-weighting or selec-
tion. We do not label the methods in this “gray area” as variable
selection methods in this taxonomy.

11While some definitions of ensemble methods might include
Random Forests or even methods that include boosting such as
BART as ensemble methods, we use a more narrow definition that
requires a library of competing methods that are all fit separately
to the same data and where the methods are weighted using per-
formance metrics, where the weights might be 0’s and 1’s. Rokach
(2009) reviews this distinction.
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detail the five methods among the original submissions
that had the best performance overall.

Bayesian additive regression trees (BART). Bay-
esian Additive Regression Trees (BART), is a non-
parametric method for fitting arbitrary functions using
the sum of the fit from many small regression trees.
This black-box submission incorporates priors over
the tree structure and tree predictions to avoid over-
fitting (Chipman, George and McCulloch, 2010). The
BART method for causal inference fits the joint func-
tion f (x, z) which is then used to draw from the poste-
rior predictive distribution for both y(1) = f (x,1) and
y(0) = f (x,0). The empirical posterior distribution
for any given average effect can be obtained by tak-
ing the differences between these quantities for each
person at each draw and then averaging over the the
observations about which we want to make inferences
(Hill, 2011).

Super learner plus targeted maximum likelihood es-
timation (SL + TMLE). This black-box submission
was an ensemble algorithm. Super Learner uses its li-
brary of methods to make out-of-sample predictions
through cross-validation, which are then combined ac-
cording to weights that minimize the squared-error loss
from predictions to observations. The weights are used
to combine the fitted values from the methods when fit
to the complete data set. This approach then applies a
TMLE correction to Super Learner estimates.

The ensemble library consisted of glm, gbm, gam,
glmnet and splines (all functions in R) to model
both assignment mechanism and response surface
(Polley et al., 2016). The fit from assignment model
was incorporated into the response surface using pro-
pensity score weights by expanding the population av-
erage treatment effect on the treated into conditional
average treatment effects across individuals (Hirano,
Imbens and Ridder, 2003).

calCause. The calCause black-box submission was
an ensemble algorithm that uses cross-validation to
chose between Random Forests (Breiman, 2001) and
a Gaussian process (Rasmussen and Williams, 2006)
with an unknown covariance function for fitting the re-
sponse surface of the controls. The method with better
out-of-sample prediction was used to impute the con-
trol response for the treated observations, which were
differenced from the observed treated responses and
then averaged. Uncertainty was measured by bootstrap
resampling.

h2o. This black-box submission labeled h2o refers
to the open source deep learning platform, h2o.ai (The
H2O. ai team, 2016). As implemented here, it is an en-
semble approach that performs “super learning” sep-
arately for the assignment mechanism (to predict the
propensity score) and the response surface for con-
trols [to predict Y(0) for the treated observations]. Ob-
served outcome values for the treated were used to
predict Y(1). Differences in predicted counterfactuals
were averaged using IPTW ATT weights. Models in
the ensemble library include: glm, random for-
est, deep learning (NN), LASSO and ridge
regressions (LeDell, 2016).

DR w/GBM + MDIA 1 and 2. This DIY submis-
sion used generalized boosted regression to estimate
separate models for the assignment mechanism and re-
sponse surface, each allowing for up to three-way in-
teractions. The model for the assignment mechanism
was used to estimate treatment-on-treated weights for
control cases. These weights were then calibrated us-
ing Minimum Discriminant Information Adjustment
(MDIA; Haberman, 1984)12 to achieve exact balance
of the means of both the individual covariates and the
estimated response surface. It is equivalent to a type
of bias-corrected doubly robust estimator. Confidence
intervals were constructed using bootstrap standard er-
rors. The first submission (DR w/GBM + MDIA 1)
used five-fold cross validation to select both the re-
sponse and selection models. The second submission
(DR w/GBM + MDIA 2) used 50,000 trees for both
models, which tended to be many more trees than
cross-validation would choose, particularly for the se-
lection model.

5.4 Post-Competition Methods

After the preliminary results of the competition
were presented at the Atlantic Causal Inference Con-
ference in May 2016 (http://jenniferhill7.wixsite.com/
acic-2016/competition), the competition was re-opened
for new submissions. The Super Learner team availed
themselves of this option and submitted a revised ver-
sion of their original Super Learner submission that

12MDIA is also referred to alternately in other literatures as “cal-
ibration weighting,” “exponential tilting” or “entropy balancing.”
Each creates weights of a simple exponential form that minimally
perturb of a set of base weights (in this case, ATT weights) to
exactly meet prespecified constraints. In this case, the approach
started with ATT weights for the control cases and then calibrated
them so that the weighted mean of each covariate, and a new co-
variate equal to the estimated control mean function, was exactly
equal to the corresponding treatment group mean.

http://jenniferhill7.wixsite.com/acic-2016/competition
http://jenniferhill7.wixsite.com/acic-2016/competition
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included BART in the library (SL + BART + TMLE).
Moreover, we found that an important means for ex-
ploring which features of the most competitive meth-
ods were most important for success was by tweaking
and combining some of the originally submitted meth-
ods. These investigations resulted in the nine additional
methods discussed now.

The two top-performing ensemble-based submis-
sions modeled both the assignment mechanism and
the response surface. To explore the contribution from
modeling both mechanisms rather than just the re-
sponse surface alone, we created an augmented version
of the BART submission that also modeled the assign-
ment mechanism (BART IPTW). Since the default ver-
sion of BART is known to sometimes perform poorly
when predicting binary outcomes (Dorie et al., 2016),
cross-validation was used to choose the parameters for
the prior distributions in the BART fit for the assign-
ment mechanism. As with SL + TMLE and calCause,
the fit from the assignment mechanism was incorpo-
rated into the BART estimate through IPTW weights.

To explore the role of the TMLE adjustment in the
superior Super Learner + TMLE performance, we
reran that algorithm without TMLE correction (Super
Learner). Relatedly, we also augmented the original
BART submission with IPTW plus the TMLE correc-
tion (BART + TMLE), where the propensity score is
again fit using BART with cross-validation.

Since BART was the only stand-alone method to
rival the performance of the ensemble methods, we
performed further tweaks to the originally submitted
approach. First, we used a BART fit just to the re-
sponse surface using cross-validation to choose the
hyperparameters rather than using the default prior
(BART Xval). Another new BART approach used
several chains from distinct starting points (typically
BART is run with one chain); this was also fit just to the
response surface (BART MChains). A third BART ap-
proach altered the multiple chains approach simply to
report symmetric intervals rather than percentile inter-
vals (MBART Symint). Finally, we implemented a ver-
sion of BART where the estimated propensity score is
included as a covariate (BART on PScore); this was in-
spired by work by Hahn, Murray and Carvalho (2017)
that develops extensions of BART that focus on esti-
mation of treatment effect heterogeneity less prone to
the biases that can be caused by regularization.

One difference between the SL and BART ap-
proaches is that the original SL submission fits sep-
arate reponse surface models for the treatment and

control conditions while the BART submission consid-
ers treatment as a covariate and fits the response sur-
faces jointly. This motivated creation of a method that
re-wrote the SL approach to fit the response surfaces
for the treated and control observations simultaneously
(SL + TMLE Joint). The specific ensemble in this im-
plementation included BART.

6. EVALUATION OF PERFORMANCE OF
SUBMITTED AND CONSTRUCTED METHODS

We assess all submitted methods across the 20 DIY
data sets. We evaluate both the BB competition sub-
missions and the post-competition methods across the
7700 BB methods. This section describes our global
summaries of performance for each of the two compe-
titions.

We evaluate root mean squared error (RMSE) to get
a better sense of how close on average each treatment
effect estimate is to the true value of the estimand. Bias
was calculated as the average distance between the
causal estimate and estimand (SATT) across all data
sets. When reporting for the black-box methods we ad-
ditionally display the interquartile range of all biases
across the 77 settings and 100 replications.

Interval coverage reflects the percentage over all data
sets that the reported interval covers the true SATT.
Given the potential trade-offs between coverage rates
and interval length we also report the average interval
length. A less conventional measure of performance is
the PEHE (precision in estimation of heterogeneous ef-
fects) (Hill, 2011). Within a given data set this measure
reflects the root-mean-squared distance between indi-
vidual level treatment effect estimates and individual
level differences in true potential outcomes. We report
the average PEHE across all data sets. Since the DIY
competition only had 20 methods we felt that coverage
measures and PEHE would be too imprecise to be use-
ful so we do not report these measures for those meth-
ods in the body of the paper. We do report these in Ap-
pendix A.3. Finally, computational time was calculated
for the black-box submissions (we could not observe
this for the DIY methods).

6.1 Comparison of All Methods in the 20 DIY
Data Sets

All of the submissions in both the DIY and black-
box competitions were run on the 20 DIY data sets.
Figure 1 displays the results with respect to RMSE and
bias. The DIY submissions are on the left side of the
vertical dividing line in the plot; the black-box sub-
missions are to the right of the line. Within the first
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FIG. 1. This plot displays both bias, represented by circles (val-
ues on the left y-axis), and RMSE represented by triangles (values
on the right y-axis). Both are calculated across the 20 data sets in
the DIY competition. The dashed vertical lines divides the DIY sub-
missions (to the left) from the black-box submissions (to the right).

group, the submissions are ordered by performance
with respect to RMSE, while within the second they
are ordered with respect to their RMSE in the com-
plete black-box set of simulations. The “oracle” results
correspond to performance when the conditional aver-
age treatment effect on the treated is used as the “esti-
mate.”13

Given that the performance of the DIY submissions
can only be evaluated over 20 data sets, we are reluc-
tant to draw strong conclusions about relative perfor-
mance. However, based on bias and RMSE, we see
strongest performance across all methods from the two
DR w/GBM + MDIA submissions. The top black-box
performers (discussed above) are the next best per-
formers. It is worth noting that the DIY methods that
perform next best all rely on flexible fitting of either the
assignment mechanism, the response surface, or both.
Additional results are provided in Appendix A.3.

6.2 Comparison of Black-Box Submissions

We now compare all the methods submitted to the
black-box competition with regard to all metrics de-
scribed above across all 7700 data sets.

13The conditional average treatment effect on the treated is de-
fined as E[Y (1) − Y (0) | X,Z = 1] where the expectation repre-
sents the average over the treated units in the sample.

FIG. 2. This plot displays both bias (left y-axis) and RMSE (right
y-axis) for all submitted black-box methods and newly created
methods. Both are calculated across the 7700 data sets in the black-
-box competition. Bias is displayed by circles and RMSE by trian-
gles, each averaged across all the data sets; open symbols are used
for submitted methods and filled for newly created methods. Lines
for bias measures show the interquartile range of all biases across
the 77 settings and 100 replications.

RMSE and bias. Figure 2 displays the results with
regard to RMSE (triangles, scale on right y-axis) and
bias (circles, scale on left y-axis).14 Methods are ar-
rayed across the x-axis in order of performance with
respect to RMSE. Of the originally submitted meth-
ods, four stand out with respect to bias and root mean
squared error: BART, SL + TMLE, calCause and h2o.
The next most obvious group of methods with superior
performance are Tree Strat, BalanceBoost, Adjusted
Tree Strat and LASSO + CBPS. In general, it is fair
to say that most of the methods in this competition per-
formed reasonably well with both (the absolute value
of) bias and RMSE at or below about 0.05 standard de-
viations with respect to the outcome measure; this level
of standardized bias is very low relative to traditional
measures of effect sizes (Cohen, 1962).15 In particular,
and not surprisingly, the methods created or submitted
after the initial deadline all performed particularly well

14A noteworthy feature of these results is that the average bias is
negative for all methods. This reflects the fact that the treatment
effect distribution had a positive expected value and most methods
shrink their treatment effect estimates toward zero.

15Another way to think about the absolute level of the perfor-
mance of the methods is to see how closely it resembles that of
the oracle.
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relative to the others with the exception of SL + TMLE
joint, which likely failed because many of the meth-
ods in that ensemble library were incapable of fitting
nonparallel response surfaces and thus were unable to
estimate heterogeneous treatment effects.

The following additional comparisons, however, are
perhaps of note. Adding BART to the SL + TMLE
submission improved performance relative to SL +
TMLE without BART in the library, however, this addi-
tion was not sufficient to outperform BART as a stand-
alone method.16 Three of the BART augmentations
led to slightly better performance with respect to bias
and RMSE (BART + TMLE, BART MChains, BART
Xval) and one did not (BART IPTW).

Interval coverage and length. While many of the au-
tomated algorithms submitted to this competition per-
formed well with regard to RMSE and bias, perfor-
mance varied widely with regard to interval coverage
and length. All of the originally submitted methods
were somewhat disappointing in this regard. Figure 3
displays these results. This plot displays both coverage

FIG. 3. Coverage (circles) and average interval length (triangles)
for all of the black-box and newly created methods across the 7700
black-box data sets. Methods are ordered according to decreas-
ing coverage rates. Methods in bold/filled plot points represent the
newly created methods. Points in gray were beyond the plotting re-
gion (very poor coverage or very large intervals) and are shown at
the corresponding top or bottom edge.

16It is possible that this is because BART was used to fit the as-
signment mechanism without any adjustment to account for the fact
that standard BART-for-binary implementations do not always per-
form well with binary outcomes (Dorie et al., 2016).

(circles) and average interval length (triangles) for all
of the black-box and newly created methods across the
7700 black-box data sets. The methods are ordered ac-
cording to decreasing coverage rates.17 Since all inter-
vals are intended to have 95% coverage we plot a hor-
izontal line at that level. The best methods will have
coverage close to 95% while also having the shortest
intervals. Methods in bold/filled plot points represent
the newly created methods. Points in gray were beyond
the plotting region (very poor coverage or very large
intervals) and are shown at the top or bottom edge The
last nine methods on the right all had coverage below
75%, while CBPS and h2o Ensemble had average in-
terval lengths of 0.78 and 6.1.

Several of the new methods were added to address
concerns about confidence interval coverage. These
augmentations were successful to varying degrees. One
successful augmentation with respect to coverage rates
was BART + TMLE. While the original BART im-
plementation had average coverage around 82%, the
BART + TMLE implementation had nearly nominal
coverage. This was accompanied by approximately a
50% increase in average interval length but this length
is still slightly smaller than the other top-performing
methods. The BART implementation that includes the
propensity score also increases coverage noticeably
to a little over 90% without any increase in aver-
age interval length. Finally, the BART implementation
that reports symmetric rather than percentile intervals
(MBART SymInt) results in an increase in coverage
rates that is similar with only a small increase in aver-
age interval length. Another successful augmentation
was the addition of BART to the SuperLearer + TMLE
ensemble. This resulted in a shift in average coverage
from about 83% to about 92% with no noticeable in-
crease in the average interval length.

Precision in estimation of heterogeneous effects.
Only a subset of the methods output the individual level
treatment effect estimates required to calculate the Pre-
cision in Estimation of Heterogeneous Effects (PEHE)
measure18 (Hill, 2011). Of these, the BART meth-
ods and calCause performed noticeably better than the
other options; however, since the two other competi-
tors were quite simple and relied on linear models this
was not particularly surprising. Given the importance

17The one triangle that sits on the 95% line is potentially mislead-
ing; recall this point displays interval length, not coverage.

18The TMLE and IPTW extensions of BART affect only how in-
dividual effects are averaged to calculate an estimate of the average
treatment effect for the treated.
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of targeting treatments based on covariate profiles it
would be useful if future competitions continued to in-
clude this measure in their evaluations and encouraged
submitters to submit individual level effect estimates in
addition to an estimate of the average treatment effect
for each data set.

Computational time. Another metric that discrimi-
nated sharply across the methods was computational
time, measured as the system time of the process
spawned for the method. As the cluster is a shared re-
source, run times for individual replications within a
simulation setting varied widely. To compensate, aver-
age run time was computed by taking the median run
time within each setting and then the arithmetic mean
of those values. Even with this adjustment, usage var-
ied widely from week to week so that the run time
should be seen as a rough measure and not equivalent
to the performance in a controlled environment.

One might expect that all of the ensembles would
perform substantially worse on this metric. However,
h2o, at 24.8 seconds, was quite competitive with
BART, at 29.4 seconds. It should be noted that the h2o
method frequently failed to run and required numer-
ous restarts, so that its times may be unreliable. The
method also offloads much of its computation to back-
ground processes, so that the resources consumed are
difficult to measure. Methods that use cross validation,
including all of the Super Learner submissions and
some of the modifications of the BART algorithm, took
substantially longer. Many of these still remained in
the 10 to 15 minute range, however, three approaches
were noticeably more computationally expensive: cal-
Cause (27.7 minutes), SuperLearner (46.9 minutes),
and SL + TMLE Joint (46.8 minutes).

7. PREDICTING PERFORMANCE

As discussed in Section 6, certain methods outper-
form the majority of submissions. Thus, one could sim-
ply advise researchers to use one of the top-performing
methods. However, we wanted to be able to provide ad-
vice about which methods work best in specific types
of settings. Moreover, we wanted to understand which
characteristics of a method are associated with strong
performance. We use the performance data from the
black-box competition to address these questions.19

Overall, we find that to a surprising degree we could
not go beyond a general recommendation of using flex-
ible nonparametric response surface modeling. Under

19The DIY competition did not have enough data to perform sim-
ilar types of analyses.

almost no condition could we predict which of the
black-box methods would outperform others, beyond
its average level of performance across all settings.
In other words, to the degree that we can examine it
in these testing grounds, relative performance is much
less contextual than we had imagined.

7.1 Measures Used to Predict Performance

We created a set of 25 metrics that describe the 77
different experimental settings and their instantiations.
These include both levels of simulation “knobs” (de-
scribed in Section 4.3), as well as metrics measured di-
rectly on the simulated data. These data-based metrics
are divided into “oracle” metrics, which rely on infor-
mation only available to those with knowledge of the
true DGPs, and “nonoracle” metrics that are available
directly from the observed data. An example of an ora-
cle metric is the correlation between the true propen-
sity score and the outcome; an example of a nonor-
acle metric is the pseudo-R2 achieved when estimat-
ing a propensity score model using logistic regression.
While oracle metrics provide a more accurate repre-
sentation of the features of the data, nonoracle met-
rics could in principle be evaluated before selecting
a method and thus guide the choice. The full list of
metrics is given in the online supplement Section 1.2
(Dorie et al., 2019).

7.2 Performance Variance Explained

We first attempted to explain variation in perfor-
mance for each method, one at a time. We built mul-
tiple linear regression models, one for each of the 24
black-box methods, explaining the log of the abso-
lute bias for each of the 7700 data realizations. The
amount of variation in performance is method depen-
dent, but using the log transform reduces differences in
the amount of targeted variance across methods. The
predictors in these models are the metrics used to de-
scribe the 7700 data realizations. Interpreting the log
as relative change on the original scale, total variation
is similar for all methods on the log scale, and thus R2

for our explanatory models may be compared across
methods.

Across methods the R2 from the predictive models
rarely exceeds 0.10 when predictive models include
only nonoracle measures. Essentially, we cannot de-
duce, from data-derived metrics, how well a method
will perform on a given dataset. When we add in ora-
cle knowledge, this increases to 0.40–0.50 for just over
a third of the methods in the competition, mostly the
weaker-performing methods. For the more successful
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methods, even with the oracle knowledge the R2 rarely
exceeds 0.10. Details are provided in Appendix A.4.
Essentially, our ability to predict performance for a
given method based on features of the data is very poor
for most methods and is roughly inversely proportional
to the overall performance of that method.

7.3 Cross-Method Analysis About Features of Data
and Models

The above analysis is conditional on the method, and
as such does not explain differences in performance
across methods, nor whether there are settings in which
certain types of methods perform better than others. We
evaluate these questions using a sequential set of multi-
level models (MLM) (described in Appendix A.4) that
partition the variation into components reflecting dif-
ferences in performance between methods, settings and
their interaction, as well as “unexplained” variation due
to differences between realizations net of all else.

This partitioning estimates that 37% of the varia-
tion is attributable to differences in the average per-
formance of methods (see Table 5 and discussion in
Appendix A.4 for details). Using dummy codings for
the features of methods displayed in Table 1, we can
explain 76% of the between method, average perfor-
mance differences, net of all else. Inclusion of a non-
parametric fit to the response surface accounts for most
of these differences.

Variance attributable to settings, at 5%, is a small
portion of the total variation in performance, but we
are able to explain essentially all of these differences,
on average, using two nonoracle data features. The first
is a measure of nonlinearity of the response surface:
the R2 of the observed outcome Y on the observed
design matrix. The second is a measure of the degree
of alignment between the assignment mechanism and
response surface: the R2 between the estimated unit
level treatment effect estimated by BART and propen-
sity scores estimated with logistic regression on the
observable design matrix. The data conditions that are
almost completely predictive of poor performance are
poor alignment between outcome and treatment assign-
ment mechanisms and nonlinearity of the response sur-
face. We were unable to find important method by data
condition interactions.

In summary, whether we use oracle or nonoracle data
measures, features of methods, or the interactions be-
tween these, we remain exceedingly limited in our ca-
pacity to explain differential performance at the real-
ization level. The unexplained across dataset variation
in performance still accounts for over half of the total
variation.

8. DISCUSSION

We have created the first large-scale data analysis
competition for estimating causal effects in the context
of observational studies. Through our efforts to sum-
marize and unpack the results several themes emerged.
One theme is that of all the ways we created complex-
ity in the data, two of the three that created most the
most difficulty across the board for achieving low bias
were nonlinear response surfaces and treatment effect
heterogeneity. Perhaps not surprisingly then, methods
that were able to flexibly model the response surface
routinely distinguished themselves as high performers.
This held true even for methods like BART that only
modeled the response surface and not the assignment
mechanism. Moreover these methods had superior per-
formance relative to approaches that only focused on
flexibly modeling of the assignment mechanism (Bal-
ance Boost, Tree Strat, Adj. Tree Strat). This also helps
to explain the superior performance of most of the en-
semble methods which were able to capitalize on the
relative strengths of a variety of models in order to
achieve this flexibility.

Another theme has to do with the fact that lack of
alignment across the assignment mechanism and the
response surface emerged as one of the most challeng-
ing features of the data. This data feature has been
discussed only rarely in the causal inference literature
(see, for instance, Kern et al., 2016). Lack of alignment
creates difficulty because if there are many covariates
available to a researcher and only a subset of these
are true confounders (and indeed perhaps only cer-
tain transformations of these act as true confounders)
then methods that are not able to accurately privilege
true confounders are potentially at a disadvantage. Of
course most of the submissions did not explicitly do
this. However quite a few approaches performed either
explicit variable selection or implicit weighting of pre-
dictors based on some metric of importance.20 It ap-
pears that there is a bigger payoff to this type of se-
lection or re-weighting of inputs in the response sur-
face modeling however. This is consistent with advice
warning against variable selection in the assignment
mechanism as well as advice to focus attention on the
relative importance of inputs to the response surface
(Austin, Grootendorst and Anderson, 2007; Hill, 2008;
Pearl, 2010).

20It can be argued that almost all regression type methods per-
form this kind of weighting of course. However, they do so using
different metrics and to different degrees.
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The third theme is that good coverage was diffi-
cult for most methods to achieve even when bias was
low. While we were able to achieve better coverage by
“tweaking” some of the best-performing methods (in
particular the TMLE adjustment often seemed benefi-
cial, though it did not uniformly improve coverage),
we don’t feel like we have strong advice about how to
optimize this aspect of performance.

On the positive side, a final theme is that there are
several good options for accurately estimating causal
effects, particularly if the primary goal is to reduce
bias; furthermore, many of these have R packages that
are readily available. Of course that advice comes with
the caveat that our testing grounds have been restricted
a range of settings where ignorability holds, overlap for
the inferential group is satisfied, the data are i.i.d., etc.;
these properties may not hold in practice and far more
work needs to be done to understand what methods
may work in settings with additional complications.

This competition has provided a vehicle for evaluat-
ing the efficacy of a wide range of methods across a
much broader set of DGPs for the assignment mech-
anism and response surface than is typically present
in any single methodological paper. These compar-
isons were bolstered by the ability to “crowdsource”
the methodological implementations. We hope that our
efforts will inspire others to create similar types of data
analysis competitions that explore different types of
challenges so that we can continue to learn together
as a community about how to create methods that will
reliably perform well for applied researchers across a
wide range of settings.

APPENDIX

A.1 Details of Simulation Framework

We described above the knobs that were manipulated
to create the 77 different simulation settings. Here we
provide more information below about the knob set-
tings. The levels of each knob that are used for each of
the black-box and DIY data sets are available in Sec-
tion 1.1 of the online supplement (Dorie et al., 2019).

• Treatment model—determines the base library of
functions used when building the treatment assign-
ment mechanism, P(Z = 1 | X). linear implies that
some predictors x·j are added to the assignment
mechanism model as linear terms with random coef-
ficients, polynomial gives a chance that, for continu-
ous predictors, quadratic or tertiary terms are added
in addition to a “main effect,” and step potentially
adds “jumps” and “kinks” of the form I{x ≤ A}(x·j )
and (x·k − B)I{x ≤ C}(x·k) respectively.

• Trt%—the baseline percentage of observations re-
ceiving the treatment or control conditional. Ranges
from 35% to 65%.

• Overlap—when not full, a penalty term was added to
the linear form of the treatment assignment mecha-
nism [logitP(Z = 1 | X)] that added a large, neg-
ative value for combinations of extreme values of
randomly chosen covariates. That is, terms of the
form A · I {x·j > B} · I {x·k ≤ C} · · · , where A is
large and B,C, . . . chosen from marginal quantiles.
The penalty term forcibly excludes some observa-
tions from the treated population.

• Response model—similar to trt model, determines
the library of functions used when building the re-
sponse surface, E[Y | X,Z]. exponential encom-
passes the polynomial condition but adds a single
term of the form exp{f1(x·j ) + f2(x·k)}, with sub-
functions that are linear, quadratic, or step.

• Trt/Rsp alignment—achieved by specifying a mar-
ginal probability that a term in the treatment assign-
ment mechanism is copied to the response surface.
low gives an approximate 25% chance, while high
gives an approximate 75% one.

• Heterogeneity—controls the number of terms with
which treatment interacts. none implies that treat-
ment is a single, additive term in model, low implies
that treatment is interacted with approximately three
of the terms in the response model, and high yields
around six interactions.

In treatment and response model generation, coeffi-
cients are generally drawn from Student t-distributions
when unbounded or beta-prime distributions when
strictly positive. Assuming that covariates are scaled
to approximately [−1,1], sub-function locations and
scales are generated to approximately map to the same
region. After functional terms are chosen, combined
functions are rescaled so that the observed inputs yield
plausible results, that is propensity scores almost ex-
clusively in the range of 0.1–0.9 and response variables
with a mean of 0 and expected standard deviation of 1.
Finally, the response surfaces for the treated and con-
trols [Y(1) and Y(0)] are adjusted to meet a generated
average treatment effect. The response surface noise
and treatment effect are generated from heavy-tailed
distributions.

A.2 Glossary of Submitted and Created Methods

Tables 2 and 3 describe all of the methods considered
in this paper whether they were competition submis-
sions or created after the fact by the organizers. In the
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TABLE 2
Do-it-yourself methods

Method name Description

Ad Hoc The method first used GBM to screen for variables that predicted control group outcomes. It then made ad hoc
decisions about variable transformations, and applied unmentionable and unreplicable incantations with the goal
of improving fit and the ability to extrapolate beyond the range of the observed data. It then used stepwise AIC to
select among models allowing for up to three-way interactions among the subset of variables chosen from the
previous steps. The selected model was then used to predict control outcome values for all treatment cases. It is not
an automated method and has only tenuous grounding in statistical theory.

Bayes LM Naive Bayesian linear model.

Calibrated IPW Estimates a logistic propensity score calibrated such that the causal estimator is unbiased under the assumption
that the response for the controls is linearly related to the covariates. Variance estimates are obtained from an
asymptotic approximation.

DR w/GBM + MDIA The method used generalized boosted regression models (GBM) with cross validation to estimate flexible response
and treatment models. The treatment model was used to obtain treatment-on-treated (TOT) weights, and these
weights were tweaked with Minimum Discriminant Information Adjustment (MDIA) to achieve exact balance of
the means of both the individual covariates and the estimated response surface. It is equivalent to a type of
bias-corrected doubly robust estimator.

GLM-Boost Boosted generalized linear model and bootstrapping for the confidence intervals.

IPTW estimator A stabilized inverse probability of treatment weighting method for the ATT. The propensity score is estimated by
first selecting only covariates highly correlated with response. Weights are then used to regress response on
treatment, and confidence intervals are obtained by bootstrap resampling.

LAS Gen GAM Least absolute shrinkage and selection operator (LASSO) was first used to select covariates for both treatment and
response variables separately. Covariates selected for the treatment model were used in the GenMatch algorithm,
which selects a yields a single control for each treatment. The responses for that constructed data set were fit using
a generative additive model (GAM) using as predictors treatment and covariates from either variable selection
model.

Manual Hand-done logistic regression followed by matching and weighted linear regression.

MITSS Multiple imputation with two subclassification splines (MITSS) explicitly views causal effect estimation as a
missing data problem. Missing potential outcomes are imputed using an additive model that combines a penalized
spline on the probability of being missing and linear model adjustments on all other orthogonalized covariates.

ProxMatch A matching method based on the proximity matrix of a random forest, in which treatment and control observations
that tend to end up in the same terminal nodes are matched.

RBD TwoStepLM We first stratify on the estimated propensity score fitted by a linear model to approximate randomized block
designs, then use the linear regression adjustment to analyze the randomized experiment within each stratum of the
estimated propensity scores, and finally combine the estimates to get the overall estimator for the average
treatment effect on the treated.

Regression Trees Bootstrap estimates of the propensity score were generated using decision trees; several models for estimating
SATT, including individual trees and a boosted ensemble, then used sample weights based on these estimates.

VarSel NN Random Forest (RF) and LASSO variable selection steps were used on the response to determine variables for a
neural network (NN) propensity score model. Nonoverlaping treated observations were eliminated by a caliper
distance, a matching set from the remaining made using the optmatch package, and from this ATT weights
extracted. Finally, the response was regressed on treatment and selected variables with the aforementioned weights.

Weighted GP Uses a Gaussian process to model the response for the treatment group and a weighted Gaussian process to model
the control group. Weights were derived so as to solve the “covariate shifting” problem, in which groups have
different marginal distributions but the same conditional. This was done by applying the Frank–Wolfe optimization
algorithm to the the Kullback–Leibler Importance Estimation Procedure, minimizing the KL divergence between
the two distributions. Finally, predicted responses were averaged over treatment group to get estimates and
confidence intervals.
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TABLE 3
Black-box methods

Method name Description

Balance-Boost A boosting algorithm is used to estimate the propensity scores by maximizing a covariate balancing score. An
outcome regression is subsequently applied to adjust the estimate and estimate the maximum bias that might come
from using an IPTW estimator. The bias and variance are combined to form conservative confidence intervals
(wider and have more than 95% coverage).

BART This approach uses a Bayesian nonparametric method (Bayesian Additive Regression Trees) to flexibly model the
response surface. The method can produce posterior distributions for both average and individual-level treatment
effects.

BART IPTW A joint BART model that uses cross-validation to choose a hyperparameter when fitting the assignment
mechanism and the default parameters when fitting the response surface. The results are combined using an
propensity-score weighted difference.

BART MChains BART fit only to the response surface using default settings, but combining the results of multiple chains.

BART on PScore BART MChains with a propensity score calculated using cross-validation, as in BART IPTW. Propensity score is
added to the covariates in the response model.

BART + TMLE The joint model from BART IPTW but with the addition of the TMLE correction.

BART + Xval A response surface-only model that uses cross-validation to chose BART’s hyperparameters.

calCause Response surface for controls fit by using cross validation to choose between random forests and a Gaussian
process with a kernel matrix estimated using “FastFood” method. These imputed counterfactuals were paired with
the observed treated values and bootstrap sampling used to obtain a standard error.

CBPS The propensity score was estimated by maximizing a balancing score (CBPS), which was then used to stratify
observations. Independently, a linear model with third order polynomial terms was fit to the controls and used to
make predictions for the treated. The ATT was then estimated by a weighted combination of the averages across
strata.

h2o Ensemble Ensembler learners (glm, RF, ridge, deeplearner, . . . ) model response for controls and propensity score. These are
then combined using IPTW ATT weights to take the difference between observed and predicted treated values.

Linear Model Linear model/ordinary least squares.

LASSO + CBPS This method estimated the SATT using propensity score reweighting. Propensity scores were estimated via the
covariate balancing propensity score method proposed by Imai and Ratkovic, 2014, after selecting covariates with
a preliminary LASSO regression that included main effects for each covariate. The model for the response surface
was then selected using a weighted LASSO regression that included interaction terms and polynomial terms (for
continuous covariates).

MBart SymInt BART MChains but with intervals calculated using a normal approximation instead of the empirical quantiles of
the posterior samples.

MHE Algorithm The state of the art in labor and development econometrics: ordinary least squares and robust standard errors.

SL + TMLE Targeted minimum loss-based estimation (TMLE) was implemented using a universal least-favorable
one-dimensional submodel. The outcome regression and propensity scores were modeled using super learning,
with a library consisting of logistic regression models, gradient boosted machines, generalized additive models
and regression splines. Covariates supplied to the Super Learner were prescreened based on their univariate
association with the outcome.

SL + BART + TMLE The Super Learner/TMLE algorithm with BART added to the set of models.

Super Learner The Super Learner algorithm without the TMLE correction.

teffects ipw Stata teffects function—inverse probability weighting using logistic regression and first order terms.

teffects ipwra Stata teffects function—ipw + logistic and weighted OLS.

teffects psmatch Stata teffects function—matching using logistic regression on first order terms and nearest neighbor.

teffects ra Stata teffects function—regression adjustment by fitting separate models to treatment and control with first order
terms.

Tree Strat Tree-based stratification for average treatment effect estimation. The method first trains a CART tree to estimate
treatment propensities, and then uses the leaves of this tree as strata for estimating the ATT.

(Adj.) Tree Strat An adjusted variant of the Tree Strat method, it seeks to improve the fit via a regularized regression adjustment in
each stratum.



CAUSAL INFERENCE COMPETITION 63

case of competition submissions the descriptive word-
ing was largely contributed by the person or team sub-
mitting the method for consideration, with some light
editing for space. In cases where the submitter failed to
respond to requests for a description the methods was
excluded from inclusion in the paper. In all such cases
the methods were low performers. Methods are ordered
alphabetically.

A.3 Extra DIY Results

This section contains supplementary results for the
Do-It-Yourself portion of the competition, including
coverage, interval length and precision in estimation of
heterogeneous effects (PEHE). These are reported in
Figures 4 and 5.

A.4 Explaining Variance: Modeling Results

Table 4 displays the R2 of the model for each
method’s performance in terms of log absolute bias lin-
early regressed on the 25 metrics describing the exper-
imental conditions plus quadratic terms [see list in on-
line supplement Section 1.2 (Dorie et al., 2019)]. The
table is ordered by the overall RMSE performance of
the methods. The first column reports the R2 from the
regression utilizing the nonoracle metrics, and these
tend to explain very little variance. The next column
(2) evaluates a model with indicator variables for the

FIG. 4. This plot displays coverage (circles) and average interval
length (triangles) for all of the DIY and original black-box meth-
ods across the 20 DIY data sets. Methods are ordered according to
decreasing coverage rates. Methods in bold/filled plot points rep-
resent the newly created methods. Points in gray were beyond the
plotting region (very poor coverage or very large intervals) and are
shown at the top or bottom edge.

FIG. 5. This plot displays PEHE for the DIY and black-box meth-
ods that supplied individual-level treatment effect estimates.

77 settings only; one could characterize this as model-
ing the average outcome per setting, and we find that
a bit more variation is explainable with these, espe-
cially for the worst performing methods. Next, in col-
umn 3, labeled “All metrics,” the regression is on the
oracle and nonoracle measures, and these more fine-
grained (realization level) measures do seem to be able
to explain a bit more variation. Lastly, column 4, “Set-
tings + Metrics” adds an indicator variable for each of
the 77 experimental conditions (as per column 2) to the
metrics in column 3, resulting in a bit more variation
explained.

We supplemented the separate regression models
with a single multilevel model, again with log abso-
lute bias as the outcome, and the metrics described
previously as predictors. By examining all methods to-
gether, we are able to partition the total variation into
that associated with methods, settings or their inter-
action. The prior analysis ignored the effect of meth-
ods and its potential interaction with settings. Another
way to understand the multilevel approach is that aver-
age performance for a particular set of conditions may
be more easily predicted than performance of a single
realization. In fact, we organize the predictors in the
multilevel model so that some of them are the average
value of the metric across 100 realizations, yielding ef-
fectively 77 unique values per predictors per method.
Including these in the model yields the implicit assess-
ment of the average performance for each of the 77 set-
ting scenarios. It will turn out that we have the ability
to predict average performance across the 100 realiza-
tions very well.

In our multilevel model, we include group random
effects for 24 methods, and group random effects for
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TABLE 4
Squared correlation coefficient of regressing each methods’ performance in terms of log absolute bias, across 77 experimental conditions
times 100 repetitions, onto the 25 metrics describing the experimental conditions plus quadratic terms [see list in the online supplement
Section 1.2 (Dorie et al., 2019)], in the “All metrics” setting. The “Settings + Metrics” column is the same, with an additional dummy

variable for each of the 77 experimental conditions

Method name No oracle Only settings All metrics Settings + Metrics

teffects ipw 0.09 0.23 0.37 0.38
MHE Algorithm 0.18 0.42 0.48 0.50
Linear Model 0.17 0.41 0.47 0.49
teffects ipwra 0.09 0.27 0.43 0.45
teffects ra 0.09 0.29 0.44 0.46
teffects psmatch 0.07 0.22 0.33 0.35
CBPS 0.08 0.28 0.43 0.45
SL + TMLE Joint 0.27 0.17 0.39 0.40
LASSO + CBPS 0.11 0.22 0.36 0.38
Adj. Tree Strat 0.06 0.17 0.19 0.22
BalanceBoost 0.11 0.21 0.32 0.34
Tree Strat 0.01 0.14 0.13 0.16
SuperLearner 0.10 0.10 0.19 0.20
SL + TMLE 0.04 0.04 0.08 0.09
BART IPTW 0.06 0.10 0.21 0.22
calCause 0.03 0.08 0.09 0.10
h2o Ensemble 0.03 0.08 0.09 0.10
SL + BART + TMLE 0.03 0.03 0.06 0.06
BART 0.03 0.05 0.09 0.10
BART Xval 0.03 0.06 0.09 0.10
MBART SymInt 0.02 0.05 0.09 0.10
BART MChains 0.03 0.06 0.09 0.10
BART + TMLE 0.03 0.04 0.08 0.09
BART on PScore 0.02 0.04 0.09 0.10

the 77 conditions set by us for the contest. A simple un-
conditional means model with these effects allows us to
partition the variance in performance into components
attributable to methods and settings. As is common in
this modeling paradigm, we then attempt to “explain”
these variance components via the metrics described in
the online supplement Section 1.2 (Dorie et al., 2019)
and by features of the methods described in Table 1.
As in the method-specific analysis of the prior subsec-
tion, the former are divided into those estimable by the
researcher (nonoracle) and those only known by those
charged with data generation (oracle). In practice, the
researcher is thus quite limited in terms of this informa-
tion, so one of our objectives is to determine the extent
to which this matters.

The baseline model, given in column 1 of Table 5,
succinctly describes the sources of variation in this
study. Methods and Settings, along with their interac-
tion, sum to 1.135, which is 46% of the total variation.
The remaining 54% of the variation labeled “Realiza-
tions” is at the trial level and reflects both the idiosyn-

cratic error and the variability of the predictors and
their interrelationships within setting. Somewhat sur-
prising is the smaller amount of variation captured in
the interaction of settings and methods, 0.091, which
suggests that methods are simply better or worse, and
not dramatically better than another method in a given
setting. In column 2, we add a set of eight nonredun-
dant indicators for features of the method, as described
in Table 1. The indicators explain 76% of the main ef-
fects for variation between methods, but only a few fea-
tures are significant: utilizing a nonparametric response
surface is by far the most important feature, improving
the outcome dramatically, by a factor of −2 on the log
scale.

In columns 2 and 3, we add our oracle and nonoracle
metrics after preprocessing them as follows: first, we
rescale them to have mean zero and variance one; then,
we compute the mean of these for each setting and cen-
ter the metric within setting to reflect only its deviation;
we include those setting-level means; and we include
squared versions of each of those paired terms to al-
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TABLE 5
Variance components analysis: Results from six different multilevel models predicting log absolute bias from the black-box methods across
the 7700 data sets. The first column displays the partition of the variance in log absolute bias explained by the methods and the 77 settings

relative to the unexplained variance across data set realizations within setting and method. The other columns show how the variation
explained by each component changes as we include features of the models, then nonoracle metrics, then oracle metrics, and the

interactions between these sets of metrics (nonoracle and nonoracle plus oracle) and the method features

Metrics Feature × MetricVariance Uncond. Method
component mean features Nonoracle +Oracle Nonoracle +Oracle

Methods 0.914 0.216 0.216 0.216 0.217 0.217
Settings 0.130 0.130 0.025 0.002 0.027 0.005
Setting × Methods 0.091 0.091 0.091 0.091 0.050 0.027
Realizations 1.308 1.308 1.288 1.269 1.272 1.225

Total 2.443 1.744 1.620 1.578 1.566 1.475

low for simple nonlinearities. This form of centering
within cluster (Enders and Tofighi, 2007) will isolate
the impact of mean metrics to between group effects
and centered metrics to within group effects.

In column 3, we see that the nonoracle metrics are
able to explain a large portion of the main effects
for variation between settings (81%). This suggests
that the researcher may gain substantial knowledge of
their setting from quantities derived from observables,
but recall that the limited magnitude of variance asso-
ciated with the setting-by-method interaction implies
that this knowledge should not help much in choos-
ing a method. Including the oracle metrics of settings,
we can explain nearly all of the main effects for the
corresponding variation. Thus, if we have a good idea
of what type of setting we were in with respect to
alignment, nonlinearity of the response surface, etc.,
we would have a decent sense of how well our method
would perform in terms of (log) absolute bias, but the
choice of method would probably remain fairly steady:
a good method will use a nonparametric model of the
response surface.

Our last two columns reflect our maximal explana-
tory power. In column 5, we interact the metrics with
characteristics of the method derived from Table 1,
nonoracle first. These should target the variance com-
ponent associated with the setting by method interac-
tion, but it could also explain realization variance. For
the nonoracle interactions, we explain 45% of the set-
ting by method variance component. We make little
progress explaining the idiosyncratic (realization) vari-
ance with this set of interactions. With the addition of
oracle metrics, as given in the last column, which re-
flect qualities of the settings without being exact val-
ues of the settings themselves, we explain 70% of the

interaction between setting and method, which is an
improvement, but perhaps at a cost of requiring an un-
realistic form of knowledge. By the end, we do make
a little progress explaining 6% of the realization varia-
tion.

We can conclude that realizations within setting are
hard to explain, but most of the setting and method
variation is not. Perhaps a bit surprising is how much
we can learn from observables—at least we can assess
our likely performance in the given context even if it
will be quite difficult to have this influence our choice
of method. Another conclusion is that it is possible to
predict how a method will perform on average in a
given contextual setting, but not much more; that is,
“explaining” variance components involves explaining
mean differences between groups. We know that we do
well, on average, with methods that flexibly model the
response surface, and we understand the conditions un-
der which we should expect to do a bit less well.

The conditional regression analysis of the prior sub-
section differs from this multilevel analysis because it
ignores the variation between methods expressed by
row 1 in Table 5, but we can verify the relationship
between the approaches as follows. If we exclude row
1 from the total variation, we are then trying to ex-
plain 2.443 − 0.914 = 1.53 units of variation. In col-
umn 6, we see that 1.475 − 0.217 = 1.26 units remain
unexplained, suggesting that on average, we can ex-
plain about 18% of the total variation (ignoring be-
tween method variation, but averaged across methods).
This is consistent with the results in Table 4, in which
the last column reveals a range of R2 between 0.06 and
0.50 for the model that has a full set of indicators for
the 77 settings along with all metrics.
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