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Stochastic Epidemic Models
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Abstract. Approximate Bayesian Computation (ABC) and other simulation-
based inference methods are becoming increasingly used for inference in
complex systems, due to their relative ease-of-implementation. We briefly
review some of the more popular variants of ABC and their application in
epidemiology, before using a real-world model of HIV transmission to illus-
trate some of challenges when applying ABC methods to high-dimensional,
computationally intensive models. We then discuss an alternative approach—
history matching—that aims to address some of these issues, and conclude
with a comparison between these different methodologies.
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1. INTRODUCTION

Complex mathematical models can provide impor-
tant insights into the behaviour of dynamic epidemio-
logical systems. However, to understand how well the
model represents reality, and therefore how useful the
model is for inference, regarding the actual system un-
der study, it is necessary to fit it to observed data. This
task can be challenging, partly due to the complexity
of the model itself, but also because there is often a
paucity of available data.

Common features of models used to study real-world
epidemiological processes are that they are large-scale,
dynamic, nonlinear and auto-correlated. Furthermore,
information such as infection times are almost impos-
sible to measure or record, and so the observed data
often correspond to proxies such as medical reports,
test results and mortality rates, and even these are fre-
quently incomplete. These challenges have driven the
development of a suite of statistical methodologies for
model fitting, the most widespread of which are based
around the use of a likelihood function. Here we focus
on Bayesian methods, where we wish to estimate the
posterior distribution for the parameters (θ ), given the
data (y), which can be written as

(1) π(θ | y) ∝ π(y | θ)π(θ),
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where π(y | θ) is the likelihood function and π(θ) is
the prior distribution (representing our beliefs in the
values of the parameters in the absence of data). Usu-
ally the normalising constant is analytically intractable,
requiring the use of numerical methods to generate em-
pirical estimates of π(θ | y).

In many cases the likelihood is also intractable, due
to the presence of hidden variables (or missing data),
and some form of imputation method is usually re-
quired in which the missing information is inferred.
Data-augmentation (DA) methods (e.g., Gibson and
Renshaw, 1998, O’Neill and Roberts, 1999, Jewell et
al., 2009) provide a flexible and powerful framework
for inference, where the parameter space is augmented
to include the hidden variables (x). The marginal pos-
terior distribution of interest is then given by

(2) π(θ | y) =
∫
X

π(θ ,x | y) dx,

where X corresponds to the (multidimensional) param-
eter space for the hidden variables. The integrand in (2)
can be written as

(3) π(θ ,x | y) ∝ π(y,x | θ)π(θ),

where the joint likelihood function based on the ob-
served data and the hidden variables, π(y,x | θ), is
now tractable. If joint samples from π(θ ,x | y) can
then be produced (using numerical sampling algo-
rithms such as Markov chain Monte Carlo—MCMC),

then the integral in (2) is straightforward to evaluate
numerically. The uncertainties due to the hidden vari-
ables are intrinsically incorporated into the resulting
marginal posterior distribution. Despite their flexibil-
ity, these methods can quickly become computation-
ally infeasible as the number of hidden variables, and
the size and complexity of the system increases; not
only because the additional variables must be stored,
but also because designing and implementing efficient
update schemes for the augmented variables in high di-
mensions can be very challenging (both methodologi-
cally and computationally).

An alternative approach is to consider that the
marginal posterior (2) can also be written as

(4) π(θ | y) ∝
[∫

X
π(y,x | θ) dx

]
π(θ),

and the integral in (4) can be approximated using im-
portance sampling as

(5) π̂(y | θ) = 1

n

n∑
i=1

π(y,xi | θ)

qX(xi | θ)
,

where xi ∼ qX(· | θ) and qX(· | θ) is a proposal dis-
tribution for the hidden variables x. Some powerful
theoretical results follow from this estimator. Indeed,
Beaumont (2003) proved that using the estimator (5)
in an MCMC algorithm of the form given in Al-
gorithm 1(a) [with (5) replacing π̂(y | θ)], gave ex-
act posterior samples in probability. This result was

Algorithm 1 The (a) ABC-MCMC algorithm of Marjoram et al. (2003) (left-panel) and the (b) ABC-SMC algo-
rithm of Toni et al. (2009) (right-panel).

A1. Initialise the tolerance ε, the number of iterations niter.
A2. Sample an initial set of parameters θ(0) ∼ π(θ).
A3. Generate n data sets z

(0)
i ∼ π(· | θ(0)) and calculate π̂(y | z(0)

i ) =
(1/n)

∑n
i=1 1(ρ(y,z

(0)
i ) < ε).

A4. If π̂(y | z(0)
i ) = 0 go to step A2.

A5. Set iteration indicator j = 1.
A6. Sample a candidate value θ ′ ∼ Q(·|θ(j)) from some Markov

transition kernel Q(·).
A7. Generate n data sets z′

i ∼ π(· | θ ′) and calculate π̂(y | z′) =
(1/n)

∑n
i=1 1(ρ(y,z′

i ) < ε).
A8. Set θ(j) = θ ′ and π̂(y | z(j)) = π̂(y | z′) with probability

α = min
(

1,
π̂(y | z′)

π̂(y | z(j−1))

× π(θ ′)
π(θ(j−1))

× Q(θ(j−1) | θ ′)
Q(θ ′ | θ(j−1))

)
,

else set θ(j) = θ(j−1) and π̂(y | z(j)) = π̂(y | z(j−1)).
A9. If j < niter, increment j = j + 1 and go to step A6.

B1. Set the number of generations T , and the number of particles
npart.

B2. Initialise the tolerances ε1, . . . , εT . Set population indicator t =
1.

B3. Set particle indicator j = 1.
B4. If t = 1, sample θ ′′ independently from π(θ). If t > 1, sample θ ′

from the previous population {θt−1} with weights {Wt−1}, and
perturb the particle to θ ′′ ∼ Qt(· | θ ′) according to a Markov
transition kernel Qt(·).

B5. If π(θ ′′) = 0, return to B4.
B6. Generate n data sets z′′

i ∼ π(· | θ ′′), and calculate π̂(y | z′′) =
(1/n)

∑n
i=1 1(ρ(y,z′′

i ) < εt ).
B7. If π̂(y | z′′) = 0, then go to B4.
B8. Set θ

(j)
t = θ ′′ and

W
(j)
t =

⎧⎪⎪⎨
⎪⎪⎩

π̂
(
y | z′′) if t = 1,

π̂(y | z′′)π(θ
(j)
t )∑npart

j=1 W
(j)
t−1Qt(θ

(j)
t | θ(j)

t−1)
if t > 1.

B9. If j < npart, increment j = j + 1 and go to step B4.

B10. Normalise the weights so that
∑npart

j=1 W
(j)
t = 1.

B11. If t < T , increment t = t + 1 and go to B3.
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later generalised by Andrieu and Roberts (2009), who
showed that this holds for any nonnegative unbiased
estimator of π(y | θ). In practice, the key challenge
is finding efficient proposal distributions, qX(· | θ), for
the hidden variables, which can be difficult for com-
plex nonlinear models (see, e.g., Andrieu, Doucet and
Holenstein, 2010, McKinley et al., 2014, Drovandi,
Pettitt and McCutchan, 2016).

1.1 Direct Simulation from the Underlying Model

In certain situations, it may be possible to simulate
outputs directly from an underlying statistical model,
which can then be mapped to the observed data in an
appropriate manner. In this case, equation (4) becomes

(6) π(θ | y) ∝
[∫

Z
π(y | z, θ)π(z | θ)dz

]
π(θ),

where π(z | θ) is the likelihood function for a single
realisation of the underlying process, z, and π(y | z, θ)

is a probabilistic mapping between the realisation z and
the observed data y. (Z corresponds to the space of all
possible realisations of z.) We can then write equation
(5) as

(7) π̂(y | θ) = 1

n

n∑
i=1

π(y | zi , θ),

where zi ∼ π(· | θ) corresponds to a single simulation
from the underlying model. In the special case that we
require exact matching between the simulated data and
the observed data, then

(8) π(y | zi , θ) =
{

1 if zi = y,

0 otherwise.

In other cases, we could define the mapping between
zi and y to have a specific probabilistic form (for ex-
ample, if the observed data were derived from an im-
perfect diagnostic test). From now on, we will focus
on systems that can be written in the form described
by (6). (Note that there are also promising methods
that involve recoding or reparameterising the simula-
tion model [e.g., Neal, 2012, McKinley et al., 2014,
Kypraios, Neal and Prangle, 2017]. However, these ap-
proaches are not feasible for all models, and can be
difficult to scale to very complex systems, so here we
focus on methods that simulate directly from the un-
derlying model.)

These ideas, coupled with the fact that it is often
far easier to code a simulation model than reconstruct
a likelihood function based around a large number
of hidden variables, have facilitated the development

of various ‘simulation-based’ methods for inference,
where calculation of the likelihood is replaced by an
estimate derived from simulations from the underlying
model, an idea that goes back at least as far as Diggle
and Gratton (1984) and Rubin (1984). The key bottle-
neck in the implementation of these methods is that
even for small-scale systems, the probability of gen-
erating simulations that match all observed data points
exactly is often very small. This often precludes direct
implementation of these approaches, and instead mo-
tivated the development of a suite of techniques now
known colloquially as Approximate Bayesian Compu-
tation (ABC) (e.g., Tavaré et al., 1997). In recent years,
these techniques have exploded in popularity, since
these ideas can be readily incorporated into existing
numerical algorithms, such as rejection sampling (e.g.,
Tavaré et al., 1997, Beaumont, Zhang and Balding,
2002); MCMC (e.g., Marjoram et al., 2003, Ratmann
et al., 2009, Wood, 2010); or sequential Monte Carlo
(SMC) (e.g., Sisson, Fan and Tanaka, 2007, Toni et al.,
2009, Beaumont et al., 2009, Del Moral, Doucet and
Jasra, 2012, Drovandi and Pettitt, 2011, Lenormand,
Jabot and Deffuant, 2013). Due to their relative ease-
of-implementation, simulation-based methods are be-
ing increasingly adopted in stochastic epidemic mod-
elling (e.g., O’Neill et al., 2000, Toni et al., 2009,
McKinley, Cook and Deardon, 2009, McKinley et al.,
2014, Neal, 2012, Conlan et al., 2012, Brooks Pollock,
Roberts and Keeling, 2014, Kypraios, Neal and Pran-
gle, 2017).

Good reviews of ABC can be found in Csilléry et al.
(2010) and Beaumont (2010), and a more recent and
technical review can be found in Marin et al. (2012).
In many applications, vanilla rejection sampling ap-
proaches are hard to implement efficiently, and so most
ABC routines in the literature are based around either
MCMC or SMC methods; two popular examples are
shown in Algorithms 1(a) and 1(b). We assume the
reader is familiar with both SMC and MCMC meth-
ods (see, e.g., Marjoram et al., 2003, Toni et al., 2009).
A recent tutorial for implementing ABC-MCMC meth-
ods for temporal stochastic epidemic models can be
found in Kypraios, Neal and Prangle (2017). The fun-
damental challenge for implementation of ABC is that
in many circumstances the probability of getting an ex-
act match between the simulations and the data is van-
ishingly small, and there have been myriad innovations
to try to alleviate this problem. Here we briefly intro-
duce some of the more common ABC-type approaches,
before focusing on key challenges when applying these
methods to high-dimensional and computationally in-
tensive models.
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2. ‘CLASSIC’ ABC

Instead of requiring the simulations to match the data
exactly, a distance metric, ρ(·, ·), can be introduced,
and thus (7) can be approximated by

(9) π̂ (y | θ) = 1

n

n∑
i=1

1
(
ρ(y,zi ) < ε

)
,

with ε defining some tolerance for matching. Using the
estimator (9) as an estimate of the likelihood in stan-
dard numerical procedures will produce samples from
the approximate posterior π(θ | ρ(y, ·) < ε). Generally
speaking, the metric is set-up such that ρ(y,zi ) → 0 as
zi → y, and hence as ε → 0 the approximate posterior
will tend to the true posterior, but at a greater compu-
tational cost.

2.1 The Impact of the Tolerance

A key consideration is fixing (or reducing) the tol-
erance levels to be as small as possible (in order to
minimise information loss in the approximate poste-
rior), whilst retaining a reasonable acceptance rate.
SMC methods are well-suited to the ABC framework,
since they allow initial generations to use less restric-
tive tolerances than subsequent generations, which of-
ten makes them more efficient at exploring the param-
eter space than ABC-MCMC, provided a good set of
initial particles can be found (see, e.g., Toni et al.,
2009, McKinley, Cook and Deardon, 2009). Adaptive
schemes are often used (Beaumont et al., 2009, Del
Moral, Doucet and Jasra, 2012, Drovandi and Pettitt,
2011, Lenormand, Jabot and Deffuant, 2013), in which
the choice of tolerance at each generation is determined
as a function of the simulated metric distances at the
previous generation (see Silk, Filippi and Stumpf, 2012
for some critique of these approaches).

ABC-MCMC methods tend to use a fixed toler-
ance for the entire chain, with a few notable excep-
tions: for example, Ratmann et al. (2007) use a tem-
pering method to reduce the tolerance during the burn-
in phase, before fixing the tolerance to collect the fi-
nal samples, and Bortot, Coles and Sisson (2007) in-
troduce a data-augmentation approach, in which they
place a shrinkage pseudo-prior on the tolerance and es-
timate this as part of the model fitting.

2.2 Matching to Multiple Outputs

Acceptance rates are affected further when match-
ing to multiple outputs. Here there are two main op-
tions: the first, the so-called intersection approach, sets

a separate distance metric around each of the K out-
puts, each with its own tolerance. A simulation is then
accepted if

(10)
K∏

k=1

1
(
ρk(y,z) < εk

) = 1,

where z corresponds to the simulated data. The simula-
tion must therefore match each output simultaneously
in order to be accepted. An alternative is to create a
single metric, ρ∗(·, ·), and accept a simulation if:

(11) 1
(
ρ∗(y,z) < ε

) = 1,

where ρ∗(y,z) = f (ρ1(y,z), . . . , ρK(y,z)), and
f (·) is some function of the K outputs (e.g., Conlan
et al., 2012). This is termed a union metric (see also
Ratmann et al., 2014).

The trade-off between the two choices varies accord-
ing to the particular system being modelled, but heuris-
tically one can think of the union metric as smoothing
out some of the patterns in the data, that is, the models
are allowed to fit certain outputs less well than others,
provided that the overall fit is reasonable. Combining
metrics in a sensible manner is sometimes challenging,
especially if they are defined on different scales (see,
e.g., Conlan et al., 2012). Union metrics can sometimes
lead to simulations being regularly accepted when they
do not fit certain outputs very well at all, whereas in-
tersection metrics can penalise misfitting simulations
more, but at a cost of reduced acceptance rates. In the
case of ABC, we expect the probability of rejecting a
simulation to scale with K (although of course the ex-
act relationship is harder to quantify, since some of the
metrics may be correlated).

2.3 The Use of Summary Statistics

Based on the previous discussion, if the dimension-
ality of the observed data is large then it can be chal-
lenging to design a computationally efficient algorithm
with minimal information loss in the approximate pos-
terior. In a handful of cases, it may be possible to re-
duce the data to a set of lower-dimensional sufficient
statistics, that contain the same amount of informa-
tion as the full data. More often that not, sufficient
statistics are unknown (or are equal to the data), and
so often a set of lower-dimensional summary mea-
sures, S1(y), . . . , SL(y), are used in their place (where
L < K). The key questions are then: how well do the
summary statistics capture the information in the data,
and how do any biases introduced manifest in any in-
ferences that we make from the model? Increasing re-
search effort has been placed into deriving approxi-
mately sufficient summary measures (e.g., Joyce and
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Marjoram, 2008, Nunes and Balding, 2010, Barnes et
al., 2012, Fearnhead and Prangle, 2012, Ratmann et al.,
2014). The use of summary statistics can also be ex-
tended to indirect inference methods, where the auxil-
iary models describe the distributions of the summary
statistics (see Section 2.7).

2.4 Increasing the Number of Replicates (n > 1)

Interestingly, theoretical convergence of Algo-
rithms 1(a) and 1(b) do not depend on the number of
simulations, n, used in the estimator (9) (Andrieu and
Roberts, 2009, Del Moral, Doucet and Jasra, 2012). For
more general classes of pseudo-marginal algorithms, it
has been shown that increasing n can improve the ef-
ficiency of the algorithms by reducing the variance of
the estimator (5) (see, e.g., Pitt et al., 2012, Sherlock
et al., 2015, Doucet et al., 2015). In the specific case
of ABC-MCMC with uniform matching, Bornn et al.
(2017) show that setting n = 1 results in run times that
are at most a factor of 2 away from the optimum choice
(obtained for some n > 1). However, their results also
make the assumption that simulation run times are ap-
proximately constant, which is often not true for epi-
demic systems, where run times for individual simu-
lations can often vary greatly even for fixed parameter
inputs. Also, in the case of ABC-MCMC and more
general pseudo-marginal algorithms, chains using low
values of n can often get ‘stuck’ and fail to mix prac-
tically at all (see, e.g., McKinley, Cook and Deardon,
2009, Andrieu and Roberts, 2009). Mixing can gen-
erally be improved by increasing the tolerance(s), but
at the cost of further information loss in the approxi-
mate posterior. Under the same assumptions as above,
Bornn et al. (2017) show that for a simple rejection
sampling ABC algorithm, n = 1 is indeed optimal. In
practice ABC-SMC samplers, such as described in Al-
gorithm 1(b) seem to perform better for low n (see,
e.g., McKinley, Cook and Deardon, 2009), and it is for
this reason that we choose to use ABC-SMC instead of
ABC-MCMC for tackling the model in this paper.

Another option to alleviate the mixing issues in
pseudo-marginal MCMC algorithms for low n is to
refresh the π̂(y | θ) estimates for both the candidate
and current parameters at each iteration of the chain
(see, e.g., O’Neill et al., 2000, Andrieu and Roberts,
2009, McKinley et al., 2014). This exhibits substan-
tially better mixing, at the cost of producing biased
samples, with the bias decreasing as n → ∞. It also
doubles the number of simulations required per itera-
tion of the chain, though this is often mediated by re-
quiring shorter chains due to the improvement in mix-
ing.

2.5 Interpretation of ABC Posterior

The term ABC derives from the fact that these
methods were originally developed to obtain an ap-
proximation to the ‘true’ posterior (Tavaré et al.,
1997). Wilkinson (2013) showed that in certain cir-
cumstances, for a fixed metric and (final) tolerance,
ABC can be interpreted as giving the exact posterior
under the assumption of model error. For example, if
ρ(·, ·) is based on Euclidean distances, then up to some
normalising constant, (9) corresponds to assuming uni-
form error around the observed data y [these normal-
ising constants then cancel in the accept-reject steps of
Algorithms 1(a) and (b)].

Wilkinson (2013) cites two possibilities for the in-
terpretation of the error term: observation error or
model discrepancy. The former is generally well un-
derstood, and it is often possible to either build this di-
rectly into the simulation code, or define this in terms
of a probabilistic function mapping the hidden states
to the observed data. The idea of model discrepancy
(MD) is less familiar, and more difficult to define, but
relates to the disparity between the model and real-
ity. It has been argued to be an important source of
uncertainty that should be incorporated into calibra-
tion routines to prevent over interpretation due to the
choice/assumptions of the model, and hence increase
robustness (e.g., Goldstein and Rougier, 2009, Oakley
and Youngman, 2017). When viewed in this way, ABC
ceases to be approximate. In practice, for this inter-
pretation to be meaningful requires that the form and
magnitude of MD is considered in advance and speci-
fied in epidemiologically relevant terms (see, e.g., Sec-
tion 2.6). When we discuss ‘classic’ ABC in this paper,
we do so in its original paradigm, that of an approxi-
mation to the posterior in the absence of MD.

Another important contribution is given in Fearnhead
and Prangle (2012), in which they reframe ABC infer-
ence in terms of a set of desired properties (defined
as accuracy and calibration), and provide methods for
selecting summary statistics to optimise these desired
characteristics.

2.6 Generalised ABC and Post-Processing

Beaumont, Zhang and Balding (2002) suggested im-
proving the posterior approximation by post-processing
the final set of parameters; reweighting each according
to the distance between the simulated outputs and the
data using localised linear-regression (see also Blum
and François, 2010). An alternative is to choose some
nonuniform discrepancy distribution for use directly
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within the ABC estimate of the likelihood. Hence, (9)
becomes

(12) π̂(y | θ) = 1

n

n∑
i=1

π(y | zi , ε),

where ε > 0 now defines some variance controlling the
discrepancy between the simulated and observed data
sets. Wilkinson (2014) terms this generalised ABC
(GABC). A natural choice of discrepancy distribution
is one that has a single mode, centred around the ob-
served data, such that π(y | zi , ε) → 0 as the dis-
tance between y and zi increases. As an example, we
could place independent Gaussian distributions with
variance ε around each data point, or even used dif-
ferent variances for different data points. [Note also
that (12) also includes the uniform discrepancy dis-
tribution discussed earlier as a special case.] The lack
of hard-bound on the discrepancy distribution removes
the problem of ‘matching’, but at the potential cost of
(12) having a high Monte Carlo variance unless a large
number of replicates is used. This could lead to mix-
ing issues in ABC-MCMC and particle degradation in
ABC-SMC. A truncated, but nonuniform, error term
could alleviate the high uncertainty when simulating in
the tails of the discrepancy kernel (see also the ideas in
Bortot, Coles and Sisson, 2007 and Beaumont, Zhang
and Balding, 2002).

2.7 Indirect Inference

There are also a series of approaches that are akin to
the methods of indirect inference (Gouriéroux, Mon-
fort and Renault, 1993), whereby an auxiliary model
is introduced to describe the distribution of the data,
and inference is based on comparison of the parameters
of the auxiliary model as estimated through repeated
simulations from the model-of-interest (e.g., Wood,
2010, Drovandi, Pettitt and Faddy, 2011, Ratmann et
al., 2014). The synthetic likelihood approach of Wood
(2010) assumes a parametric form (e.g., multivariate
normal) for the distribution of outputs arising from re-
peated model simulations. The parameters of this aux-
iliary model are estimated from the simulations, and a
synthetic likelihood can be constructed by estimating
the likelihood that the observed data come from the
auxiliary model. A huge advantage of this method is
that there is no need to choose tolerance levels for the
matching, though a suitable auxiliary model must be
found (which is sometimes challenging), and replicate
simulations per parameter set are necessary.

An insightful paper by Drovandi, Pettitt and Lee
(2015), showed that classical ABC and the synthetic

likelihood approaches are both special cases of a more
general class of models, which they call Bayesian in-
direct likelihood (BIL) models. They show that in gen-
eral convergence of the synthetic likelihood approach
to the true posterior is not guaranteed, however the
method often performs well if the auxiliary model is
flexible enough to match the simulations to the data
well in the region of nonnegligible posterior mass.

3. CHALLENGES FOR COMPUTATIONALLY
INTENSIVE MODELS

In the previous section, we briefly reviewed various
recent advances in simulation-based inference for sta-
tistical models. There are many possible choices of
approach, with trade-offs in terms of computational
complexity, accuracy, bias, interpretation and ease-of-
implementation. The ability to plug a simulation al-
gorithm into existing routines have made ABC-type
methods attractive as a potential tool for statistical in-
ference in large-scale, complex systems, such as those
frequently studied in epidemiology (see also Ionides,
Bretó and King, 2006, Ionides et al., 2011, 2015 for
frequentist approaches). In addition, it is often straight-
forward to parallelise the simulations.

Nonetheless, most methodological research has fo-
cused on the development of ideas and theories ap-
plied to relatively small scale models or data sets, and
even some of these simpler examples can take be-
tween several hundred thousand model runs to many
millions (e.g., Kypraios, Neal and Prangle, 2017). In
our opinion, one of the major current challenges in
the field is how to perform robust inference when the
simulation models are highly computationally inten-
sive; precluding the running of very large numbers
of simulations. These systems often go hand-in-hand
with high-dimensional input (parameter) and output
(data) spaces, and in this paper we illustrate some of
these challenges using a complex, large-scale, high-
dimensional model of HIV transmission. This model,
called Mukwano, is an individual-based stochastic
micro-simulation model, that simulates (amongst other
things): heterosexual sexual partnerships, sexual ac-
tivity, HIV transmission and life histories (including
births and deaths). Different versions of the model ex-
ist, but the version studied here has 22 input parame-
ters, and 18 outputs.

For brevity, we refer the reader to Andrianakis et
al. (2015) for full details of the model, but briefly
the model simulates heterosexual sexual partnerships
(partnership formation, dissolution, and concurrency)
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and HIV transmission, alongside demographic events
such as births and deaths in a population of individuals.
The data come from a long-term (25+ years) longitudi-
nal study of an open cohort of ≈18,000 individuals in
rural Uganda. We used informative uniform priors for
the 22 inputs, and full details of the model and priors
can be found in Andrianakis et al. (2015).

The model has an average run time of ≈5–10 mins
per simulation (in the well-supported region—it can be
far longer [>3 hours] in some areas of poor support).
Based on the discussions in earlier sections, and our
own experience, it was decided that an ABC-SMC al-
gorithm, using a single simulation per particle (n = 1)
would be a sensible choice of routine to try to tackle
this problem. Some initial tests using GABC with nor-
mally distributed discrepancy terms resulted in ex-
tremely high Monte Carlo errors for the GABC like-
lihood estimate in parts of the space where the model
fit was poor. As such we instead used a uniform er-
ror term and implemented an intersection approach in
which all 18 outputs were matched simultaneously. We
set a nonzero minimum bound for the tolerance, relat-
ing to roughly twice the observation standard deviation
for each output used in Andrianakis et al. (2015).

We implemented the ABC-SMC routine of Toni et
al. (2009) [Algorithm 1(b)], using the optimal localised
multivariate kernel approach of Filippi et al. (2013).
In order for ABC to work well, there must be a large
enough number of particles located in areas of high
posterior support, and so we generated an initial set
of 22,000 particles uniformly from the prior distribu-
tion. Here we choose to match to 18 outputs simulta-
neously, which requires 18 tolerances defined on differ-
ent scales. We chose initial tolerance values to be the
50th percentile of the simulated metric distances for
each of the 18 outputs, and chose tolerances at genera-
tion t + 1 using a simple bisection method [detailed in
Supplement A (McKinley et al., 2017)], where the pro-
portion of generation t particles that would be accepted
using the new tolerances was approximately pτ = 0.5.
(We note that this method allows for semi-automatic
nonuniform adjustments of the tolerances at each gen-
eration of ABC, and can also be applied to outputs that
are defined on different scales.)

The results for 11 generations of ABC-SMC are
shown in Figure 1, which shows some interesting be-
haviour. For most outputs there is a steady convergence
towards the observed data. However, for one output in

FIG. 1. Model fits for 11 generations of ABC. These show the marginal predictive distributions for the model outputs conditional on the set
of ABC particles at different generations of ABC. For brevity we only show generations 1, 3, 5, 7, 9 and 11 here. The dotted lines denote the
data and the target regions are shown in grey.
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FIG. 2. Relative tolerance evolution (right panel) for 11 gener-
ations of ABC-SMC fitted to Mukwano. (Note that a relative tol-
erance of 1 corresponds to the initial tolerance value at the first
generation of ABC-SMC, and a relative tolerance of 0 corresponds
to the target tolerance defined by the observation error, as shown
by the grey regions in Figures 1 and 3.)

particular (m1s), even after 11 generations of ABC the
simulated outputs are far lower than the observed data
(see also the ampi output). Figure 2 shows the rela-
tive tolerances across generations, rescaled such that a
value of one corresponds to the initial tolerance, and
zero to the target (observation) tolerance. The algo-
rithm should stop when each line crosses zero. The
blue line relating to the m1s output seems to be asymp-
toting at a level far higher than we require, and in-
deed for many of the others the rate-of-change of tol-
erance values between the generations is also slowing.
Although the aim is to generate an acceptance rate of
around 0.5 for each generation, in the later generations
the actual value is much smaller than this (Table 1). At
this point, the final generation took almost 2 days to
run on a high-performance cluster.

These anticipated challenges for ABC in higher di-
mensions present a difficult set of choices for the
standard ABC paradigm: do we continue to run the
algorithm as before, considering the decreasing conver-
gence rate; do we change criteria in the algorithm, per-
haps choosing smaller tolerance thresholds at the cost
of decreasing acceptance rates further; do we change

metric; or do we stop the algorithm? On the one hand
there seems to be convergence towards the data, so one
could continue with the ABC. On the other hand the
rate of convergence is slowing, and the number of sim-
ulations required at each generation is increasing, to
the point that we may begin to question the logic of
continuing. If the tolerances asymptote to a level that
is far away from the data, then the key question is: can
the model fit the data adequately, or have we simply not
explored the parameter space sufficiently? Sometimes
the trade-offs in accuracy required to get ABC algo-
rithms to fit in a computationally feasible manner can
be large, and can lead to situations in which the current
‘best-fit’ from the ABC algorithm is sufficiently poor
that we are unable to make useful inferences about the
system.

3.1 Emulation

A advance for approximating outputs when a simula-
tion model is computationally expensive is to appeal to
the use of an emulator (e.g., Sacks et al., 1989). This is
a statistical representation of the simulation model that
can be used as a surrogate in simulation-intensive rou-
tines. Typically, the complex model is run at a series of
‘design’ points, and the emulator is trained on the sim-
ulated outputs at each of these points. Once trained,
the emulator can be used to predict the outputs from
the complex model (as well as to provide measures of
uncertainty in the predictions) very quickly.

Emulators in ABC. There have been several re-
cent applications of using emulators within ABC.
Henderson et al. (2009), Jandarov et al. (2014),
Wilkinson (2014), Meeds and Welling (2014) and
Cameron et al. (2015) each implement MCMC algo-
rithms where the true likelihood is replaced by that
derived from an emulator. Important differences be-
tween the methods lie in how the emulator is trained.
Henderson et al. (2009) use a fixed set of design points
(chosen to cover the input space), and Jandarov et al.
(2014) use a grid design. These are feasible because
the input and output spaces are low-dimensional, but
would be challenging in high dimensions, since enough

TABLE 1
Acceptance rates for ABC-SMC

Generation 1 2 3 4 5 6 7 8 9 10 11 Total

Acc. rate 0.78 0.64 0.59 0.49 0.44 0.37 0.3 0.27 0.2 0.16 0.15
Number sims. 28,363 34,407 37,377 45,062 49,816 58,989 72,325 82,236 109,651 139,329 142,764 800,319
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points would be required to produce a sufficiently ac-
curate emulator. Meeds and Welling (2014) train the
emulator as the MCMC progresses, choosing new de-
sign points based on local moves around the current
point of the chain. Jabot et al. (2014) embed the emu-
lator in both rejection and SMC samplers, using initial
design points sampled from the prior. ABC steps are
then run using the emulator as a surrogate, and new
training points chosen at each generation based on the
current set of particles. Cameron et al. (2015) use func-
tional regression to emulate a microsimulation model
of malaria infection, which they use to generate an ap-
proximate posterior through MCMC.

These approaches look promising, but require an em-
ulator that is sufficiently accurate to represent the com-
plex model across the input space, which in turn re-
quires careful design of training points. In the next
section, we discuss an alternative methodology that
is specifically designed to rigorously and efficiently
explore high-dimensional input spaces to reject areas
where the model fits are poor.

3.2 History Matching

History Matching (HM) is a technique developed
in the Bayesian computer model literature for finding
acceptable inputs to expensive complex models that
have high-dimensional input and output spaces (Craig
et al., 1997). It has been successfully employed across
a range of scientific disciplines, both for determinis-
tic and stochastic models (see Vernon, Goldstein and
Bower, 2010, 2014, Andrianakis et al., 2015 and ref-
erences therein). While there may appear to be super-
ficial similarities between HM and various versions of
ABC, the techniques are distinct both in terms of their
goal and their implementation. HM is not an inferential
procedure, but instead seeks to identify the regions of
input space that produce acceptable matches between
model and data, where ‘acceptable’ is defined via an
underlying statistical model that incorporates a careful
consideration of major uncertainties: observational er-
rors, model discrepancy and others (e.g., stochasticity).

It proceeds by cutting out regions of the input space
in iterations or waves, using implausibility measures.
In each wave t , we design a set of model runs over the
current input space �t . The set of outputs is denoted
K = {1, . . . ,K}. Emulators (such as Gaussian pro-
cesses) are constructed only over �t to mimic informa-
tive outputs of the model (deterministic case) or sum-
maries of outputs (stochastic case), denoted fk(θ), pro-
viding estimates of the expected values and variances,
E(fk(θ)) and Var(fk(θ)), respectively. At wave t , it is

only necessary to choose a set of outputs k ∈ Kt than
can both be emulated sufficiently accurately, and that
are informative: usually this set increases in size at
each wave. An implausibility measure can then be con-
structed for each emulated output fk(θ), k ∈ Kt (more
advanced implausibility measures are available):

(13) I 2
k (θ) = (E(fk(θ)) − yk)

2

Var(fk(θ)) + Var(εk) + Var(ek)
.

Here yk is the observed data, and Var(εk) and Var(ek)

are the variances due to model discrepancy and ob-
servation error respectively. The structure of Ik(θ) is
derived from an underlying statistical model (Vernon,
Goldstein and Bower, 2010), which dictates how to
combine the different sources of uncertainty. Because
the specified uncertainties are meaningful, unlike the
tolerances in standard ABC, the implausibility is also
now on a meaningful scale, and we can apply cutoffs
on Ik(θ) directly (motivated by Pukelsheim’s 3σ rule
Pukelsheim, 1994) to remove implausible parts of the
input space if Ik(θ) > c (where often c = 3). Large
amounts of the input space �t can often be removed
based on a single (or a small combination of) output(s),
to define a reduced space �t+1. Further waves are per-
formed unless (a) the emulator variances Var(fk(θ))

for all outputs of interest are now small in comparison
to the other sources of uncertainty Var(εk) + Var(ek),
or (b) the entire input space has been deemed implau-
sible.

Why is this a useful approach? HM works well in
high dimension for several reasons (Vernon, Goldstein
and Bower, 2010). It provides a fast, meaningful de-
cision, based on a subset of outputs, as to whether an
input point is implausible that is independent of the rest
of the input space, and hence can quickly discard vast
regions of input space without modelling the whole
set of outputs. Note that these regions will most likely
contain extremely low posterior probability, hence, al-
though HM does not seek a Bayesian posterior, it is a
very useful precursor if one subsequently wishes to do
so. Critically, at each wave the emulator accuracy is ex-
pected to improve, and structured emulators involving
dimensional reduction can be designed to exploit this.
Often an individual output may strongly depend only
on a small subset of ‘active’ inputs (e.g., Vernon, Gold-
stein and Bower, 2010), and hence the implausibility
structure allows us to break a high-dimensional prob-
lem into a series of lower-dimensional ones. There may
also be several outputs that are difficult to emulate in
early waves (perhaps because of their erratic behaviour
in uninteresting parts of the input space) but simple to
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emulate in later waves in smaller, more realistic input
regions. HM thus allows the sequential incorporation
of outputs of increasing complexity.

The differences between HM and ABC: at each wave
of HM, all the emulators and implausibility cuts from
previous waves are also used. Hence, unlike most ABC
implementations, HM ‘remembers’ regions of space
that were previously deemed implausible. This is vi-
tal in high dimensions to avoid unnecessarily retest-
ing many input locations known to be unacceptable.
ABC usually seeks to approximate a Bayesian infer-
ence calculation, using ever decreasing tolerances that
can cause computational inefficiencies. However, HM
is not an inferential procedure, nor is it ‘approximate’,
and uses tolerances that are derived from a well de-
fined statistical model that incorporates realistic as-
sessments of uncertainty that are usually elicited from
subject matter experts or by performing simple alter-
native experiments on the model (Goldstein, Seheult
and Vernon, 2013). They are hence interpretable, can
be substantial, and are not reduced to arbitrarily small
sizes, and can alleviate these computational inefficien-
cies. The statistical model also facilitates the incor-

poration of additional uncertainties for example, from
the emulator (while exploiting their independence) and
the direct use of implausibility, leading to a more effi-
cient parameter search. HM has natural stopping crite-
ria, since either the entire space will be ruled as im-
plausible, implying that the complex model is defi-
cient, or the emulators will achieve sufficient accuracy
to determine the acceptable set of inputs. While one
can mimic certain parts of a basic HM analysis us-
ing ABC (Holden et al., 2016), it is hard to justify
this from the ABC paradigm alone, and it would ar-
guably lead to an analysis that is not ‘ABC’ in nature.
(An interesting variation of HM is given in Wilkinson,
2014, in which HM is used to match to the GABC log-
likelihood. Once trained the emulator is then used di-
rectly in ABC.)

In Andrianakis et al. (2015), a history matching ap-
proach was applied to the Mukwano model described
previously. The model fits are shown in Figure 3, and
required around 355,000 simulation runs (less than
half the number of runs required for 11 generations of
ABC). Clearly the model is capable of producing fits

FIG. 3. Model fits after 9 waves of history matching. These show the marginal distributions of the mean outputs (from a series of replicate
simulations), conditional on a set of design points sampled uniformly from the nonimplausible region at each wave. For brevity, we only show
waves 1, 3, 5, 7 and 9 here. The dotted lines denote the data and the target regions are shown in grey. Results from Andrianakis et al. (2015).
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TABLE 2
Acceptance rates for history matching. The top lines correspond to using the tolerances from the final generation (11) of ABC as shown in

Figure 2. The bottom lines correspond to the target tolerance as defined in Andrianakis et al. (2015). Since we use repeated simulations per
design point for the history matching, these results are shown for ‘average’ simulations and individual replicate simulations

psm psf ampi p92m p92f p01m p01f p07m p07f

ABC tolerance Mean 1.00 0.99 1.00 0.93 0.96 0.98 0.98 0.99 0.97
Replicate 0.98 0.97 1.00 0.89 0.92 0.97 0.96 0.98 0.94

Target tolerance Mean 0.99 0.98 0.77 0.24 0.21 0.33 0.31 0.34 0.28
Replicate 0.91 0.85 0.74 0.22 0.20 0.26 0.27 0.30 0.26

m1l m1s m1 m2l m2s m2 w2l w2s w2 All

ABC tolerance Mean 0.71 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.48
Replicate 0.69 1.00 0.74 0.99 0.99 1.00 1.00 1.00 1.00 0.41

Target tolerance Mean 0.71 0.50 0.75 0.34 0.26 0.43 0.20 0.18 0.24 0.00
Replicate 0.69 0.50 0.74 0.31 0.25 0.41 0.18 0.15 0.23 0.00

that are close to the observed data, but the nonimplau-
sible region is only a tiny proportion (10−11) of the
original space.

As a comparison against the ABC-SMC algorithm,
we have also calculated the acceptance rates for the fi-
nal wave of history matching (Table 2). These results
show how many simulations from the wave 9 design
points would have been accepted using the generation
11 tolerances from the ABC-SMC run, and also how
many would have been accepted according to the tar-
get tolerance that we are aiming for. We have pro-
duced acceptance rates according to simulated mean
outputs (averaged across multiple replicates per de-
sign point), in addition to a replicate-specific estimate
(making the simplifying assumption that all replicates
from all design points are independent). We can see
that using the generation 11 tolerances we would have
had an acceptance rate of 0.48 (mean) and 0.41 (repli-
cate), compared to a value of 0.15 for the ABC-SMC
(Table 1).

The HM procedure produces high acceptance rates
for each output considered on its own, but the curse-
of-dimensionality is still clear when trying to match
all outputs simultaneously. In fact, none of the simu-
lations match all outputs simultaneously at the target
tolerance. Nonetheless, we note that the target toler-
ances for some of the outputs were small, and so we
are happy that we have outputs that are relatively close
to these targets. In addition, provided the HM has been
performed carefully, if there is a region where all out-
puts can match simultaneously (in terms of realisa-

tions) then this region should be contained in the cur-
rent nonimplausible region.

One extension to the approach described here is to
generate multivariate implausibilities. This has been
discussed in Vernon, Goldstein and Bower (2010) in
the deterministic model case, but the same framework
could be used in the stochastic case provided that
we can specify a suitable joint multivariate structure
between the simulator outputs. However, these have
not been developed yet. Without this, it is simpler to
use univariate criteria, and to impose cutoffs on the
maximum implausibility to identify joint matches (in-
deed we view it as a strength of history matching that
we can carry out such a combined univariate analy-
sis).

Although HM does not produce an approximate pos-
terior in the same sense as ABC, it is possible to
view the marginal densities of nonimplausible points
(known as depth plots). We have included these as
Supplement B (McKinley et al., 2017). One must be
careful when directly comparing ABC posteriors and
HM depth plots, since the methods are designed to do
different things. The aim of HM is to rule out space
safely, using whatever aspects of the data are straight-
forward to exploit in order to do so. ABC on the other
hand attempts to identify regions of high (approxi-
mate) posterior mass. Nonetheless, we can see that for
some variables (e.g., mhag, fchc3, hacr3) the two ap-
proaches are targeting quite different parts of the space.
We note that in some of these cases the HM has al-
ready ruled parts of the space as implausible, and it
is not clear whether the ABC is converging towards
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these regions, and progress is slow due to the accep-
tance rates dropping, or whether the requirement for
the ABC to match all outputs simultaneously will re-
sult in the algorithm converging to slightly different
parts of the space. However, the results in Table 2 sug-
gest that the nonimplausible region identified by the
HM routine does a better job at finding simulations that
match all outputs simultaneously than the ABC does,
based on the current waves/generations. The key bot-
tleneck in this particular example is that the ABC con-
vergence is slowing down considerably, and so it may
take many more generations to obtain similarly good
fits from the ABC than has been achieved thus far with
HM.

4. DISCUSSION

ABC methods are exploding in popularity due to
their ease-of-implementation. It is often far more
straightforward to simulate from an underlying model
than to reconstruct (and efficiently) update large num-
bers of hidden states. In many cases these methods
work well, however, matching simulations to data can
be challenging, particularly in highly stochastic sys-
tems, and this is exacerbated in high dimensions. The
computational bottleneck is the speed of the simula-
tions, and ABC methods allow one to trade accuracy
and precision of the approximation against computa-
tional load. Understanding how much approximation
has been introduced and its impact on the inferential
properties of the approximate posteriors is often harder
to quantify.

Increasing research effort is being employed to come
up with more sophisticated sampling and simulation
algorithms to help mediate these trade-offs, but these
are difficult to scale to highly computational models.
The use of an emulator as a surrogate for a complex
simulation model can help overcome or mediate some
of the challenges that hamper vanilla ABC routines,
notably the curse-of-dimensionality (in both the input
and output space), the choice of the number of ini-
tial particles and the choice of initial tolerances (and
subsequent impact on convergence—see, e.g., Vernon,
Goldstein and Bower, 2010, Andrianakis et al., 2015);
provided that the emulator can be adequately trained.
These techniques are harder to implement however,
requiring more user input in terms of building, train-
ing and interpreting the emulators. Nonetheless, emu-
lation and HM techniques have successfully been used
to analyse large models for example, a 96 input, 50 out-
put version of Mukwano that is currently being used

to better understand the spread and control of HIV
in Uganda (Andrianakis et al., 2017, McCreesh et al.,
2017).

Finally, techniques such as history matching do not
produce an approximate posterior distribution, which
can be of key importance in many applications. Hence,
we do not argue the use of history matching and emu-
lation as a replacement for ABC (or similar routines),
but rather as a precursor, enabling us to focus atten-
tion on the part of the parameter space in which the
model is known to be able to fit the data reasonably
well. It may then be possible to use this informa-
tion to inform the development of ABC or other rou-
tines for more systematic inference. For example, HM
could be used to ascertain whether the model is capa-
ble of fitting the data at all, and if so to inform the
generation of a good set of initial particles for seed-
ing the ABC. It may also be possible to use the non-
implausible region, and correlation structure thereof,
to inform the perturbation kernel for ABC-SMC and
ABC-MCMC routines. In addition, approaches such
as that of Fearnhead and Prangle (2012) rely on ade-
quate training runs, which HM can provide. Future re-
search will focus on ascertaining the feasibility of some
of these approaches for complex epidemiological mod-
els.
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SUPPLEMENTARY MATERIAL

Supplement A: Bisection method (DOI: 10.1214/
17-STS618SUPPA; .pdf). Details the bisection method
used to generate tolerances at each generation of ABC.

Supplement B: Approximate posterior distribu-
tions for ABC vs. nonimplausible region for HM
(DOI: 10.1214/17-STS618SUPPB; .pdf). Plots of the
approximate posterior distributions after 11 genera-
tions of ABC, and depth plots after 9 waves of his-
tory matching. (Note that HM does not produce pos-
terior samples, rather these correspond to the densities
of nonimplausible points.)
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