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Probability Sampling Designs: Principles
for Choice of Design and Balancing
Yves Tillé and Matthieu Wilhelm

Abstract. The aim of this paper is twofold. First, three theoretical principles
are formalized: randomization, overrepresentation and restriction. We de-
velop these principles and give a rationale for their use in choosing the sam-
pling design in a systematic way. In the model-assisted framework, knowl-
edge of the population is formalized by modelling the population and the
sampling design is chosen accordingly. We show how the principles of over-
representation and of restriction naturally arise from the modelling of the
population. The balanced sampling then appears as a consequence of the
modelling. Second, a review of probability balanced sampling is presented
through the model-assisted framework. For some basic models, balanced
sampling can be shown to be an optimal sampling design. Emphasis is placed
on new spatial sampling methods and their related models. An illustrative ex-
ample shows the advantages of the different methods. Throughout the paper,
various examples illustrate how the three principles can be applied in order
to improve inference.

Key words and phrases: Balanced sampling, design-based, model-based,
inference, entropy, pivotal method, cube method, spatial sampling.

1. INTRODUCTION

Very early in the history of statistics, it appeared
that censuses were unachievable in many practical sit-
uations. Thus the idea of using a subset of the target
population to infer certain characteristics of the entire
population naturally appeared. This idea can be traced
back at least to Pierre-Simon Laplace (Laplace, 1847).
In the first half of the twentieth century, it became clear
that only random sampling can provide an unbiased es-
timate. Kruskal and Mosteller (1980) provide a concise
review of the history of probability sampling.

Classical references for sampling designs include
Sukhatme (1954), Cochran (1977), Jessen (1978) and
Brewer and Hanif (1983), who gave a list of 50 meth-
ods to select a sample with unequal inclusion probabil-
ities. More modern textbooks include Särndal, Swens-
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son and Wretman (1992), Tillé (2006), Lohr (2009) and
Thompson (2012). The more recent developments in
survey sampling have been mainly motivated by new
applications and new types of data, as for instance
functional data (Cardot and Josserand, 2011).

For Hájek (1959), a survey is always characterized
by a strategy composed of a sampling design and
of an estimator of the parameter of interest. In the
present paper, we focus on the choice of sampling de-
sign while we restrict attention to the Narain–Horvitz–
Thompson (NHT) estimator of the total (Narain, 1951,
Horvitz and Thompson, 1952). In the case of a design-
based approach, apart from the estimator, the practi-
tioner can choose how the sample is selected, that is,
she/he has to determine a sampling design. This is the
core of the theory of design-based survey sampling.
This choice is driven by both theoretical and practical
aspects.

In this paper, three important principles are intro-
duced: randomization, overrepresentation and restric-
tion. The relevance of these principles is justified. We
are probably not the first to highlight that those princi-
ples are desirable, but we would like to introduce and
discuss them in a comprehensive and systematic way.
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The randomization principle states that the sampling
designs must be as random as possible. Indeed, the
more random the sample is, the better the asymptotic
approximations are (Berger, 1998a, 1998b). Since most
of the quantification of uncertainty is carried out us-
ing asymptotic results, this is a very important as-
pect. Another point is that very random sampling de-
signs (which will be clarified later) are more robust
(Grafström, 2010). The principle of overrepresentation
suggests to preferentially select units where the disper-
sion is larger. The principle of restriction excludes very
particular samples such as samples with empty cate-
gories or samples where the NHT-estimators of some
auxiliary variables are far from the population total. In
this way, samples that are either nonpractical or known
to be inaccurate are avoided. The restrictions could
consist of only choosing fixed size samples for exam-
ple.

When auxiliary information is available, it is desir-
able to include it in the sampling design in order to
increase the precision of the estimates. In the design-
based approach, the auxiliary information should be
used when choosing the sampling design. A balanced
sample is such that the estimated totals of the auxil-
iary variables are approximately equal to the true to-
tals. Intuitively, this can be seen as an a priori cali-
bration (Deville and Särndal, 1992). The cube method
(Deville and Tillé, 2004) is a way to implement a prob-
ability sampling design which is balanced with equal
or unequal first-order inclusion probabilities. The cube
method is then a direct implementation of the princi-
ples of overrepresentation and restriction since it en-
ables us to select samples with given inclusion proba-
bilities and at the same time balanced on totals of aux-
iliary variables. Special emphasis is also placed on bal-
anced sampling with spatial applications.

The suggested principles cannot be the only founda-
tion for the choice of sampling design. Many other as-
pects are important such as the simplicity of the proce-
dure, the quality of the data frame or a low rate of non-
response. Thus, these general principles are not always
applicable because of practical constraints. However,
we recommend adopting an approach where general
principles should be considered in order to improve the
quality of a survey.

There is no intention to be exhaustive in the enumer-
ation of all the recent advances that have contributed
to survey sampling. Our intention is more to highlight
that taking into account the aforementioned principles
can be a motivation for both theoretical and practical

advances and that this is well illustrated by balanced
sampling.

The paper is organized as follows. In Section 2, def-
initions and the notation are given. In Section 3, the
most basic sampling designs are briefly described. In
Section 4, some principles of sampling are proposed.
Section 5 describes balanced sampling and briefly
present the cube method. In Section 6, we propose a
model-assisted selection of sampling designs in light of
those principles. In Section 7, we present new methods
for spatial sampling. An illustrative example presented
in Section 8 enables us to compare these methods. Fi-
nally, a discussion concludes the paper in Section 9.

2. PROBABILITY SAMPLING AND ESTIMATION

In the following, a list sampling frame is supposed
to be available. Consider a population U composed of
N units that are denoted by their order numbers so it
can be written U = {1, . . . , k, . . . ,N}. Let us denote
by S the set of subsets of U , which has cardinality
2N . A sample without replacement is simply an ele-
ment s ∈ S , that is a subset of the population. Note that
the empty set is a possible sample. A sampling design
p(·) is a probability distribution on S

p(s) ≥ 0 and
∑
s∈S

p(s) = 1.

A random sample S is obtained by selecting a sample
s with probability p(s). Thus Pr(S = s) = p(s), for
all s ∈ S . Hence, S denotes the random variable and
s the realization of it. The set {s ∈ S : p(s) > 0} ⊂ S is
called the support of the sampling design. For instance,
one can consider Sn = {s ∈ S|#s = n} for a sampling
design of fixed sample size n.

The first-order inclusion probability πk is the proba-
bility of selecting the unit k. The joint inclusion proba-
bility πk� is the probability that two different units k, �

are selected together in the sample. They can be de-
rived from the sampling design:

πk = ∑
s�k

p(s) and πk� = ∑
s⊃{k,�}

p(s).

The aim is to estimate a total

Y = ∑
k∈U

yk

of the values yk taken by the variable of interest on all
the units of the population.

The total Y can be estimated by the Narain–Horvitz–
Thompson estimator (Narain, 1951, Horvitz and
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Thompson, 1952)

Ŷ = ∑
k∈S

yk

πk

.

If πk > 0 for all k ∈ U , this estimator is unbiased, that
is, Ep(Ŷ ) = Y , where Ep(·) is the expectation under
the sampling design p(·).

Define

�k� =
{
πk� − πkπ� if k �= �,

πk(1 − πk) if k = �.

The design variance varp(·) of the NHT-estimator is
equal to

varp(Ŷ ) = ∑
k∈U

∑
�∈U

yky�

πkπ�

�k�.

When the sample size is fixed, this variance simplifies
to

varp(Ŷ ) = −1

2

∑
k∈U

∑
�∈U
k �=�

(
yk

πk

− y�

π�

)2
�k�.

Estimators can be derived from these two expressions.
For the general case,

v̂ar(Ŷ ) = ∑
k∈S

∑
�∈S

yky�

πkπ�

�k�

πk�

,

where πkk = πk . When the sample size is fixed, the
variance estimator (Sen, 1953, Yates and Grundy,
1953) is given by

v̂ar(Ŷ ) = −1

2

∑
k∈S

∑
�∈S
k �=�

(
yk

πk

− y�

π�

)2 �k�

πk�

.

These estimators are both unbiased provided that πk� >

0, k �= � ∈ U .
Provided that the first-order inclusion probabilities

are positive, the NHT estimator is unbiased and the
variance and the mean squared error are equal. Pro-
vided that the first- and the second-order inclusion
probabilities are positive, the variance estimators give
an unbiased estimation of the mean-squared error. It is
usual to assume a normal distribution to quantify the
uncertainty. In many sampling designs, the normality
assumption is asymptotically valid. The rate of conver-
gence depends on the entropy (Berger, 1998a, 1998b),
which is roughly speaking, a measure of randomness.
We further discuss the concept of entropy in Sec-
tion 4.1.

3. SOME BASIC DESIGNS

In the following, a list sampling frame is supposed
to be available. In some situations, this may be not the
case, as for instance in spatial sampling where the sam-
pling frame can be a geographical region and the units
a subdivision of this region. The sampling designs pre-
sented in this section are all implemented in various R
packages (R Development Core Team, 2015). Valliant,
Dever and Kreuter (2013), Chapter 3.7, provide a re-
view of the current R and SAS packages for survey
sampling.

3.1 Bernoulli Sampling Design

In Bernoulli sampling, the units are independently
selected according to independent Bernoulli random
variables with the same inclusion probabilities π . Then

p(s) = πns (1 − π)N−ns for all s ∈ S,

where ns is the sample size of sample s. The sample
size is random and has a binomial distribution, that is,
ns ∼ Bin(N,π). The sample size expectation is Nπ .
The first-order inclusion probability is πk = π and the
second-order inclusion probability is equal to πk� = π2

for k �= �.

3.2 Poisson Sampling Design

When the inclusion probabilities πk are unequal, the
sampling design obtained by selecting the units with
independent Bernoulli random variables with parame-
ter πk is called Poisson sampling. The sampling design
is

p(s) = ∏
k∈s

πk

∏
k /∈s

(1 − πk) for all s ∈ S.

The inclusion probabilities are πk and πk� = πkπ�, for
all k �= � ∈ U . The sample size is random and has a
Poisson binomial distribution (Hodges and Le Cam,
1960, Stein, 1990, Chen, 1993).

3.3 Simple Random Sampling

In simple random sampling (SRS) without replace-
ment, the sample size is fixed and denoted by n. All
the samples of size n have the same probability of be-
ing selected. The sampling design is then

p(s) =

⎧⎪⎪⎨⎪⎪⎩
(
N

n

)−1

for all s ∈ Sn,

0 otherwise,

where Sn = {s ⊂ U |#s = n}. The inclusion probabili-
ties are πk = n/N and πk� = n(n−1)/[N(N −1)], for
all k �= � ∈ U .
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3.4 Conditional Poisson Sampling

The problem of selecting a sample with given un-
equal inclusion probabilities πk and with fixed sam-
ple size is far from being simple. Several dozen meth-
ods have been proposed (see Brewer and Hanif, 1983,
Tillé, 2006). Conditional Poisson sampling (CPS) is a
sampling design of fixed size and with prescribed un-
equal inclusion probabilities. The sampling design is
given by

p(s) =
∑

k∈S expλk∑
s∈Sn

∑
k∈S expλk

,

where the λk are obtained by solving

(1)
∑

s∈{s∈Sn|s�k}
p(s) = πk, k ∈ U.

The implementation is not simple. The complexity
comes from the sum over s ∈ Sn in Expression (1) that
is so large that shortcuts must be used. However, sev-
eral solutions have been proposed by Chen, Dempster
and Liu (1994) and Deville (2000) in order to imple-
ment this sampling design by means of different algo-
rithms (see also Tillé, 2006). The joint inclusion prob-
abilities can easily be computed. CPS is also called
maximum entropy sampling because it maximizes the
entropy as defined in Section 4.1 subject to given in-
clusion probabilities and fixed sample size.

3.5 Stratification

The basic stratified sampling design consists in
splitting the population into H nonoverlapping strata
U1, . . . ,UH , of sizes N1, . . . ,NH . Next in each stra-
tum, a sample of size nh is selected with SRS. The
sampling design is

p(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H∏
h=1

(
Nh

nh

)−1

for all s such that

#(Uh ∩ s) = nh,h = 1, . . . ,H,

0 otherwise.

The inclusion probabilities are πk = nh/Nh for k ∈ Uh

and

πk� =

⎧⎪⎪⎨⎪⎪⎩
nh(nh − 1)

Nh(Nh − 1)
k, � ∈ Uh,

nhni

NhNi

k ∈ Uh, � ∈ Ui, i �= h.

There are two basic allocation schemes for the sam-
ple sizes:

• In proportional allocation, the sample sizes in the
strata are proportional to the stratum sizes in the pop-
ulation, which gives nh = nNh/N . Obviously, nh

must be rounded to an integer value.
• Neyman (1934) established the optimal allocation

by searching for the allocation that minimizes the
variance subject to a given total sample size n. After
some algebra, we obtain the optimal allocation:

(2) nh = nNhVh∑H
�=1 N�V�

,

where

V 2
h = 1

Nh − 1

∑
k∈Uh

(yk − Yh)
2, and

Yh = 1

Nh

∑
k∈Uh

yk,

for h = 1, . . . ,H . Again, nh must be rounded to an
integer value. When the population is skewed, equa-
tion (2) often gives values nh > Nh, which is almost al-
ways the case in business statistics. In this case, all the
units of the corresponding stratum are selected (take-
all stratum) and the optimal allocation is recomputed
on the other strata. In cases where a list sampling frame
is not available, the proportional and the optimal strat-
ification might be slightly adapted.

4. SOME SAMPLING PRINCIPLES

The main question is how to select a sample or, in
other words, what sampling method one should use.
Survey statisticians know that designing a survey is
an intricate question that requires experience, a deep
knowledge of the sampling frame and of the nature
of variables of interest. Most sampling design manu-
als present a list of sampling methods. However, the
choice of the sampling design should be the result of
the application of several principles. In what follows,
we try to establish some theoretical guidelines. Three
principles can guide the choice of sample: the principle
of randomization, the principle of overrepresentation
and the principle of restriction.

4.1 The Principle of Randomization

In design-based inference, the extrapolation of the
sample estimators to the population parameters is
based on the sampling design, that is, on how the sam-
ple is selected. The first principle consists not only in
selecting a sample at random but as random as possi-
ble.
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A sampling design should assign a positive probabil-
ity to as many samples as possible and should tend to
equalize these probabilities between the samples. This
enables us to avoid null joint inclusion probabilities
and produces an unbiased estimator of the variance of
the NHT estimator. The common measure of random-
ness of a sampling design is its entropy given by

I (p) = − ∑
s∈S

p(s) logp(s),

with 0 log 0 = 0.
Intuitively, the entropy is a measure of the quantity

of information and also a measure of randomness. High
entropy sampling designs generate highly randomized
samples, which in turns make the design more robust.
A discussion about high entropy designs and its re-
lationship with robustness can be found in Grafström
(2010). The convergence towards asymptotic normal
distributions of the estimated totals also depends on en-
tropy. The higher the entropy is, the higher the rate of
convergence is (Berger, 1998a, 1998b). Conversely, if
the support is too small, then the distribution of the es-
timated total is rarely normal.

For complex sampling designs, second-order inclu-
sion probabilities are rarely available. However, when
considering high-entropy sampling designs, the vari-
ance can be estimated by using formulae that do not
depend on the second-order inclusion probabilities
(Brewer and Donadio, 2003). Those estimators are ap-
proximate but are of common use. It is worth men-
tioning that methods for quantifying the uncertainty of
complex sampling designs have been developed (Antal
and Tillé, 2011, Berger and De La Riva Torres, 2016).

4.2 The Principle of Overrepresentation

Sampling consists in selecting a subset of the popula-
tion. However, there are no particular reasons to select
the units with equal inclusion probabilities. In business
surveys, the establishments are generally selected with
very different inclusion probabilities that are in gen-
eral proportional to the number of employees. To be
efficient, the choice of units is intended to decrease un-
certainty. So it is more desirable to overrepresent the
units that contribute more to the variance of the esti-
mator.

The idea of “representativity” is thus completely
misleading and is based on the false intuition that a
sample must be similar to the population to perform an
inference because the sample is a “scale copy” of the
population (see among others Kruskal and Mosteller,
1979a, 1979b, 1979c). In fact, the only requirement for

the estimator to be unbiased consists of using a sam-
pling design with nonnull first-order inclusion proba-
bility for all units of the population, which means that
the sampling design does not have coverage problems
(see Särndal, Swensson and Wretman, 1992, page 8).
Unequal probability sampling can be used to estimate
the total Y more efficiently. The main idea is to over-
sample the units that are more uncertain because the
sample must collect as much information as possible
from the population, which was already the basic idea
of the seminal papers of Jerzy Neyman (1934, 1938) on
optimal stratification. In general, the principle of over-
representation implies that a sampling design should
have unequal inclusion probabilities if prior informa-
tion is available. There exist different ways to deduce
the inclusion probabilities from a working model as we
will see in Section 6.

4.3 The Principle of Restriction

The principle of restriction consists in selecting only
samples with a given set of characteristics, for in-
stance, by fixing the sample size or the sample sizes
in categories of the population (stratification). There
are many reasons why restrictions should be imposed.
For instance, empty categories in the sample might be
avoided, which can be very troublesome when the aim
is to estimate parameters in small subsets of the pop-
ulation. It is also desirable that the estimates from the
sample are coherent with some auxiliary knowledge.
So only samples that satisfy such a property can be
considered. By coherent, we mean that the estimate
from the sample of an auxiliary variable should match
a known total. Such samples are said to be balanced.
Balanced sampling is discussed Section 5. More gener-
ally, restrictions can reduce or even completely remove
the dispersion of some estimators.

At first glance, the principle of restriction seems to
be in contradiction with the principle of randomization
because it restricts the number of samples with nonnull
probabilities. However, the possible number of samples
is so large that, even with several constraints, the num-
ber of possible samples with nonnull probabilities can
remain very large. It is thus still reasonable to assume
a normal distribution for the estimates. Balanced sam-
pling enables us to avoid the “bad” samples, which are
those that give estimates for the auxiliary variables that
are far from the known population totals.

5. BALANCED SAMPLING

A sample without replacement from a population of
size N can be denoted by a vector of size N such that
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the kth component is equal to 1 if the kth unit is se-
lected and 0 if it is not. Following this representation, a
sample can be interpreted as a vertex of the unit hyper-
cube of dimension N . This geometrical interpretation
of a sample is central in the development of some sam-
pling algorithms (Tillé, 2006).

By definition, a balanced sample satisfies

(3)
∑
k∈S

xk

πk

= ∑
k∈U

xk,

where xk = (xk1, . . . , xkp)
 is a vector of p auxiliary
random variables measured on unit k. Vectors xk are
assumed to be known for each unit of the population,
that is, a register of population is available for the aux-
iliary information. The choice of the first-order inclu-
sion probabilities is discussed in Section 6 and is a con-
sequence of the principle of overrepresentation. Bal-
anced sampling designs are designs whose support is
restricted to samples satisfying (or approximately sat-
isfying) equation (3). In other words, we are consider-
ing sampling designs of prescribed first-order inclusion
probabilities π1, . . . , πN and with support{

s ∈ S : ∑
k∈s

xk

πk

= ∑
k∈U

xk

}
.

More generally, an approximately balanced sample s is
a sample satisfying

(4)
∥∥∥∥D−1

(∑
k∈U

xk − ∑
k∈s

xk/πk

)∥∥∥∥ ≤ c,

where D is a p × p matrix defined by D =
diag(

∑
k∈U xk), c is a positive constant playing the

role of a tolerance from the deviation of the balanc-
ing constraints and ‖ · ‖ denotes any norm on R

p . Bal-
anced sampling thus consists in selecting randomly a
sample whose NHT-estimators are equal or approxi-
mately equal to the population totals for a set of auxil-
iary variables. In practice, exact balanced sampling de-
signs rarely exist. The advantage of balanced sampling
is that the design variance is null or almost null for the
NHT-estimators for these auxiliary variables. Thus, if
the variable of interest is strongly correlated with these
auxiliary variables, the variance of the NHT-estimator
of the total for the variable of interest is also strongly
reduced.

Sampling designs with fixed sample size (SRS,
CPS) and stratification are particular cases of bal-
anced sampling. Indeed in sampling with fixed sam-
ple size the only balancing variable is the first-order
inclusion probability xk = πk for all k ∈ U . In strati-
fication, the H balancing variables are xk = (πkI (k ∈

U1), . . . , πkI (k ∈ Uh), . . . , πkI (k ∈ UH))
, where
I (k ∈ Uh) is the indicator variable of the presence of
unit k in stratum Uh.

The first way to select a balanced sample could con-
sist in using a rejective procedure, for instance by gen-
erating samples with SRS or Poisson sampling until a
sample satisfying Constraint (4) is drawn. However, a
conditional design does not have the same inclusion
probabilities as the original one. For instance, Legg
and Yu (2010) have shown that a rejective procedure
fosters the selection of central units. So the units with
extreme values have smaller inclusion probabilities.
Well before, Hájek (1981) already noticed that if sam-
ples with a Poisson design are generated until a fixed
sample size is obtained, then the inclusion probabili-
ties are changed. This problem was solved by Chen,
Dempster and Liu (1994) who described the link be-
tween the Poisson design and the one obtained by con-
ditioning on the fixed sample size (see also Tillé, 2006,
pages 79–96). Unfortunately, the computation of con-
ditional designs seems to be intractable when the con-
straint is more complex than fixed sample size. Thus
the use of rejective methods cannot lead to a sampling
design whose inclusion probabilities are really com-
putable.

The cube method (Deville and Tillé, 2004) allows
us to select balanced samples at random while pre-
serving the possibly unequal prescribed first-order in-
clusion probabilities. The method starts with the pre-
scribed vector of inclusion probabilities. This vector is
then randomly modified at each step in such a way that
at least one component is changed to 0 or 1 and such
that this transformation respects the prescribed first-
order inclusion probabilities. Thus, the cube algorithm
sequentially selects a sample in at most N steps. At
each step, the random modification is realized while
respecting the balancing constraints and the inclusion
probabilities. The algorithm has two distinct phases:
the first is the flight phase, where the balanced equa-
tions are exactly satisfied. At some point, it is possible
that the balancing equations can only be approximated.
In the second phase, called landing phase, the algo-
rithm selects a sample that nearly preserves the bal-
ancing equation while still exactly satisfying the pre-
scribed inclusion probabilities.

It is not possible to fully characterize the sampling
design generated by the cube method. In particular,
second-order inclusion probabilities are intractable. In
order to compute the variance, Deville and Tillé (2005)
gave several approximations using only first-order in-
clusion probabilities. Jay Breidt and Chauvet (2011)
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suggest using a martingale difference approximation of
the values of �k� that takes into account the variabil-
ity of both the flight and the landing phase, unlike the
estimators proposed by Deville and Tillé (2005).

The cube method has been extended by Tillé and
Favre (2004) to enable the coordination of balanced
samples. Optimal inclusion probabilities are studied
in the perspective of balanced sampling by Tillé and
Favre (2005) and are further investigated by Chauvet,
Bonnéry and Deville (2011). Deville, 2014, in French,
sketches a proof of the conditions that must be met
on the inclusion probabilities and on the auxiliary
variables in order to achieve an exact balanced sam-
ple. In this case, the cube algorithm only has a flight
phase. From a practical standpoint, several implemen-
tations exist in the R language (Tillé and Matei, 2015,
Grafström and Lisic, 2016) and in SAS (Rousseau and
Tardieu, 2004, Chauvet and Tillé, 2005).

6. MODEL-ASSISTED CHOICE OF THE SAMPLING
DESIGN AND BALANCED SAMPLING

6.1 Modelling the Population

The principles of overrepresentation and restriction
can be implemented through a modelling of the links
between the variable of interest and the auxiliary vari-
ables. This model may be relatively simple,for instance
a linear model:

(5) yk = x

k β + εk,

where xk = (xk1, . . . , . . . , xkp)
 is a vector of p auxil-
iary variables, β is a vector of regression coefficients,
and εk are independent random variables with null ex-
pectation and variance σ 2

εk . The model thus admits het-
eroscedasticity. The error terms εk are supposed to be
independent from the random sample S. Let also EM(·)
and varM(·) be respectively the expectation and vari-
ance under the model.

Under model (5), the anticipated variance of the
NHT-estimator is

AVar(Ŷ ) = EpEM(Ŷ − Y)2

= Ep

(∑
k∈S

x

k β

πk

− ∑
k∈U

x

k β

)2

+ ∑
k∈U

(1 − πk)
σ 2

k

πk

.

The second term of this expression is called the
Godambe–Joshi bound (Godambe and Joshi, 1965).

Considering the anticipated variance, for a fixed
sample size n, the sampling design that minimizes the
anticipated variance consists in:

• using inclusion probabilities proportional to σεk ,
• using a balanced sampling design on the auxiliary

variables xk .

The inclusion probabilities are computed using

(6) πk = nσεk∑
�∈U σε�

,

provided that nσεk <
∑

�∈U σε� for all k ∈ U . If it is
not the case, the corresponding inclusion probabilities
are set to one and the inclusion probabilities are recom-
puted according to Expression (6).

If the inclusion probabilities are proportional to σεk

and the sample is balanced on the auxiliary variables
xk , the anticipated variance becomes (Nedyalkova and
Tillé, 2008)

N2
[
N − n

N

σ̄ 2
ε

n
− var(σε)

N

]
,

where

σ̄ε = 1

N

∑
k∈U

σεk and var(σε) = 1

N

∑
k∈U

(σεk − σ̄ε)
2.

Applying the randomization principle would result in
a maximum entropy sampling design under the con-
straint of minimizing the anticipated variance. How-
ever, except for the very particular cases given in Ta-
ble 1, there is no known general solution to this prob-
lem. When it exists, we refer to such a sampling design
as “optimal”. All the designs presented in Section 3
are optimal for particular cases of Model (5) and are
explicitly described in Table 1.

Maximizing entropy tends to equalize the probabil-
ities of selecting samples. For Bernoulli sampling, all
the samples of the same size have the same probability
of being selected. Under SRS, all the samples with a

TABLE 1
Particular cases of Model (5) and corresponding optimal

sampling design

Underlying Model
Model Design Variance πk

yk = β + εk SRS σ 2 n/N

yk = εk Bernoulli sampling σ 2 π = E(nS)/N

yk = xkβ + εk CPS x2
k σ 2 πk ∝ xk

yk = εk Poisson sampling x2
k σ 2 πk ∝ xk

yk = βh + εk ,
k ∈ Uh

Proportional
stratification

σ 2 n/N

yk = βh + εk ,
k ∈ Uh

Optimal
stratification

σ 2
h πk ∝ σh
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nonnull probability have exactly the same probability
of being selected. In stratification, the support is re-
duced to the samples with fixed sample sizes in each
stratum. Curiously, all the samples of the support have
the same probability of being selected even with opti-
mal stratification.

When all the inclusion probabilities are unequal, it
is not possible to equalize the probabilities of the sam-
ples. However, in CPS, all the samples of size n have
positive probabilities of being drawn and, in Poisson
sampling, all the samples (of any size) have nonnull
probabilities. Even though the inclusion probabilities
are not equal, all the samples in the support may have
the same probability of being selected, for instance in
optimal stratification.

The common sampling designs presented in Table 1
correspond to very simple models. For SRS, the model
only assumes a parameter β and homoscedasticity. In
stratification, the means βh of the variable of interest
can be different in each stratum. Moreover, for optimal
stratification, the variances σ 2

h of the noise εk are pre-
sumed to be different in each stratum. Unfortunately,
there is no general algorithm that enables us to im-
plement an unequal probability balanced sampling de-
sign with maximum entropy for the general case of
Model (5).

The cube method is still not a fully complete optimal
design for the general Model (5) because the entropy
is not maximized. The cube method, however, gives a
solution to a general problem, which involves SRS, un-
equal probability sampling with fixed sample size and
stratification that are all particular cases of balanced
sampling. Even if it is not possible to maximize the en-
tropy with the cube method, it is possible to random-
ize the procedure, for instance, by randomly sorting the
units before applying the algorithm.

6.2 A Link with the Model-Based Approach

An alternative literature is dedicated to the model-
based approach. In this framework, the problem of es-
timating a total is seen as a prediction problem and the
population is modelled. The model-based approach as-
sumes a super-population model and the inference is
carried out using this model (Brewer, 1963, Royall,
1970a, 1970b, 1976a, 1976b, 1992, Royall and Her-
son, 1973a, 1973b). The Best Linear Unbiased Predic-
tor (BLUP) under Model (5) is given by

ŶBLU = ∑
k∈S

yk + ∑
k∈U\S

x

k β̂,

where

β̂ =
(∑

k∈S

x

k xk

σ 2
εk

)−1 ∑
k∈S

x

k yk

σ 2
εk

,

(see also Valliant, Dorfman and Royall, 2000).
Nedyalkova and Tillé (2008) show that, under the

assumption that there are two vectors λ and γ of Rp

such that λ
xk = σ 2
εk and γ 
xk = σεk for all k ∈ U ,

then, for the sampling design that minimizes the an-
ticipated variance, the NHT-estimator is equal to the
BLUP. In this case, both approaches coincide. So, in
this respect, balanced sampling enables us to reconcile
design-based and model-based approaches.

6.3 Beyond the Linear Regression Model

A generalization of Model (5) is the linear mixed
model (see among others Jiang, 2007, Ruppert, Wand
and Carroll, 2003). It encompasses many widely used
models and is extensively used in survey sampling, es-
pecially in the field of small area estimation. Breidt
and Chauvet (2012) investigate the application of bal-
anced sampling in the case where the working model
is a linear mixed model and they introduce penalized
balanced sampling in order to into account the random
effects. Linear-mixed as well as nonparametric model-
assisted approaches have been extensively studied in
the context of survey sampling (Breidt and Opsomer,
2017).

7. SPATIAL BALANCED SAMPLING

7.1 Modelling the Spatial Correlation

Spatial sampling is particularly important in envi-
ronmental statistics. A large number of specific meth-
ods were developed for environmental and ecological
statistics (see among others Marker and Stevens Jr.,
2009, Thompson, 2012).

When two units are geographically close, they are
in general similar, which induces a spatial dependency
between the units. Consider the alternative model

(7) yk = x

k β + εk,

where xk = (xk1, . . . , . . . , xkp)
 is a set of p auxiliary
variables, β is a vector of regression coefficients and
εk are random variables with E(εk) = 0, var(εk) = σ 2

k

and cov(εk, ε�) = σεkσε�
ρk�. The model admits het-

eroscedasticity and autocorrelation. The error terms εk

are supposed to be independent from the random sam-
ple S. Let also EM(·) and varM(·) be respectively the
expectation and variance under the model.
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Under model (7), Grafström and Tillé (2013) show
that the anticipated variance of the NHT-estimator is

(8)

AVar(Ŷ ) = Ep

(∑
k∈S

x

k β

πk

− ∑
k∈U

x

k β

)2

+ ∑
k∈U

∑
�∈U

�k�

σεkσε�ρk�

πkπ�

.

If the correlation ρk� is large when the units are close,
the sampling design that minimizes the anticipated
variance consists in:

• using inclusion probabilities proportional to σεk ,
• using a balanced sampling design on the auxiliary

variables xk ,
• and avoiding the selection of neighboring units, that

is, selecting a well spread sample (or spatially bal-
anced).

If the selection of two neighboring units is avoided,
the values of �k� can be highly negative, which makes
the anticipated variance (8) small.

The value of �k� can be interpreted as an indica-
tor of the spatial pairwise behavior of the sampling
design. Indeed, if two units k and � are chosen in-
dependently with inclusion probability πk and π�, re-
spectively, then the joint inclusion probability is πkπ�.
Hence, if �k� < 0, respectively, �k� > 0, the sampling
design exhibits some repulsion, respectively, cluster-
ing, between the units k and �. In other words, the
sign of �k� is a measure of repulsion or clustering
of the sampling design for two units k and �. Similar
ideas have been used in the literature on spatial point
processes to quantify the repulsion of point patterns.
In particular, the pair correlation function is a com-
mon measure of the pairwise interaction (Møller and
Waagepetersen, 2003, Chapter 4).

7.2 Generalized Random Tessellation Stratified
Design

The Generalized Random Tessellation Stratified
(GRTS) design was proposed by Stevens Jr. and Olsen
(1999, 2004, 2003). The method is based on the recur-
sive construction of a grid on the space. The cells of the
grid must be small enough so that the sum of the inclu-
sion probabilities in a square is less than 1. The cells
are then randomly ordered such that the proximity re-
lationships are preserved. Next, a systematic sampling
is applied along the ordered cells. The method is im-
plemented in the “spsurvey” R package (Kincaid and
Olsen, 2015).

7.3 Local Pivotal Method

The pivotal method has been proposed by Deville
and Tillé (2000) and consists in selecting two units, say
i and j , with inclusion probabilities 0 < πi,πj < 1 in
the population at each step and randomly updating their
inclusion probability in order to set πi or πj to 0 or 1,
while preserving in expectation the original inclusion
probabilities. If the two units are sequentially selected
according to their order in the population, the method
is called sequential pivotal method (or ordered pivotal
sampling or Deville’s systematic sampling) (Chauvet,
2012). The sequential pivotal method is also closely
related to the sampling designs introduced by Fuller
(1970).

Grafström, Lundström and Schelin (2012) have pro-
posed using the pivotal method for spatial sampling.
This method is called local pivotal sampling and the
two competing units are neighbors. If the probability
of one of these two units is increased, the probability
of the other is decreased, which in turn induces some
repulsion between the units and the resulting sample is
thus well spread.

7.4 Spreading and Balancing: Local Cube Method

In the local pivotal, two units compete to be selected.
The natural extension of this idea is to let a cluster of
units fight. The local pivotal method has been general-
ized by Grafström and Tillé (2013) to provide a sam-
ple that is at the same time well spread in space and
balanced on auxiliary variables in the sense of Expres-
sion (3). This method, called local cube, consists in
running the flight phase of the cube method on a subset
of p + 1 neighboring units, where p is the number of
auxiliary variables. After this step, the inclusion prob-
abilities are updated such that:

• one of the p + 1 units has its inclusion probability
updated to 0 or 1,

• the balancing equation is satisfied.

When a unit is selected, it decreases the inclusion of the
p other units of the cluster. Hence, it induces a negative
correlation in the selection of neighboring units, which
in turn spreads the sample.

7.5 Spatial Sampling for Nonspatial Problems

Spatial methods can also be used in a nonspatial con-
text. Indeed, assume that a vector xk of auxiliary vari-
ables is available for each unit of the population. These
variables can be, for instance, turnover, profit or the
number of employees in business surveys. Even if these
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FIG. 1. Sample of size n = 50 in a population of 1600 plots by means of SRS and the cube method. These samples are not very well spread.

variables are not spatial coordinates, they can be used
to compute a distance between the units. For instance,
the Mahalanobis distance can be used:

d2(k, �) = (xk − x�)

�−1(xk − x�),

where

� = 1

N

∑
k∈U

(xk − x̄)(xk − x̄)
 and x̄ = 1

N

∑
k∈U

xk.

Grafström, Lundström and Schelin (2012) advocate the
use of spreading on the space of the auxiliary variables.
Indeed, if the response variable is correlated with the
auxiliary variable, then spreading the sample on the
space of auxiliary variables also spreads the sampled
response variable. It also induces an effect of smooth
stratification on any convex set of the space of vari-
ables. The sample is thus stratified for any domain,
which can be interpreted as a property of robustness.

8. ILLUSTRATIVE EXAMPLE

A simple example illustrates the advantages of the
sampling designs discussed in Section 7. Consider a
square of N = 40 × 40 = 1600 dots that are the sam-
pling units of the population. A sample of size n = 50
is selected from this population by means of different
sampling designs. Figure 1 contains two samples that
are not spatially balanced: SRS and balanced sampling
by means of the cube method. For balanced sampling,
three variables are used: a constant equal to 1, the x co-
ordinate and the y coordinate. So the sample has a fixed
sample size and is balanced on the coordinates. These
samples are not well spread or spatially balanced.

Figure 2 contains the most basic sampling designs
used to spread a sample: systematic sampling and strat-
ification. Unfortunately, spatial systematic sampling
cannot be generalized to unequal probability sampling.

FIG. 2. Systematic sampling and stratification with 2 units per stratum.
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FIG. 3. GRTS, pivotal method, and local cube method. Samples are well spread.

It is also not possible to apply it to a population on a
lattice.

Figure 3 contains modern well spread sampling
methods such as the local pivotal method, GRTS and
the local cube method. At first glance, it is difficult to
evaluate which design gives the most well spread sam-
ple.

A Voronoï polygon is the set of elements of the
population that are closer to a given point than any
other points in the population. Figure 4 contains the
Voronoï polygons for SRS, stratification and local piv-
otal method. The variance of the sum of inclusion prob-
abilities of the population units that are included in a
polygon is an indicator of the quality of spatial balanc-
ing (Stevens Jr. and Olsen, 2004).

Table 2 contains the average of the indicators of spa-
tial balance for 1000 selected (Grafström and Lund-
ström, 2013). For systematic sampling, the index is not

null because of the edge effect. The best designs are
the local pivotal methods and the local cube method.
Grafström and Lundström (2013) extensively discuss
the concept of balancing and the implication on the es-
timation. In particular, they show under some assump-
tions that a well spread sampling design is an appropri-
ate design under model (7).

9. DISCUSSION

Three principles theoretically appealing have been
established. Modelling the population can be used as a
tool for the implementation of the principle of overrep-
resentation and of restriction. Indeed, the use of aux-
iliary variables through a model determines the inclu-
sion probabilities (overrepresentation) and imposes a
balancing condition (restriction). Thus, balanced sam-
pling is a crucial tool to implement these principles.

FIG. 4. Example of Voronoï polygons for three sampling designs.
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TABLE 2
Indices of spatial balance for the main sampling designs with their

standard deviations

Design Balance indicator

Systematic 0.05 (0.04)
Simple random sampling 0.31 (0.10)
Stratification with H = 25 0.10 (0.02)
Local pivotal 0.06 (0.01)
Cube method 0.21 (0.06)
Local Cube method 0.06 (0.01)
GRTS 0.10 (0.02)

However, some limitations of the scope of this pa-
per must be outlined. First, it is worth noting that be-
yond the theoretical principles there are also a practical
constraints. Practitioners have to take the context into
account. A very large number of practical issues af-
fect the direct applications of the suggested theoretical
principles. So we recommend to keep those principles
in mind when designing a survey even though we ac-
knowledge that it is probably not always possible to
apply them because of constraints such as time, inac-
curate sampling frame or budget.

In addition to this, a simplicity principle can be pre-
dominant. A large number of environmental monitor-
ing surveys are based on a systematic spatial sampling
just because this design has the advantage of being sim-
ple, spread and easy to implement.

Moreover, in the case of multi-objective surveys, a
single model that summarizes the link between the
variables of interest and the auxiliary variables is not
always available. There is sometimes an interest for
regional or local estimations or for complex statistics.
The aim can thus not be reduced to the estimation of a
simple total. Compromises should then be established
between the different objectives of the samples Falorsi
and Righi (2008, 2016).

Finally, surveys are also repeated in time, which
makes the problem much more intricate. Cross-
sectional and longitudinal estimations require very dif-
ferent sampling designs. It is always better to select the
same sample to estimate evolutions, while for transver-
sal estimations independent samples are more efficient.
In business statistics, great attention is given to the sur-
vey burden that should be fairly distributed between
companies. For these reasons, in a large number of sur-
veys, statisticians foster a partial rotation of the units in
the sample. Rotation is sometimes difficult to reconcile
with the optimization of the transversal designs.

The three principles formalized and developed in
this paper should guide the choice of the sampling de-
sign whenever possible. The principle of randomiza-
tion should always be considered by trying to maxi-
mize the entropy, possibly under some constraints. The
other two principles can only be applied when the pop-
ulation is explicitly modelled. This modelling may or
may not be used as an assumption for the inference, de-
pending on whether a design-based or a model-based
approach is adopted. Using a model-assisted approach,
we advocate the use of a model to apply the principles
of overrepresentation and of restriction while preserv-
ing the design unbiasedness of the Horvitz–Thompson
estimator.
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