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At a basic level, there is a question as to whether,
in Draper’s notation, we should regard 1/6 or 6§ as the
parameter to be estimated. I have a personal prefer-
ence for 1/0 because this seems more natural to me
and because I feel that the bias enters in a simpler
way than when we take the reciprocal of an estimator
of 0.

For the L,-estimator (which is related to the R-
estimator with sign scores; see (3.10) in Draper), we
can construct a kernel estimator of 1/6 directly
(Welsh, 1987c). What is interesting about this esti-
mator is that the shape of the kernel or window
function does seem to matter as a poor choice can
lead to an estimator with excessive bias. This is in
conflict with the usual advice (reperted by Draper)
that in estimating a density, the choice of kernel is
unimportant.

In evaluating competing estimates of the variance
of an R-estimator, we should evaluate their properties
as studentizing factors rather than as estimates of the
variance per se. Although this is quite often done in
simulation studies, it is not often done in theoretical
investigations. However, recently Hall and Sheather
(1988) derived an Edgeworth expansion for the sample
median studentized by a particular variance estimator
and showed that the optimal choice of smoothing
parameter is different from that obtained from mean
squared error considerations. In fact, their result in-
dicated that it is important to decrease the bias more
than one would if the variance was a parameter of
interest. In other words, the bias/variance tradeoff is
different when the density is a nuisance parameter
than when it is a parameter of interest. These results
are in agreement with the practical experience re-
ported by Draper thatthe bias is more important than
the variance in estimating 1/6 (or 6).
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David Draper’s survey of rank-based robust meth-
ods for estimation and inference in linear models
vividly illustrates the vitality of the R approach. The
emphasis on inference is, in our view, particularly
welcome, because despite the rapid growth of the
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4. L-, M- OR R-ESTIMATORS?

In advocating the use of R-estimators over M-
estimators, Draper notes only that they often have
simple, closed-form expressions. He does not men-
tion that perhaps a more serious objection to M-
estimation is that scale equivariance is usually
achieved through the use of a concomitant scale esti-
mator which may have subtle effects on the properties
of the M-estimator and on the resulting inference.
Now L-estimators (Welsh, 1987b; Koenker and
Portnoy, 1987) have been developed further since
Draper’s work and they share the advantages of
R-estimators. However, they have one further advan-
tage: if the weight function is chosen to be smooth,
the asymptotic variance of the resulting L-estimator
is straightforward to estimate. That is, the com-
plete analysis (including inference) is easier for
L-estimators than for R-estimators. Consequently, I
welcome Draper’s paper for the indirect support it
provides for the use of L-estimators in the linear
model problem.
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foundations of robust estimation for linear models, the
framework for robust inference has languished in a
state of benign neglect. Certainly in applied fields like
econometrics, unless we are able to suggest simple, yet
reliable, robust methods of computing “those little
numbers in parentheses,” robust methods in general
will continue to be a curiosity of the “theorists” with
little impact on empirical research.

On Draper’s three desiderata for a successful robust
method: (i) intuitive appeal, (ii) unified theory and
(iii) computability, we would like to offer some highly
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subjective rankings of the four predominant robust-
ness schools: M, R, L, and S. The tripartite division
of the realm of robustness into M (Maximum likeli-
hood), R (Rank-based) and L (Linear functions of
order statistics) is attributable to Huber. S-estimators,
a term recently coined by Rousseeuw and Yohai (1984)
include the least median of squares estimator and,
generically, minimize an estimate of Scale. We should
hasten to add at this point that the rankings are
motivated, in large part, by the desire to dispel the
widespread belief that, as Draper puts it, “the L meth-
ods have historically been the most awkward of the
three [M, R, L] in generalizing to the linear model”
(Table 1).

Intuition is of course in the eye of the beholder. But
it is a common complaint in robustness circles, that it
is difficult “to sell” robust methods for applied work,
because the methods are difficult to explain. Here a
strong analogy with simple methods in the location
model is helpful, and in this respect the L-estimators,
particularly analogues of the trimmed means, have a
strong advantage. The intuitively appealing fact that
the empirical regression quantile function is estimat-
ing such a natural quantity as the population regres-
sion quantile function cannot be over emphasized.
Most S-estimators, especially Rousseeuw’s least me-
dian of squares (the infamous shorth of the Princeton
Study of location estimators) are also intui-
tively appealing. The close connection between the
Wilcoxon-Jaeckel-Adichie estimator for the bivariate
linear model (Draper, Example 4) and the Hodges-
Lehmann estimator is very appealing, but one might
conclude it to be intuitively obscure, given the special
treatment received by the intercept parameter in
the R approach. Least appealing, in our view, from
an intuitive (can-this-be-explained-successfully-to-
practitioners) point of view are the M-estimators.
Immediately, even in the location model, we are faced
with the problem of solving nonlinear equations. Fur-
thermore, there is the question of scale invariance. It

is extremely difficult to explain to those accustomed .

to the natural equivariance properties of the least
squares estimator why certain robust methods fail to
satisfy these conditions. The contortions required to
achieve scale invariance for most M-estimators are a
serious drawback of these methods relative to R, L
and S alternatives.

TABLE 1
A subjective ranking of the robustness sweepstakes

Method Intuition ' Theory Computation
M 4 1 2
R 3 2 3
L 1 2 1
S 2 2 4

The classical asymptotic theory of M-, R- and L-
estimators for the location model available, for ex-
ample, in Serfling (1980) or Huber (1981), has been
successfully extended to the linear model. The M-
theory elaborated by Huber (1973) has been refined
and extended in various directions and is undoubtedly
best developed. The R-theory, already quite complete
in Jureckova (1971) and Jaeckel (1972), has been
considerably expanded, especially in the inference di-
mension. However, most of the attention, as Draper
notes, has been focused on the Wilcoxon score func-
tion. The rudimentary L-theory in Koenker and
Bassett (1978) for finite linear combinations of re-
gression quantiles has recently been substantially gen-
eralized to cover smooth linear functionals of the
regression quantile process in Koenker and Portnoy
(1987) and to adaptive estimation for iid linear models
in Portnoy and Koenker (1987). Adaptive estimation
is especially important for the “slope” parameters in
linear models when errors are asymmetric or lack a
smooth density. The close interrelations among the
M, R and L theories has been explored in a series of
papers by Jureckova.

One serious theoretical defect shared by all three
approaches is their sensitivity to influential design
points. Considerable effort has been devoted to mod-
ifications of the M approach to reduce this sensitivity.
Recently, Antoch and Jureckova (1985) and de Jongh,
de Wet and Welsh (1987) have suggested bounded
influence versions of the L approach. It is rather
surprising that this issue is not raised regarding the R
approach by Draper. Of course, it is on just this point
that the S-estimator theory shines most brightly.
However, in exchange for spectacular breakdown per-
formance, one must bear the burden of rather intrac-
table computation and often of rather low efficiency
at the normal model.

On the practical ground of computability the L
approach seems very attractive. The basic minimiza-
tion problem,

min 2 pe(y; — x:b)
bERP

with pe(u) = u(d — I(u < 0)), is efficiently solved for
all 6 € [0, 1] with elementary parametric linear pro-
gramming techniques (see Koenker and d’Orey, 1987,
for details). Portnoy (1988) shows that the computa-
tion of the regression quantile function requires only
O(n log n) simplex pivots from the initial solution in
probability, and the algorithm completely avoids
iterative procedures which can fail for multimodal
objective functions. This yields a p-dimensional,
piecewise constant regression quantile process 8. (60)
the mass points of which play the role of order
statistics in the linear model L approach. General
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L-estimators of the form

1 m
.én[J’ w] = £ J(a)ﬁn(a) do + ‘21 wién(ai)

can be readily computed once ﬁ,.( .) is available. This
is particularly valuable in the adaptive estimation
problem where $,(6) is used initially to construct an
qstirpator, J..(8), of the optimal L-score function, and
BnldJn, 0] may then be computed directly without
further iteration. In contrast, a change in the M kernel
¥(-) or the R-score function, a(-), yields a completely
new optimization problem which must be solved de
novo. This is particularly problematic in the case of
redescending ¢/(-), and a(-) where the objective func-
tion is nonconvex, and further complicated in the case
of M-estimators by the problem of scale estimation. A
valuable discussion of computational issues in R-esti-
mation is available in Osborne (1987), where the com-
binatorial complexity of the R-problem is observed to
involve n!, because every permutation of 1,2, --- , n
is a possible ranking of the residuals for some param-
eter vector b. This contrasts sharply with the relatively
simple (I;-type) problems of computing the regression
quantiles. Computation of S-estimators is notoriously
difficult, and although some recent progress has been
made, see Rousseeuw and Leroy (1987) and Souvaine
and Steele (1987), the task is still daunting.

To conclude, we would like to draw attention to a
intriguing parallel between L and R methods for the
linear model developed in a recent thesis by Gutten-
brunner (1987). For each 8 € [0, 1], the dual variables
in the Koenker-Bassett formulation of regression
quantiles, @ = &,;(0) are defined as the solution to the
linear programming problem: maximize Y’a over
a € [0, 1]" subject to X’a = (1 — 6)X’1. It can be
shown that &,;(8) equals one if Y; > x/B8(6), equals
zero if the inequality is reversed and is between zero
and one for equality. Thus, & can be used to define
rank scores: let a be a measure on [0, 1] and define
the rank scores / ’

1
Gn; = f ni(0) da(0) + af0).
0
' Rank statistics can then be defined by

1 3.
V'r'z’d == 2 Gni dni

i=1

where d,; are given weights. Gutenbrunner shows that
the statistics V&? are asymptotically equivalent to
rank statistics of the form

1 n
Sf{d = - Z &nf?m-dni
i=1
where R,; is the rank of the residuals e:(B) based on

the Jaeckel form of the regression parameter estimates
(see Draper, (3.4)), and

i/n
dm‘ =n f
(i-1)/n

The statistics V% appear to be quite natural, and they
are relatively easy to compute. These ideas deserve
substantially more study and analysis, and may lead
to a better understanding of the application of rank
concepts in linear models.

da(6).
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