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Oracle, Multiple Robust and Multipurpose
Calibration in a Missing Response
Problem
Kwun Chuen Gary Chan and Sheung Chi Phillip Yam

Abstract. In the presence of a missing response, reweighting the complete
case subsample by the inverse of nonmissing probability is both intuitive and
easy to implement. When the population totals of some auxiliary variables
are known and when the inclusion probabilities are known by design, survey
statisticians have developed calibration methods for improving efficiencies of
the inverse probability weighting estimators and the methods can be applied
to missing data analysis. Model-based calibration has been proposed in the
survey sampling literature, where multidimensional auxiliary variables are
first summarized into a predictor function from a working regression model.
Usually, one working model is being proposed for each parameter of interest
and results in different sets of calibration weights for estimating different pa-
rameters. This paper considers calibration using multiple working regression
models for estimating a single or multiple parameters. Contrary to a common
belief that overfitting hurts efficiency, we present three rather unexpected re-
sults. First, when the missing probability is correctly specified and multiple
working regression models for the conditional mean are posited, calibration
enjoys an oracle property: the same semiparametric efficiency bound is at-
tained as if the true outcome model is known in advance. Second, when the
missing data mechanism is misspecified, calibration can still be a consistent
estimator when any one of the outcome regression models is correctly spec-
ified. Third, a common set of calibration weights can be used to improve
efficiency in estimating multiple parameters of interest and can simultane-
ously attain semiparametric efficiency bounds for all parameters of interest.
We provide connections of a wide class of calibration estimators, constructed
based on generalized empirical likelihood, to many existing estimators in bio-
statistics, econometrics and survey sampling and perform simulation studies
to show that the finite sample properties of calibration estimators conform
well with the theoretical results being studied.
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1. INTRODUCTION

Inverse probability weighting (IPW) was original-
ly proposed by Horvitz and Thompson (1952) for
reweighting a probability sample obtained from a com-
plex survey design in order to properly represent an
underlying study population. The estimator has also
been widely used for missing data problems, where
complete-case data are reweighted by the inverse of
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nonmissing probabilities. While inverse probability
weighted estimation is intuitive and easy to implement,
the estimator is not efficient in general and is not ro-
bust against misspecification of a missing probability
model.

In survey sampling, population totals of certain aux-
iliary variables can be accurately ascertained from cen-
sus data. Calibration was proposed by Deville and
Särndal (1992) in survey sampling literature to uti-
lize information from such auxiliary data. In missing
data problems, we often have a data structure similar
to survey sampling with auxiliary information. In ad-
dition to the variable of main interest which is subject
to missingness, certain covariates are collected in the
full sample to describe the missingness mechanism.
Calibration can be performed to match the moments
of auxiliary variables from the complete-case subsam-
ple to the full sample. Nonetheless, an important differ-
ence is that calibration was originally proposed when
inclusion probability is known by design, whereas in
missing data applications the nonmissing probability
is usually not known but is being modeled and esti-
mated from the data. In this paper, we consider missing
data problems in a sample from an infinite population.
Recently, survey calibration has been applied to study
other statistical problems; see Breslow et al. (2009),
Lumley, Shaw and Dai (2011) and Saegusa and Well-
ner (2013).

When individual values of auxiliary variables are
known, model calibration can be constructed using
a general working regression model (Wu and Sitter,
2001). However, the methods considered in the liter-
ature all assume a single working model for the esti-
mation of a single parameter. In this paper we consider
multiple non-nested working models for calibration es-
timation of a single or multiple parameters. While it is
a common belief that multiple modeling acts like over-
fitting and the estimation efficiency should therefore be
lower compared to a single working model that is care-
fully chosen, we show several surprising results that
this common belief is not true for calibration estima-
tion. First, when the missing data probability is cor-
rectly specified and multiple working outcome regres-
sion models are posited, calibration enjoys an oracle
property: the same semiparametric efficiency bound is
attained as if the true outcome model is known in ad-
vance. Second, when the missingness mechanism is
misspecified, calibration can still be a consistent esti-
mator when one of the outcome regression models is
correctly specified. Third, a common set of calibration

weights can be used to improve efficiency in estimat-
ing multiple parameters and can simultaneously attain
semiparametric efficiency bounds for multiple param-
eters of interest. In fact, the theoretical results suggest
that multiple modeling can be beneficial in practice.

The paper is organized as follows. In Section 2 we
consider a missing response model and define calibra-
tion estimating equations to match moment conditions
between the complete-case subsample and the full
sample. Calibration weighting is implemented using
generalized empirical likelihood (Newey and Smith,
2004) and yields weights which are non-negative for
all subjects. Sections 3 to 5 contain the main theoret-
ical results of this paper. In Section 3 we show that
when the missing data probability is correctly specified
and multiple working outcome regression models are
posited, calibration enjoys an oracle property where the
same semiparametric efficiency bound is attained as if
the true outcome model is known in advance. In Sec-
tion 4 we show that when the missingness mechanism
is misspecified, calibration can still be a consistent es-
timator when one of the outcome regression models is
correctly specified. In Section 5 we show that a com-
mon set of calibration weights can be used to improve
efficiency in estimating multiple parameters of inter-
est by simultaneously calibrating to multiple working
models. Three important special cases of the general-
ized empirical likelihood calibration will be discussed
in Section 6 and are shown to be related to many ex-
isting estimators in the biostatistics, econometrics and
survey sampling literature. Numerical examples, in-
cluding simulation studies and an analysis of medical
cost data from the Washington basic health plan, will
be presented in Section 7. Discussions and several re-
lated extensions will be presented in Section 8.

2. CALIBRATION ESTIMATORS

In this section we consider a general framework
for modifying inverse probability weights by calibra-
tion to include information from all observations. We
consider the following missing response problem. Let
Y be a random variable and X be a random vector.
Suppose the full data (y1, x1), . . . , (yN, xN) are i.i.d.
from an unspecified distribution F0(y, x). Let R be
a random variable corresponding to the nonmissing
indicator. The observed data can be represented as
(ri, riyi, xi), i = 1, . . . ,N . We are interested in esti-
mating μ = E(Y ), where Y is subject to missingness
and auxiliary variables X are completely observed.
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We consider the case under missing at random,
that is, P(R = 1|Y,X) = P(R = 1|X) = π0(X). Sup-
pose P(R = 1|X) = π(X;β0), where β0 is a finite
dimensional parameter. A conventional choice of a
missing data model is a logistic regression model
with linear predictors in X, though this is not nec-
essary. Based on (r1, x1), . . . , (rN , xN), the parame-
ter β0 can be estimated by solving a likelihood score
equation N−1 ∑N

i=1 s(xi;β) = 0, where s(x;β) = [1−
π(x;β)]−1[ri − π(x;β)] ∂π

∂β
(x;β) and we denote β̂ to

be the solution. When the missing data mechanism is
correctly modeled, the inverse probability weighted es-
timator

μ̂IPW = 1

N

N∑
i=1

ri

π(xi; β̂)
yi(2.1)

is a consistent estimator of μ. However, (2.1) is gen-
erally not fully efficient because information from
{xi, i : ri = 0} is not utilized except in the estimation
of β0 and such information may not be highly rel-
evant to the estimation of μ. To improve efficien-
cies, we note that for an arbitrary vector u(x) =
(u1(x), . . . , uq(x))T such that E(uT (X)u(X)) is fi-
nite and E(u(X)uT (X)) is invertible, the two es-
timators ũ = N−1 ∑N

i=1 riπ
−1(xi; β̂)u(xi) and ū =

N−1 ∑N
i=1 u(xi) are both consistently estimating the

same vector, E(u(X)), while the latter is more efficient
because information from all observations are utilized.
Instead of using inverse probability weights in comput-
ing ũ and in (2.1), we wish to find calibration weights
{pi, i : ri = 1} such that the following moment condi-
tions are satisfied:

ū =
N∑

i=1

ripiu(xi).(2.2)

The dimension of u(·) is assumed fixed and is much
less than N . While u(x) is assumed arbitrary in the
construction of the estimator, we will discuss a choice
of u(x) that is optimal in Section 3. For weights sat-
isfying (2.2), the calibration weighted complete case
estimate for E(u(X)), which is equivalent to ū by def-
inition, is more efficient than the inverse probability
weighted estimate ũ because information from all ob-
servations is included. When Y and u(X) are reason-
ably correlated, it is intuitive to expect that the calibra-
tion estimator μ̂CAL = ∑N

i=1 ripiyi is possibly more
efficient than the inverse probability weighted estima-
tor (2.1). The implied weights from moment restric-
tions (2.2) can be explicitly defined using generalized
empirical likelihood (GEL) proposed by Newey and

Smith (2004), a method originally proposed for effi-
cient estimation of overidentified systems of estimat-
ing equations commonly encountered in econometrics
applications. Calibration weights proposed by Deville
and Särndal (1992) also satisfy (2.2) but the method to
obtain the weights was different.

The construction of the generalized empirical likeli-
hood calibration weights is as follows. Let ρ(v) be a
concave and thrice differentiable function on R such
that ρ(1) �= 0, where ρ(j)(v) = ∂jρ(v)/∂vj and ρ(j) =
ρ(j)(0). As suggested by Newey and Smith (2004), we
can replace an arbitrary ρ(v) by a normalized version
−ρ(2)/(ρ(1))2ρ([ρ(1)/ρ(2)]v) such that ρ(1) = ρ(2) =
−1. This normalization will not affect the results. The
calibration weights are defined as

pi = π−1(xi; β̂)ρ(1)(λ̂T (u(xi) − ū))∑N
j=1 rjπ−1(xj ; β̂)ρ(1)(λ̂T (u(xj ) − ū))

,(2.3)

where

λ̂ = arg max
λ

N∑
i=1

riπ
−1(xi; β̂)ρ

(
λT (

u(xi)− ū
))

.(2.4)

We define a calibration (CAL) estimator to be μ̂CAL =∑N
i=1 ripiyi . Although pi can be defined for i =

1, . . . ,N , to compute the calibration estimator and its
standard error, pi needs to be computed only for the
subjects with ri = 1. By definition,

∑N
i=1 ripi = 1. The

moment restrictions (2.2) are satisfied following the
first order condition of the maximization problem in
(2.4).

The function ρ(·) can be chosen from a wide class of
concave functions, and the main results in subsequent
sections state that the choice of the function ρ(·) does
not affect consistency, asymptotic efficiency and other
properties. This is further supported by the simulation
studies in Section 7. Therefore, the choice of ρ(·) is a
relatively minor issue. After presenting the results for
a general ρ(v) in Sections 3–5, we extensively discuss
the following three special cases of the generalized em-
pirical likelihood family in Section 6:

1. ρ(v) = −(v − 1)2/2.
2. ρ(v) = log(1 − v).
3. ρ(v) = − exp(v).

They are popular due to the fact that they are closely
related to the generalized method of moments (Hansen,
1982; Hansen, Heaton and Yaron, 1996), empirical
likelihood (Owen, 1988; Qin and Lawless, 1994) and
exponential tilting (Kitamura and Stutzer, 1997; Im-
bens, Spady and Johnson, 1998). Simulations in Sec-
tion 7 show that the three popular ρ functions give
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very similar results. The idea that inverse probability
weighting can be improved is not due to a partic-
ular choice of the ρ function but to the calibration
equation (2.2) which matches the incomplete subsam-
ple to the complete sample. The introduction of ρ(·)
is needed because the calibration equation (2.2) is
an over-identified system of estimating equations and,
therefore, the theory of generalized empirical likeli-
hood can be used.

In general, the calibration weights pi are not guaran-
teed to be non-negative if λ is maximized globally in
(2.4), except in the cases where ρ(1)(v) < 0 for all v ∈
R, such as ρ(v) = − exp(v). A way to produce non-
negative weights for the whole generalized empirical
likelihood family, as suggested by Newey and Smith
(2004), is to define λ̂ to maximize the objective func-
tion in a restricted set � = {λ ∈ R

q :λT (ui(xi) − ū) ∈
V, i : ri = 1}, where V ⊂ R is an open interval contain-
ing zero. When we choose V to be a sufficiently small
neighborhood around zero, pi will be non-negative for
all complete-case observations. When the missing data
model is correctly specified, it follows from Newey
and Smith (2004) that the restricted maximum exists
with probability approaching 1 when N is large and
is asymptotically equivalent to the unrestricted maxi-
mizer. The restricted maximization is implemented in
the gmm package in R (Chaussé, 2010).

In econometrics, generalized empirical likelihood
is often employed for estimating a p-dimensional
parameter by specifying a q-dimensional estimating
equation, where q > p ≥ 1. However, we are not es-
timating the target parameter μ by directly solving an
overidentified estimating equation. In fact, we use the
moment conditions (2.2) to generate weights pi , which
are implied weights from the generalized empirical
likelihood (Newey and Smith, 2004). The calibration
conditions (2.2) can be regarded as a q-dimensional
moment restriction with a degenerate parameter, and
(2.4) is essentially a degenerate case of generalized em-
pirical likelihood with only the auxiliary parameters λ

appearing but not the target parameters. Even though
the generalized empirical likelihood estimation prob-
lem is undefined because the moment restrictions are
not functions of target parameters, implied weights can
still be constructed by (2.3). In econometrics, the gen-
eralized empirical likelihood estimators are usually so-
lutions to saddlepoint problems and can be difficult to
compute. In our case, λ̂ is a solution to a convex max-
imization problem rather than a saddlepoint problem
and can be computed by a fast and stable algorithm.

3. ORACLE PROPERTY

In Sections 3–5 we will examine statistical proper-
ties of calibration estimators in the context of missing
data analysis. In this section we show that the class
of estimators enjoy an oracle property. We consider
model-based calibration where the functions u(x) in
the moment condition (2.2) may depend on a finite
dimensional parameter. Let u1(X;γ1), . . . , uq(X;γq)

be q non-nested working outcome regression models
for E(Y |X) and γ0 = (γ T

1 , . . . , γ T
q )T . The parame-

ters γk ∈ R
pk , k = 1, . . . , q can be of different dimen-

sions, and γ0 ∈ R
p , where p = p1 + · · · + pq . Let

γ̂ = (γ̂ T
1 , . . . , γ̂ T

q )T be an estimate of γ0. For example,
γ̂r can be a least squares estimate for the r th working
model for E(Y |X), r = 1, . . . , q . We denote the sam-
ple mean estimate ū(γ̂ ) = N−1 ∑N

i=1 u(xi; γ̂ ) and the
calibration weights satisfy ū(γ̂ ) = ∑N

i=1 ripiu(xi; γ̂ ),
which are found by (2.3) and (2.4) with u(x) and
ū replaced by u(x; γ̂ ) and ū(γ̂ ) respectively. Let
m(X;γ0) = c0 + ∑q

j=1 cjuj (X;γj ), where c0, . . . , cq

minimizes

E

((
Y − c0 −

q∑
j=1

cjuj (X;γj )

)2)
.(3.1)

That is, m(X;γ0) is the best linear predictor of Y by
u(X;γ0). Supposing the missing data model is cor-
rectly specified, that is, π0(X) = π(X;β0), we have the
following lemma:

LEMMA 1. Under the regularity conditions stated
in the supplemental article (Chan and Yam, 2014),

μ̂CAL − μ = 1

N

N∑
i=1

[
ri

π0(xi)

(
yi − m̃(xi;γ0)

)

+ (
m̃(xi;γ0) − μ

)]
(3.2)

+ op

(
N−1/2)

,

where

m̃(X;γ0) = m(X;γ0)

− AT
2 S−1(

1 − π0(X)
)−1 ∂π

∂β
(X;β0),

A2 = −E

(
∂π

∂β
(X;β0)

1

π(X;β0)

(
Y − m(X)

))
and

S = E

(
π−1

0 (X)
(
1 − π0(X)

)−1

· ∂π

∂β
(X;β0)

∂π

∂β

T

(X;β0)

)
.
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A detailed proof of the lemma is given in the sup-
plemental article (Chan and Yam, 2014). The above
lemma holds for arbitrary sets of functions u(·) satis-
fying mild regularity conditions. The asymptotic repre-
sentation given in Lemma 1 also suggests the following
plugged-in estimator for asymptotic variance:

1

N2

N∑
i=1

[
ri

π(xi; β̂)

(
yi − ˆ̃m(xi)

) + ( ˆ̃m(xi) − μ̂CAL
)]2

,

where

ˆ̃m(X) = m(X; γ̂ )

− ÂT
2 Ŝ−1(

1 − π(X; β̂)
)−1 ∂π

∂β
(X; β̂),

Â2 = 1

N
×

N∑
i=1

ri

π(X; β̂)2

∂π

∂β
(xi; β̂)

(
yi − m(xi; γ̂ )

)
and

Ŝ = 1

N
×

N∑
i=1

π−1(xi; β̂)
(
1 − π(xi; β̂)

)−1

· ∂π

∂β
(xi; β̂)

∂π

∂β

T

(xi; β̂).

The asymptotic expansion (3.2) depends on the
choice of u(X;γ0) implicitly through m(X;γ0) and
we may choose a particular u(X;γ0) to minimize the
asymptotic variance. Let m0(X) denote the true condi-
tional expectation E(Y |X). The optimality properties
are stated in the following theorem.

THEOREM 2 (Semiparametric efficiency). Sup-
pose that the regularity conditions in Lemma 1 hold
and suppose there exist a0, . . . , aq such that

m0(X) = a0 +
q∑

j=1

ajuj (X;γ0).(3.3)

Then,
√

N(μ̂CAL − μ) converges in distribution to
N(0,Vsemi), where Vsemi attains the semiparametric
variance bound as in Robins and Rotnitzky (1995) and
Hahn (1998),

Vsemi = Var
[

RY

π0(X)
−

(
R

π0(X)
− 1

)
m0(X) − μ

]
.

The proof of the theorem is given in the supplemen-
tary article (Chan and Yam, 2014). In Theorem 2 the
constants a0, . . . , aq are arbitrary and do not need to be
estimated. Theorem 2 states that semiparametric effi-
ciency is attained under a condition weaker than requir-
ing the calibration function u(X) to be identical to the

true conditional expectation m0(X); see Section 2.3 of
Qin and Zhang (2007) for a related discussion. Also,
as suggested by Qin and Zhang (2007), we can plot
Y against each component of X to suggest a func-
tional form for u(X). An important implication of the
theorem, an oracle property, is given as follows. Sup-
pose u1(X;γ1), . . . , uq(X;γq) are q working models
for E(Y |X) and that one of them, without loss of gen-
erality, say, u1(X;γ1), is the true conditional expecta-
tion.

COROLLARY 3 (Oracle property). Under condi-
tions in Lemma 1, suppose E(Y |X) = u1(X;γ1).
The estimator μ̂CAL,1 where u = u1 achieves the
same semiparametric efficiency bound as the estima-
tor μ̂CAL,2 where u = (u1, . . . , uq).

While overfitting should be avoided in usual statis-
tical practice, and assuming multiple working regres-
sion models have a similar flavor to overfitting, the or-
acle property states that the asymptotic efficiency of
calibration estimators is not affected by multiple work-
ing models and attains the same semiparametric effi-
ciency bound as if the true model is known in advance.
Note that overfitting is problematic for the estimation
of regression coefficients, and we are interested in es-
timating the mean of Y , which is a different estimand.
Therefore, the oracle property does not contradict ex-
isting statistical theory. In Section 7 we show in simu-
lation studies that multiple modeling loses a negligible
amount of efficiency even for practical sample sizes.

We would like to remark that there are substantial
differences between the oracle property for calibra-
tion estimators and the oracle property discussed in the
model selection literature. In the model selection litera-
ture, oracle properties are often enjoyed by regularized
estimators (see, e.g., Fan and Li, 2001 and Zou, 2006),
which add a penalization term to likelihood-type func-
tions. The purpose of regularization is to determine
nonzero coefficients from a large number of predictors
in a regression setting, and the degree of regularization
is controlled by a tuning parameter. In those situations,
oracle properties mean that when a tuning parameter
is asymptotically increasing at a certain rate smaller
than

√
N , the regularized estimator for the nonzero co-

efficients will attain the same asymptotic variance as
if the true set of nonzero coefficients are known in
advance. This property is closely related to Hodges’
superefficient estimator (Lehmann and Casella, 1998).
The main differences between the oracle property of
calibration estimators and that in the model selection
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literature are given as follows. First, our methods ap-
ply to the estimation of μ = E(Y ), not to estimation
of the coefficients of E(Y |X). Moreover, our methods
are based on weighting observations and not by regu-
larization of likelihood functions. Furthermore, there is
no tuning parameter to be specified with a user-defined
rate of convergence in our method.

4. MULTIPLE ROBUSTNESS

In this section we consider the validity of calibra-
tion estimators under misspecified missing data mod-
els. In this case, the estimator β̂ will converge in prob-
ability to some constant vector β∗ that minimizes the
Kullback–Leibler Information Criterion (White, 1982),
but π(X;β∗) �= π0(X). When the missing data mech-
anism is misspecified, the estimate λ̂ will not converge
in probability to 0 in general, but will instead converge
in probability to λ∗, where

λ∗ = arg max
λ

E
(
Rπ−1(

X;β∗)
ρ

{
λ
[
u(X) − uμ

]})
,

uμ = E(u(X)). We define w̃(x) = π−1(x;β∗) ×
ρ{λ∗[u(x) − uμ]}/k, where k = E(Rπ−1(X;β∗) ×
ρ{λ∗[u(X) − uμ]}),
f (λ,β, γ )

= 1

N

N∑
i=1

ri

(
π−1(xi, β)ρ′(λ(

u(xi, γ ) − ū(γ )
))

·
(
N−1

N∑
i=1

rjπ
−1(xj , β)

· ρ′(λ̂(
u(xj , γ ) − ū(γ )

)))−1

− π−1(xi, β)

)

· (
yi − m(xi, γ )

)

+ 1

N

N∑
i=1

[
ri

π(xi, β)

(
yi − m(xi, γ )

)

+ (
m(xi, γ ) − μ

)]

and f0(λ,β, γ ) = E(f (λ,β, γ )).

THEOREM 4 (Robustness). Suppose the missing
data model is misspecified but condition (3.3) holds

for the calibration function u(X;γ0), the regularity
conditions in Lemma 1 hold, and E[sup(λ,β,γ ) |f (λ,β,

γ )|] < ∞. Then, the calibration estimator μ̂CAL is a
consistent estimator for μ.

The proof is as follows:

μ̂CAL =
N∑

i=1

ripi

(
yi −

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

))

+
N∑

i=1

ripi

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

)

=
N∑

i=1

ripi

(
yi −

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

))

+ 1

N

N∑
i=1

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

)

=
N∑

i=1

riπ
−1(xi; β̂)ρ

(
λ̂
(
u(xi) − ū

))

·
(

N∑
j=1

rjπ
−1(xj ; β̂)ρ

(
λ̂
(
u(xj ) − ū

)))−1

·
(
yi −

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

))

+ 1

N

N∑
i=1

(
a0 +

q∑
j=1

ajuj (xi; γ̂ )

)

p→ E
(
Rw̃(X)

(
Y − m0(X)

)) + E
(
m0(X)

)
= E

(
π0(X)w̃(X)

(
E(Y |X) − m0(X)

))
+ E

(
E(Y |X)

)
= 0 + μ = μ.

The first equality holds by adding and subtracting
the same quantity, the second equality holds because
of (2.2), the third equality holds by the definition of
pi , and the convergence in probability holds by the
convergence of plugged-in estimates and the uniform
convergence of f (λ,β, γ ) guaranteed by the regularity
conditions, and the last line holds because E(Y |X) =
m0(X). An immediate corollary is that when one of
the q working models for E(Y |X) is correctly speci-
fied, the calibration estimator is consistent even when
the missing data model is misspecified. Therefore, cal-
ibration estimators enjoy the following multiple robust
property: consistency holds when either the missing
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data model or any one of the working outcome regres-
sion models is correctly specified. Doubly robust esti-
mators (e.g., augmented inverse probability weighted
estimators) have been popular in missing data analy-
sis because of their extra protection against misspeci-
fication of the missing data model. However, a single
working outcome regression model may be misspeci-
fied as well. Double robustness of calibration estima-
tors has been discussed recently in Kott and Chang
(2010). Our results show further that calibration esti-
mators allow multiple non-nested working models to
be assumed and is consistent when any one of the
working models are correctly specified. This provides
an even better protection against model misspecifica-
tion than the existing doubly robust estimators.

5. MULTIPURPOSE CALIBRATION

Very often, in addition to the sample mean, we are
also interested in estimating other functionals of the
distribution of Y , F0(y), for example, the proportion
of units with an outcome value no more than t ,

F0(t) =
∫ t

−∞
dF0(y) =

∫
I (y ≤ t) dF0(y).

For L functions h1, . . . , hL :R → R, let μl =∫
hl(y) dF0(y), l = 1, . . . ,L be L parameters of in-

terest. To estimate μl , we may posit a working model
ml(X) for E(hl(Y )|X), and calibration weights pli can
be found by (2.3) and (2.4). A calibration estimator for
μl can then be defined as

∑N
i=1 riplihl(yi). However,

the set of weights {pli} are different for each estimand.
When the construction of weights and the analysis are
done by different statisticians, the use of multiple sets
of weights may not be practical. Moreover, a set of
weights that is optimal for estimating one particular pa-
rameter is likely to be suboptimal for estimating other
parameters.

We would like to use the same set of weights
to estimate μ1, . . . ,μL simultaneously. To do this,
we find the weights by (2.3) and (2.4) with u =
(m1, . . . ,mL)T , that is, to calibrate to the L working
models for different conditional expectations simul-
taneously. Working models can be suggested by ex-
ploratory data analysis, prior scientific knowledge or
by convention. For instance, if hl(Y ) = I (Y > c) for
some constant c, one may use a logistic regression
model with a linear predictor in X for ml . By calibra-
tion to u = (m1, . . . ,mL)T , we obtain a common set of
weights. The estimates for μ1, . . . ,μL are defined as

μ̂1 =
N∑

i=1

ripih1(yi), . . . , μ̂L =
N∑

i=1

ripihL(yi).

We have the following theoretical properties of the es-
timators.

THEOREM 5. Suppose π(X;β) is correctly speci-
fied, the regularity conditions stated in Lemma 1 hold,
and assume that E(h2

l (Y )) < ∞ for l = 1, . . . ,L. We
have the following properties:

(a) The estimates μ̂1, . . . , μ̂L are all consistent for
μ1, . . . ,μL, regardless of the validity of working
models ml(X).

(b) When ml(X) = E(hl(Y )|X), for 1 ≤ l ≤ j ≤ L,
μ̂1, . . . , μ̂j are asymptotically semiparametric ef-
ficient.

Statement (a) in the above theorem can be proven us-
ing similar arguments as in Lemma 1 and statement (b)
follows from Corollary 3. Theorem 5 states that a com-
mon set of calibration weights can be used to improve
efficiency in estimating multiple parameters of inter-
est by simultaneously calibrating to multiple working
models.

In practice, the construction of weights and the esti-
mation of target parameters may be performed by dif-
ferent statisticians. The statistician who constructs the
weights may not know which estimand is of ultimate
interest. Suppose the parameter of interest is E(h(Y )).
Since E(h(Y )) is a Riemann–Stieltjes integral, we can
use the discrete approximation∫

h(y) dF0(y)

≈
M∑

m=0

h

(
tm + tm+1

2

)∫
I (tm < y ≤ tm+1) dF0(y)

=
M∑

m=0

h

(
tm + tm+1

2

)[
F0(ym+1) − F0(ym)

]

to approximate arbitrary E(h(Y )), where −∞ ≡ t0 <

t1 < t2 < · · · < tM < ∞ ≡ tM+1. The parameter of
interest, E(h(Y )), can therefore be approximated by
a linear combination of [F0(ti+1) − F0(ti)]. We can
construct working models for P(tm < Y ≤ tm+1|X)

to improve the estimation of [F0(ti+1) − F0(ti)], and
the estimation of E(h(Y )) can be improved by cal-
ibrating to M + 1 models for P(tm < Y ≤ tm+1|X),
m = 0, . . . ,M .

6. SPECIAL CASES AND RELATIONSHIP TO
EXISTING ESTIMATORS

In this section we consider several special cases of
the generalized empirical likelihood calibration esti-
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mator and discuss their connections to existing estima-
tors proposed in biostatistics, econometrics and survey
sampling.

When ρ is a quadratic function, after normalization
we have ρ(1)(v) = −v−1. From (2.4), λ̂ has an explicit
solution,

λ̂ = −
[

N∑
i=1

riπ
−1(xi, β̂)

(
u(xi) − ū

)⊗2
]−1

·
[

N∑
i=1

riπ
−1(xi, β̂)

(
u(xi) − ū

)]
,

where for a row vector a, a⊗2 = aaT . The calibration
estimator is equivalent to

μ̂CAL,Q =
∑N

i=1 riπ
−1(xi; β̂)[yi − cT

1 u(xi)]∑N
i=1 riπ−1(xi; β̂)

(6.1)

+ cT
1

1

N

N∑
i=1

u(xi),

where

c1 =
N∑

i=1

riπ
−1(xi, β̂)

·
[

N∑
i=1

riπ
−1(xi, β̂)

(
u(xi) − ū

)⊗2
]−1

· [(
u(xi) − ū

)
yi

]
.

This special case of the generalized empirical like-
lihood calibration estimator corresponds to the gen-
eralized regression estimator (Cassel, Särndal and
Wretman, 1976). The quadratic generalized empiri-
cal likelihood is also closely related to the quadratic
likelihood discussed in Lindsay and Qu (2003). Note
that when the missingness model is correctly speci-
fied, the denominator

∑N
i=1 riπ

−1(xi; β̂) on the left-
hand side of (6.1) is approximately N , so the estimator
(6.1) is also similar to the augmented inverse proba-
bility weighted (AIPW) estimating equation proposed
by Robins, Rotnitzky and Zhao (1994). Breslow et al.
(2009) and Lumley, Shaw and Dai (2011) discussed
the connections between the augmented inverse prob-
ability weighted and the calibration estimators. A re-
lated regression-based doubly robust estimator was dis-
cussed in Scharfstein, Rotnitzky and Robins (1999)
and Bang and Robins (2005), and extended to a multi-
ple robust estimator in Chan (2013). However, these es-
timators were constructed from a different framework
and do not have associated calibration weights.

Empirical likelihood (EL) is another special case
of the generalized empirical likelihood which is fre-
quently studied in the literature (Owen, 1988; Qin
and Lawless, 1994) and which corresponds to ρ(v) =
log(1 − v). In this case, λ̂ is a solution to the system of
equations

N∑
i=1

riπ
−1(xi; β̂)(u(xi) − ū)

1 − λT (u(xi) − ū)
= 0

and

pi = [π(xi; β̂)(1 − λ̂T (u(xi) − ū))]−1∑N
j=1 ri[π(xj ; β̂)(1 − λ̂T (u(xj ) − ū))]−1

.

The empirical likelihood calibration has a pseudo non-
parametric maximum likelihood interpretation, where
pi maximizes a weighted loglikelihood

∑N
i=1 ri ×

π−1(xi; β̂) logpi subject to the moment condition
(2.2). Moment matching using empirical likelihood has
been discussed in Hellerstein and Imbens (1999), Tan
(2006), Qin and Zhang (2007), Chan (2012), Graham,
De Xavier Pinto and Egel (2012) and Han and Wang
(2013). Han and Wang (2013) showed that the em-
pirical likelihood estimator of Qin and Zhang (2007)
is multiply robust, based on a property of ρ(v) =
log(1 − v) which is not extensible to other members
of the generalized empirical likelihood family. In sur-
vey sampling, the empirical likelihood-based method
has been proposed to calibrate design-based weights to
auxiliary data by Chen and Sitter (1999), Wu and Sitter
(2001), Chen, Sitter and Wu (2002) and Kim (2009),
among others.

Exponential tilting (ET) is also a special case of gen-
eralized empirical likelihood where ρ(v) = − exp(v)

(Kitamura and Stutzer, 1997; Imbens, Spady and John-
son, 1998). In this case, λ̂ is a solution of the system of
equations

N∑
i=1

riπ
−1(xi; β̂)

(
u(xi) − ū

)
exp

(
λT (

u(xi) − ū
)) = 0

and

pi = π−1(xi; β̂) exp(λ̂T (u(xi) − ū))∑N
j=1 riπ−1(xj ; β̂) exp(λ̂T (u(xj ) − ū))

.

The estimator can also be formulated by maximizing a
weighted entropy function

∑N
i=1 riπ

−1(xi; β̂)pi logpi

subject to the moment condition (2.2). This corre-
sponds to the raking estimators (Deming and Stephan,
1940; Deville, Särndal and Sautory, 1993; Hainmueller,
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2012) in the survey sampling literature, and an advan-
tage of using the exponential tilting estimator is that
the resulting weights pi are always non-negative.

The class of generalized empirical likelihood cali-
bration estimators contains many more estimators than
the three special cases mentioned above. For example,
the family of power divergence statistics of Cressie and
Read (1984) is a proper subclass of the generalized em-
pirical likelihood, where for some scalar θ ,

ρ(v) = −(1 + θv)(θ+1)/θ /(θ + 1).

The empirical likelihood and exponential tilting esti-
mators correspond to the limits as θ → −1 and θ → 0
respectively, and the quadratic estimator corresponds
to θ = 1. Several other cases have also been consid-
ered in the literature, for example, θ = −1

2 (Freeman–
Tukey), θ = −2 (Neyman) and θ = 2

3 (Cressie–Read).

7. NUMERICAL STUDIES

7.1 Simulated Data

In this section we present simulation studies and an
analysis of the Washington basic health plan data to
study the finite sample performance of the calibration
estimators. The first simulation study followed a sce-
nario in Kang and Schafer (2007) for the estimation
of the population mean. The scenario was designed
so that the assumed outcome regression and missing
data models were nearly correct under misspecifica-
tion, but the augmented inverse probability weighted
estimator can be severely biased. Sample sizes for
each simulated data set were 200 or 1000, and 1000
Monte Carlo data sets were generated. For each obser-
vation, a random vector Z = (Z1,Z2,Z3,Z4) was gen-
erated from a standard multivariate normal distribution,
and transformations X1 = exp(Z1/2),X2 = Z2/(1 +
exp(Z1)),X3 = (Z1Z3/25 + 0.6)3 and X4 = (Z2 +
Z4 + 20)2 were defined with X = (X1,X2,X3,X4).
The outcome of interest Y was generated from a nor-
mal distribution with mean 210 + 27.4Z1 + 13.7Z2 +
13.7Z3 + 13.7Z4 and unit variance, and Y was ob-
served with probability exp(η0(Z))/(1 + exp(η0(Z))),
where η0(Z) = −Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4. The
correctly specified outcome and missing data models
were regression models with Z as covariates, whereas
we treated X to be the covariates instead of Z in mis-
specified models. Kang and Schafer (2007) showed
that the misspecified models were nearly correctly
specified.

We compared the performances of the inverse prob-
ability weighted estimator μ̂IPW and the augmented in-
verse probability weighted estimator

μ̂AIPW = 1

N

N∑
i=1

ri

π(xi; β̂)
yi

− 1

N

N∑
i=1

[
ri − π(xi; β̂)

π(xi; β̂)

]
m̂(xi),

where m̂ was the prediction from an ordinary least
square regression of Y onto Z for a correctly spec-
ified model and X for a misspecified model, the or-
dinary least square (OLS) estimator μ̂OLS = N−1 ×∑N

i=1 m̂(xi) and the inverse probability weighted es-
timator with a nonparametric propensity score model
fitted by generalized boosting machine (GBM) which
was implemented in the R package TWANG (McCaf-
frey, Ridgeway and Morral, 2004). We used GBM pa-
rameters suggested by Doctors Greg Ridgeway and
Daniel McCaffrey in a personal communication, with
3000 maximum iterations, a shrinkage parameter of
0.005 and an iteration stopping rule that minimizes the
maximal marginal Kolmogorov–Smirnov statistic. We
denote the corresponding inverse probability weighted
estimates by μ̂IPW−GBM. We considered calibration es-
timators μ̂CAL,Q, μ̂CAL,EL, μ̂CAL,ET corresponding to
three special cases in the generalized empirical like-
lihood family: Quadratic [Q: ρ(v) = −(v + 1)2/2],
empirical likelihood [EL: ρ(v) = ln(1 − v)] and ex-
ponential tilting [ET: ρ(v) = − exp(v)]; we also con-
sidered calibration estimators with one or two working
outcome regression models. With a single regression
model, the calibration estimators are doubly robust as
an augmented inverse probability weighted estimator.
Multiple robust estimators calibrate to an additional
outcome model including all second and higher or-
der interactions of Z for correctly specified models or√

X for misspecified models. We chose the square-root
transformation because X were positive and skewed to
the right. We also considered the logarithmic transfor-
mation and the results were similar. We used the sub-
scripts DR and MR to distinguish between the doubly
robust and the multiple robust calibration estimators.

Table 1 shows that both the augmented inverse prob-
ability weighted estimator and the calibration estima-
tors were more efficient than the inverse probability
weighted estimator. There are differences between our
results for the inverse probability weighted estima-
tor and those in Kang and Schafer (2007), which is
due to the fact that the inverse probability weighted
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TABLE 1
Comparisons among the calibration estimators and other estimators under the Kang and Schafer scenario, (a) models in Z, (b) models in X.

SSE represents the sampling standard deviation, RMSE represents the root mean squared error and
RE represents relative efficiency which is the RMSE relative to μ̂OLS

(a) (b)

Bias SSE RMSE RE Bias SSE RMSE RE

n = 200
μ̂IPW −0.74 12.62 12.64 5.06 28.65 179.02 181.30 53.01
μ̂AIPW 0.02 2.50 2.50 1.00 −8.01 40.30 41.09 12.01
μ̂OLS 0.02 2.50 2.50 1.00 −0.59 3.37 3.42 1.00
μ̂IPW−GBM −3.37 3.11 4.59 1.86 −4.36 3.13 5.37 1.57
μ̂CAL,Q,DR 0.02 2.50 2.50 1.00 −2.13 3.26 3.89 1.14
μ̂CAL,EL,DR 0.02 2.50 2.50 1.00 −2.73 3.98 4.83 1.41
μ̂CAL,ET,DR 0.02 2.50 2.50 1.00 −2.40 3.48 4.23 1.24
μ̂CAL,Q,MR 0.02 2.50 2.50 1.00 −1.23 2.84 3.09 0.90
μ̂CAL,EL,MR 0.02 2.50 2.50 1.00 −1.13 3.00 3.20 0.93
μ̂CAL,ET,MR 0.02 2.50 2.50 1.00 −1.17 2.86 3.09 0.90

n = 1000
μ̂IPW 0.27 5.07 5.08 4.50 36.99 157.31 161.60 93.95
μ̂AIPW 0.01 1.13 1.13 1.00 −13.38 72.19 73.42 42.69
μ̂OLS 0.01 1.13 1.13 1.00 −0.86 1.49 1.72 1.00
μ̂IPW−GBM −1.79 1.36 2.24 1.98 −2.80 1.41 3.13 1.82
μ̂CAL,Q,DR 0.01 1.13 1.13 1.00 −2.94 1.45 3.28 1.91
μ̂CAL,EL,DR 0.01 1.13 1.13 1.00 −4.16 1.86 4.56 2.65
μ̂CAL,ET,DR 0.01 1.13 1.13 1.00 −3.45 1.86 3.92 2.27
μ̂CAL,Q,MR 0.01 1.13 1.13 1.00 −1.13 1.23 1.67 0.97
μ̂CAL,EL,MR 0.01 1.13 1.13 1.00 −0.95 1.59 1.85 1.07
μ̂CAL,ET,MR 0.01 1.13 1.13 1.00 −1.12 1.24 1.67 0.97

estimator in our simulation is slightly different from
that discussed in Kang and Schafer (2007). The in-
verse probability weighted estimator considered in the
simulations is shown in (2.1). An inverse probability
weighted estimator considered by Kang and Schafer
replaced the denominator N by

∑N
i=1 ri/π(xi; β̂). The

two quantities should be close to each other when N

is large and π is correctly specified. In finite sam-
ples, however, the two quantities can be quite differ-
ent particularly when some π(xi) are close to zero.
Both the augmented inverse probability weighted and
the calibration estimators had negligible biases and
were efficient when models were correctly specified.
When models were misspecified, the augmented in-
verse probability weighted estimator had a consid-
erable bias and variability as shown in Kang and
Schafer (2007), but the calibration estimators, even
the doubly robust ones, showed much better perfor-
mance compared to the augmented inverse probability
weighted estimator. The simulation scenario of Kang
and Schafer (2007) was carefully designed such that
the ordinary least squares estimator outperforms all

doubly robust estimators that were being considered.
The doubly robust calibration estimator, although sub-
stantially improved over the augmented inverse prob-
ability weighted estimator, was still inferior to the or-
dinary least squares estimator. Multiple robust calibra-
tion estimators, however, outperformed the ordinary
least squares estimator in terms of mean squared error.
This illustrates the utility of multiple modeling. Al-
though there is no guarantee that any estimator domi-
nates others when models are grossly misspecified, it
is likely that the true outcome model is better approxi-
mated by a combination of multiple models rather than
a single outcome model. Within the generalized empir-
ical likelihood family, choices of ρ(·) did not affect the
performance of the estimator in general. An alternative
way to improve the inverse probability weighted esti-
mator is to use a flexible nonparametric estimator of
the propensity score function, such as the generalized
boosting machine (McCaffrey, Ridgeway and Morral,
2004). However, inverse probability weighting with a
nonparametric method for propensity score estimation
would induce more small-sample bias than the para-
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metric methods, and was less efficient than calibration
estimators in most cases.

Next, we performed additional simulations under a
slight modification of the Kang and Schafer scenario.
The simulation setting was the same as before except
that an interaction term equal to 20Z1Z2 was added
to the mean function of Y . We considered the same
estimators as discussed above. We presented the re-
sults in Table 2. By comparing the results of Tables 1
and 2, we found that the performance of the ordinary
least squares estimator is sensitive to the specification
of the mean function, as illustrated in Ridgeway and
McCaffrey (2007). The calibration estimator, on the
other hand, still performed very well under this modi-
fied scenario. In fact, the mean squared error of the cal-
ibration estimators was substantially lower than other
estimators.

In the rest of this section we focused on the Kang
and Schafer scenario without interaction. We examined
the performance of the proposed standard error esti-
mator for the calibration estimators and the results are
shown in Table 3, where the standard error estimates

were close to the sampling standard deviation and the
empirical coverage of approximate 95% confidence in-
tervals were close to their nominal levels.

Next, we considered a case where the missing
data mechanism was possibly misspecified and mul-
tiple working outcome regression models were as-
sumed which may contain the correctly specified
model. Let u1 = (1,Z1)

T γ̂1, u2 = (1,Z1,Z2)
T γ̂2,

u3 = (1,Z1,Z2,Z3)
T γ̂3 and u4 = (1,Z1,Z2,Z3,

Z4)
T γ̂4, where γ̂1, γ̂2, γ̂3 and γ̂4 were least squares

estimates obtained from complete case data. We con-
sidered moment conditions from one to four work-
ing models: (a) one working model u = u1, (b) two
working models u = (u1, u2), (c) three working mod-
els u = (u1, u2, u3) and (d) four working models
u = (u1, u2, u3, u4). Only the fourth case contained the
correctly specified outcome regression model u4. The
simulation results are shown in Table 4. When multi-
ple working outcome regression models were assumed
that contained the correct model, calibration estima-
tors were robust against misspecification of the missing
data model and had negligible bias. When missingness

TABLE 2
Comparisons among the calibration estimators and other estimators under the Kang and Schafer scenario with interactions, (a) models

in Z, (b) models in X. SSE represents the sampling standard deviation, RMSE represents the root mean squared error and
RE represents relative efficiency which is the RMSE relative to μ̂OLS

(a) (b)

Bias SSE RMSE RE Bias SSE RMSE RE

n = 200
μ̂IPW −0.81 11.37 11.39 2.50 32.78 201.68 204.33 39.83
μ̂AIPW 0.25 4.56 4.57 1.00 6.12 80.46 80.63 15.72
μ̂OLS 3.17 3.26 4.55 1.00 3.18 4.03 5.13 1.00
μ̂IPW−GBM −2.84 3.61 4.59 1.01 −3.36 3.69 4.99 0.97
μ̂CAL,Q,DR 0.51 3.45 3.49 0.77 0.36 4.08 4.10 0.80
μ̂CAL,EL,DR 0.42 3.56 3.58 0.79 −0.21 4.15 4.16 0.81
μ̂CAL,ET,DR 0.47 3.48 3.51 0.77 0.10 4.10 4.11 0.80
μ̂CAL,Q,MR −0.05 2.74 2.74 0.60 −0.24 3.31 3.32 0.65
μ̂CAL,EL,MR −0.05 2.74 2.74 0.60 −0.23 3.45 3.45 0.67
μ̂CAL,ET,MR −0.05 2.74 2.74 0.60 −0.22 3.34 3.35 0.65

n = 1000
μ̂IPW 0.14 4.36 4.36 1.22 41.72 169.09 175.72 49.03
μ̂AIPW −0.09 2.74 2.74 0.77 −11.97 44.03 45.63 12.30
μ̂OLS 3.20 1.55 3.56 1.00 3.03 1.89 3.58 1.00
μ̂IPW−GBM −1.45 1.54 2.12 0.60 −1.88 1.57 2.45 0.68
μ̂CAL,Q,DR 0.06 1.77 1.77 0.50 −0.45 2.13 2.18 0.61
μ̂CAL,EL,DR 0.03 1.83 1.83 0.51 −0.95 2.36 2.45 0.67
μ̂CAL,ET,DR 0.05 1.76 1.76 0.49 −0.88 2.24 2.41 0.66
μ̂CAL,Q,MR <0.01 1.28 1.28 0.36 0.11 1.72 1.72 0.48
μ̂CAL,EL,MR <0.01 1.28 1.28 0.36 0.20 2.04 2.05 0.57
μ̂CAL,ET,MR <0.01 1.28 1.28 0.36 0.20 1.79 1.80 0.50
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TABLE 3
Performance of the standard error estimates of the calibration estimators under the Kang and Schafer scenario: (a) models in Z, (b) models

in X. SSE represents the sampling standard deviation. SEE represents the averaged standard error estimates.
Coverage (%) represents the empirical coverage of approximate 95% confidence intervals

(a) (b)

SSE SEE Coverage (%) SSE SEE Coverage (%)

n = 200
μ̂CAL,Q 2.50 2.56 96 3.04 2.95 95
μ̂CAL,EL 2.50 2.56 96 3.18 3.05 94
μ̂CAL,ET 2.50 2.56 96 3.09 2.95 94

n = 1000
μ̂CAL,Q 1.13 1.15 96 1.29 1.30 91
μ̂CAL,EL 1.13 1.15 96 1.31 1.31 92
μ̂CAL,ET 1.13 1.15 96 1.29 1.30 92

was correctly specified, inclusion of more models de-
creased sampling variability. When missingness was
misspecified, the calibration estimators were slightly
biased when outcome models were misspecified, but
sampling bias and variability both decreased with an
increasing number of models.

Next, we considered simultaneous estimation of two
parameters of interest, the sample mean μ and p =
P(Y > 240). We assumed a working model m1 for
E(Y |Z) being a linear regression model with linear
predictors in Z and a working model m2 for P(Y >

240|Z) being a logistic regression model with lin-

ear predictors in Z. Note that m1 is the true model
for E(Y |Z) but m2 is not the true model for P(Y >

240|Z). We considered the following four estimators:
(a) the inverse probability weighted estimator, (b) cali-
bration estimator by calibrating to predictions from m1
only, (c) calibration estimator by calibrating to pre-
dictions from m2 only and (d) calibration estimator
by calibrating to predictions from both m1 and m2.
Since different choice of estimators within the gen-
eralized empirical likelihood family gave similar re-
sults, we only reported the results for ρ(v) being a
quadratic function. The simulation results are given in

TABLE 4
Performance of the calibration estimators under correctly specified or misspecified missing data models and multiple working outcome

regression models, (a) one working model, (b) two working models, (c) three working models and (d) four working models.
SSE represents the sampling standard deviation

n = 200 n = 1000

Correct Misspecified Correct Misspecified

Bias SSE Bias SSE Bias SSE Bias SSE

μ̂CAL,Q (a) 0.05 2.90 −1.13 3.17 0.03 1.31 −1.19 1.67
(b) −0.10 2.79 −2.18 3.03 0.02 1.26 −2.26 1.53
(c) 0.02 2.60 −0.41 2.71 0.03 1.20 −0.49 1.31
(d) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13

μ̂CAL,EL (a) 0.05 2.92 −1.15 3.37 0.02 1.31 −1.13 1.94
(b) −0.10 2.80 −2.24 2.91 0.02 1.26 −2.27 1.76
(c) 0.03 2.61 −0.43 2.79 0.03 1.20 −0.56 1.41
(d) 0.02 2.50 0.01 2.49 0.01 1.13 0.01 1.13

μ̂CAL,ET (a) 0.05 2.91 −1.12 3.24 0.03 1.31 −1.27 1.85
(b) −0.10 2.79 −2.18 3.07 0.02 1.26 −2.24 1.65
(c) 0.03 2.60 −0.46 2.71 0.03 1.20 −0.49 1.31
(d) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
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TABLE 5
Performance of the estimators for two parameters, μ and p. (a) The inverse probability weighted estimator, (b) the calibration estimator

using working model m1, (c) the calibration estimator using working model m2 and (d) the calibration estimator using
working models m1 and m2. SSE represents the sampling standard deviation

n = 200 n = 1000

Correct Misspecified Correct Misspecified

Bias SSE Bias SSE Bias SSE Bias SSE

μ̂ (a) −0.74 12.62 28.65 179.02 0.27 5.07 36.99 157.31
(b) 0.02 2.50 0.02 2.50 0.01 1.13 0.01 1.13
(c) −0.27 3.18 −1.36 3.69 0.01 1.54 −0.47 2.86
(d) −0.12 2.46 −0.12 2.46 0.09 1.15 0.08 1.15

p̂ (a) −0.003 0.064 0.104 0.616 0.001 0.027 0.129 0.515
(b) −0.003 0.045 0.017 0.049 <0.001 0.020 0.027 0.028
(c) −0.001 0.034 −0.002 0.034 <0.001 0.013 <0.001 0.015
(d) −0.001 0.034 −0.002 0.034 <0.001 0.013 <0.001 0.014

Table 5. When the missing data mechanism was cor-
rectly specified, all estimators had small bias. When
the missing data model was misspecified, calibration
estimators had much smaller biases compared to the
inverse probability weighted estimator. Similar to Ta-
ble 1, calibration estimators had smaller sampling stan-
dard deviations than the inverse probability weighted
estimator. For the estimation of μ, efficiency of the
calibration estimator was still greatly improved com-
pared to inverse probability weighted estimators even
when only a working model for P(Y ≥ 240|Z) was as-
sumed. However, the efficiency gain was less than the
case when a working model for E(Y |Z) was assumed.
Similar results held for the estimation of p. When both
models were assumed, the performance of calibration
estimators was no worse than the case when only one
model was assumed. By using a common set of weights
calibrating to multiple models, we achieved a similar
improvement in efficiency relative to the best improve-
ment using different calibration weights for different
estimands.

7.2 Washington Basic Health Plan Data

We performed an analysis using the Washington ba-
sic health plan data. The data set contained informa-
tion on a variety of health service variables for 2687
households. For the purpose of illustration, we chose
an outcome Y to be the total household expenditure
on outpatient visits, X1 to be the family size and X2
to be the total number of outpatient visits. The dis-
tribution of medical expenditure was highly skewed
to the right with many zeroes. From the full sample,

the estimated mean household expenditure for outpa-
tient visits was μy = 1948 dollars, and the estimated
proportion of households with a total expenditure ex-
ceeding $5000 was py = 0.1. To illustrate the perfor-
mance of the calibration estimators, we compare the
results from the original data to simulated subsamples.
Similar analyses have been carried out in many sur-
vey sampling papers that examined the performance of
calibration estimators; see, for example, Chen, Sitter
and Wu (2002) and Théberge (1999). We drew a sub-
sample following a model logitP(R = 1|X1,X2) =
β0 + β1X1 + β2X1I (X1 ≥ 3) + β3X2 and compared
the performance of the inverse probability weighted
and the generalized empirical likelihood calibration es-
timators for μ = E(Y ) and p = P(Y > 5000) as if Y

were only observed in the subsamples. The resampling
process was repeated S = 1000 times.

We evaluated the estimators by comparing two per-
formance measures, percentage relative bias (RB%)
and relative efficiency (RE), defined by

RB�(%) = 1

S

S∑
s=1

μ̂s,� − μy

μy

× 100

and

RE� = MSE�

MSEIPW
,

where μ̂s,� is an estimator � (IPW or CAL) com-
puted from the sth sample, MSE� = S−1 ∑S

i=1(μ̂s,� −
μy)

2 and MSEIPW is the MSE of the corresponding
inverse probability weighted estimators. The perfor-
mance of estimators were evaluated under both a cor-
rectly specified missing data model and a misspecified
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TABLE 6
Analysis of the Washington basic health plan data. Relative bias (RB) and relative efficiency (RE) of the following estimators: (a) the inverse

probability weighted estimator, (b) the calibration estimator assuming a working linear model for conditional mean, (c) the calibration
estimator assuming a working logistic model for conditional proportion and (d) the calibration estimator assuming

both working models for conditional mean and conditional proportion

μ̂ p̂

Correct Misspecified Correct Misspecified

RB (%) RE RB (%) RE RB (%) RE RB (%) RE

(a) −0.3 1.00 −9.1 1.00 −0.2 1.00 −12.7 1.00
(b) <0.1 0.71 <0.1 0.08 −0.4 1.00 0.3 0.16
(c) −0.3 0.92 −1.5 0.12 −0.2 0.93 −0.7 0.15
(d) <0.1 0.70 <0.1 0.08 <0.1 0.93 <0.1 0.15

working model logitP(R = 1|X1,X2) = δ0 + δ1X1 +
δ2X1I (X1 ≥ 3). The misspecified model ignored the
dependence between the missingness mechanism and
X2. For calibration estimators, we assumed a work-
ing linear model for E(Y |X1,X2) with a predictor lin-
ear in X1 and X2, and a logistic regression model for
P(Y > 5000|X1,X2) with a predictor linear in X1 and
X2. Note that both working models were likely to be
misspecified since the outcome data were not gener-
ated from a known distribution. We considered calibra-
tion estimators using only one working model assump-
tion and using both model assumptions. Since different
choice of estimators within the generalized empirical
likelihood family gave similar results, we only reported
the results for ρ(v) being a quadratic function. The re-
sults of the analyses are shown in Table 6.

When the missingness mechanism was correctly
specified, all estimators had a small bias, but the cali-
bration estimators had improved efficiencies relative to
the inverse probability weighted estimators. In the esti-
mation of μ, the efficiency of the calibration estimator
was still improved relative to the inverse probability
weighted estimators even when only a working model
for P(Y > 5000|X) was assumed. However, the im-
provement in efficiency was less than the case when a
working model for E(Y |X) was assumed. Similar re-
sults held for the estimation of p. When both models
were assumed, the performance of the calibration esti-
mator was no worse than the case when only one model
was assumed. This agrees with the theoretical results
in the paper. When the missing data mechanism was
incorrectly modeled, the inverse probability weighted
estimator was severely biased as expected, but all cali-
bration estimators had small biases. This was even true
when the quantity being modeled was different from

the estimand. When both models were assumed, the
performance of the calibration estimator was no worse
than the case when only one model was assumed, and
also had a negligible bias in the estimation of μ and p.

8. RELATED EXTENSIONS

In this article we study the statistical properties of the
generalized empirical likelihood calibration estimators
in the context of missing data analysis. The calibration
estimators allow multiple working outcome regression
models to be assumed and enjoy an oracle property
where the same semiparametric efficiency bound is at-
tained as if the true outcome regression model is known
in advance, when the missing data mechanism is cor-
rectly specified. The estimators also enjoy a multi-
ple robustness property, where consistency holds when
either the missingness mechanism or any one of the
working outcome regression models is correctly speci-
fied. Calibration estimators provide an even better pro-
tection against model misspecification than the existing
doubly robust estimators. Moreover, calibration allows
the use of a common set of weights in estimating multi-
ple parameters and can improve estimation efficiencies
for multiple parameters simultaneously. In this section
we discuss several related extensions, including a dif-
ferent but related way to construct calibration weights
and an extension to calibration estimating equations.

In previous sections we focus on a class of cali-
bration estimators satisfying moment conditions (2.2)
which is related to many existing estimators discussed
in Section 6. Other calibration estimators can be con-
structed that satisfy (2.2) and enjoy similar statistical
properties as the proposed class. A different but related
calibration estimator can be constructed by noting that
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when the missingness model is correctly specified we
have

E

(
R − π(X;β0)

π(X;β0)
u(X)

)
= 0.

That is, E(Rπ−1(X;β0)u(X) − uμ) = 0. We can de-
fine calibration weights as

p∗
i = 1

π(xi; β̂)
ρ(1)(λ̂T

2
(
π−1(xi; β̂)u(xi) − ū

))
(8.1)

for subjects with ri = 1, where

λ̂2 = arg max
λ

N∑
i=1

ρ
(
riλ

T

(8.2)
· (

π−1(xi; β̂)u(xi) − ū
))

.

In this case, we assume that u contains a constant
function. The moment condition ū = ∑N

i=1 rip
∗
i u(xi)

is satisfied from the first order condition of (8.2).
We can define a calibration estimator to be μ̂CAL2 =∑N

i=1 rip
∗
i yi . Suppose condition (3.3) holds,

μ̂CAL2 =
N∑

i=1

rip
∗
i yi

=
N∑

i=1

rip
∗
i

(
yi − m0(xi)

) +
N∑

i=1

rip
∗
i m0(xi)

=
N∑

i=1

rip
∗
i

(
yi − m0(xi)

) + 1

N

N∑
i=1

m0(xi),

which converges in probability to μ by similar argu-
ments as in Section 4. Therefore, the calibration es-
timator μ̂CAL2 enjoys a similar multiple robustness
property enjoyed by the calibration estimator μ̂CAL.

When we are interested in estimating a parameter θ0
defined by an unbiased estimating function g(y, x; θ)

such that E(g(Y,X; θ0)) = 0, we can define θ̂CAL to
be the solution of a calibration estimating equation
gCAL(θ) = 0 where gCAL(θ) = ∑N

i=1 ripig(yi, xi; θ).
Suppose h0(X) = E(g(Y,X; θ0)|X) exists and there
exists constants a0, . . . , aq such that h0(X) = a0 +∑q

j=1 ajuj (X), then

gCAL(θ) =
N∑

i=1

ripi

(
g(yi, xi; θ) − h0(xi)

)

+
N∑

i=1

ripih0(xi)

=
N∑

i=1

ripi

(
g(yi, xi; θ) − h0(xi)

)

+ 1

N

N∑
i=1

h0(xi)

and gCAL(θ0)
p→ 0 since h0(X) = E(g(Y,X; θ0)|X)

and E(h0(X)) = E(E(g(Y,X; θ0)|X)) = 0. It follows
from Newey and McFadden (1994) that θ̂CAL is a
consistent estimate of θ0 even when the missing data
model is misspecified.

An associate editor suggested a possible alternative
way of weighting the individual working models and
penalizing the misspecified models. While this is an
interesting idea, it is substantially different from our
methods. The calibration method put weights on in-
dividual observations but not on models. This distinc-
tion is important in Section 5 when we discuss multi-
purpose calibration. We showed that a common set of
weights can be used for efficient estimation of multiple
estimands. However, we believe that one cannot use a
common set of weights for penalizing individual mod-
els, because the correct models are not the same for
different estimands.
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SUPPLEMENTARY MATERIAL

Proof of the Main Results (DOI: 10.1214/13-
STS461SUPP; .pdf). Online supplementary material is
provided that includes a list of regularity conditions,
the proofs of Lemma 1, Theorem 2 and Corollary 3,
together with two technical lemmas that were needed
to prove Lemma 1.
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