
Statistical Science
2010, Vol. 25, No. 2, 172–190
DOI: 10.1214/10-STS327
© Institute of Mathematical Statistics, 2010

The Random Walk Metropolis: Linking
Theory and Practice Through a Case
Study
Chris Sherlock, Paul Fearnhead and Gareth O. Roberts

Abstract. The random walk Metropolis (RWM) is one of the most common
Markov chain Monte Carlo algorithms in practical use today. Its theoretical
properties have been extensively explored for certain classes of target, and
a number of results with important practical implications have been derived.
This article draws together a selection of new and existing key results and
concepts and describes their implications. The impact of each new idea on
algorithm efficiency is demonstrated for the practical example of the Markov
modulated Poisson process (MMPP). A reparameterization of the MMPP
which leads to a highly efficient RWM-within-Gibbs algorithm in certain
circumstances is also presented.
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1. INTRODUCTION

Markov chain Monte Carlo (MCMC) algorithms
provide a framework for sampling from a target ran-
dom variable with a potentially complicated proba-
bility distribution π(·) by generating a Markov chain
X(1),X(2), . . . with stationary distribution π(·). The
single most widely used subclass of MCMC algorithms
is based around the random walk Metropolis (RWM).

Theoretical properties of RWM algorithms for cer-
tain special classes of target have been investigated ex-
tensively. Reviews of RWM theory have, for example,
dealt with optimal scaling and posterior shape (Roberts
and Rosenthal, 2001), and convergence (Roberts,
2003). This article does not set out to be a compre-
hensive review of all theoretical results pertinent to the
RWM. Instead the article reviews and develops spe-
cific aspects of the theory of RWM efficiency in order
to tackle an important and difficult problem: inference
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for the Markov modulated Poisson process (MMPP). It
includes sections on RWM within Gibbs, hybrid algo-
rithms, and adaptive MCMC, as well as optimal scal-
ing, optimal shaping, and convergence. A strong em-
phasis is placed on developing an intuitive understand-
ing of the processes behind the theoretical results, and
then on using these ideas to improve the implemen-
tation. All of the RWM algorithms described in this
article are tested against datasets arising from MMPPs.
Realized changes in efficiency are then compared with
theoretical predictions.

Observed event times of an MMPP arise from a
Poisson process whose intensity varies with the state
of an unobserved continuous-time Markov chain. The
MMPP has been used to model a wide variety of
clustered point processes, for example, requests for
web pages from users of the World Wide Web (Scott
and Smyth, 2003), arrivals of photons from single-
molecule fluorescence experiments (Burzykowski,
Szubiakowski and Ryden, 2003; Kou, Xie and Liu,
2005), and occurrences of a rare DNA motif along a
genome (Fearnhead and Sherlock, 2006).

In common with mixture models and other hidden
Markov models, inference for the MMPP is greatly
complicated by a lack of knowledge of the hidden data.
The likelihood function often possesses many minor
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modes since the data might be approximately described
by a hidden process with fewer states. For this same
reason the likelihood often does not approach zero
as certain combinations of parameters approach zero
and/or infinity and so improper priors lead to improper
posteriors (e.g., Sherlock, 2005). Further, as with many
hidden data models the likelihood is invariant under
permutation of the states, and this “labeling” problem
leads to posteriors with several equal modes.

This article focuses on generic concepts and tech-
niques for improving the efficiency of RWM algo-
rithms whatever the statistical model. The MMPP pro-
vides a nontrivial testing ground for them. All of the
RWM algorithms described in this article are tested
against two simulated MMPP datasets with very differ-
ent characteristics. This allows us to demonstrate the
influence on performance of posterior attributes such
as shape and orientation near the mode and lightness
or heaviness of tails.

Section 2 introduces RWM algorithms and then de-
scribes theoretical and practical measures of algorithm
efficiency. Next the two main theoretical approaches to
determining efficiency are described, and the section
ends with a brief overview of the MMPP and a descrip-
tion of the data analyzed in this article. Section 3 intro-
duces a series of concepts which allow potential im-
provements in the efficiency of a RWM algorithm. The
intuition behind each concept is described, followed by
theoretical justification and then details of one or more
RWM algorithms motivated by the theory. Actual re-
sults are described and compared with theoretical pre-
dictions in Section 4, and the article is summarized in
Section 5.

2. BACKGROUND

In this section we introduce the background mater-
ial on which the remainder of this article draws. We
describe the random walk Metropolis algorithm and a
variation, the random walk Metropolis-within-Gibbs.
Both practical issues and theoretical approaches to al-
gorithm efficiency are then discussed. We conclude
with an introduction to the Markov modulated Poisson
process and to the datasets used later in the article.

2.1 Random Walk Metropolis Algorithms

The random walk Metropolis (RWM) updating
scheme was first applied by Metropolis et al. (1953)
and proceeds as follows. Given a current value of the
d-dimensional Markov chain, X, a new value X∗ is ob-
tained by proposing a jump Y∗ := X∗ − X from the

prespecified Lebesgue density

r̃(y∗;λ) := 1

λd
r

(
y∗

λ

)
,(1)

with r(y) = r(−y) for all y. Here λ > 0 governs the
overall size of the proposed jump and (see Section 3.1)
plays a crucial role in determining the efficiency of any
algorithm. The proposal is then accepted or rejected
according to acceptance probability

α(x,y∗) = min
(

1,
π(x + y∗)

π(x)

)
.(2)

If the proposed value is accepted it becomes the next
current value (X′ ← X + Y∗); otherwise the current
value is left unchanged (X′ ← X).

An intuitive interpretation of the above formula is
that “uphill” proposals (proposals which take the chain
closer to a local mode) are always accepted, whereas
“downhill” proposals are accepted with probability ex-
actly equal to the relative “heights” of the posterior
at the proposed and current values. It is precisely this
rejection of some “downhill” proposals which acts to
keep the Markov chain in the main posterior mass most
of the time.

More formally, denote by P(x, ·) the transition
kernel of the chain, which represents the combined
process of proposal and acceptance/rejection leading
from one element of the chain (x) to the next. The ac-
ceptance probability (2) is chosen so that the chain is
reversible at equilibrium with stationary distribution
π(·). Reversibility [that π(x)P (x,x′) = π(x′)P (x′,x)]
is an important property precisely because it is so easy
to construct reversible chains which have a prespeci-
fied stationary distribution. It is also possible to prove
a slightly stronger central limit theorem for reversible
(as opposed to nonreversible) geometrically ergodic
chains (e.g., Section 2.2.1).

We now describe a generalization of the RWM
which acts on a target whose components have been
split into k sub-blocks. In general we write X =
(X1, . . . ,Xk), where Xi is the ith sub-block of com-
ponents of the current element of the chain. Starting
from value X, a single iteration of this algorithm cycles
through all of the sub-blocks updating each in turn. It
will therefore be convenient to define the shorthand

x(B)
i := x′

1, . . . ,x′
i−1,xi ,xi+1, . . . ,xk,

x(B)∗
i := x′

1, . . . ,x′
i−1,xi + y∗

i ,xi+1, . . . ,xk,

where x′
j is the updated value of the j th sub-block. For

the ith sub-block a jump Y ∗
i is proposed from symmet-

ric density r̃i (y;λi) and accepted or rejected according



174 C. SHERLOCK, P. FEARNHEAD AND G. O. ROBERTS

to acceptance probability π(x(B)∗
i )/π(x(B)

i ). Since this
algorithm is in fact a generalization of both the RWM
and the Gibbs sampler (for a description of the Gibbs
sampler see, e.g., Gamerman and Lopes, 2006) we fol-
low, for example, Neal and Roberts (2006) and call this
the random walk Metropolis-within-Gibbs or RWM-
within-Gibbs. The most commonly used random walk
Metropolis-within-Gibbs algorithm, and also the sim-
plest, is that employed in this article: here all blocks
have dimension 1 so that each component of the para-
meter vector is updated in turn.

As mentioned earlier in this section, the RWM is
reversible; but even though each stage of the RWM-
within-Gibbs is reversible, the algorithm as a whole
is not. Reversible variations include the random scan
RWM-within-Gibbs, wherein at each iteration a sin-
gle component is chosen at random and updated con-
ditional on all the other components.

Convergence of the Markov chain to its stationary
distribution can be guaranteed for all of the above algo-
rithms under quite general circumstances (e.g., Gilks,
Richardson and Spiegelhalter, 1996).

2.2 Algorithm Efficiency

Consecutive draws of an MCMC Markov chain are
correlated and the sequence of marginal distributions
converges to π(·). Two main (and related) issues arise
with regard to the efficiency of MCMC algorithms:
convergence and mixing.

2.2.1 Convergence. In this article we will be con-
cerned with practical determination of a point at which
a chain has converged. The method we employ is sim-
ple heuristic examination of the trace plots for the dif-
ferent components of the chain. Note that since the
state space is multidimensional it is not sufficient to
simply examine a single component. Alternative tech-
niques are discussed in Chapter 7 of the book by Gilks,
Richardson and Spiegelhalter (1996).

Theoretical criteria for ensuring convergence (ergod-
icity) of MCMC Markov chains are examined in detail
in Chapters 3 and 4 of the book by Gilks, Richardson
and Spiegelhalter (1996) and references therein, and
will not be discussed here. We do, however, wish to
highlight the concepts of geometric and polynomial er-
godicity. A Markov chain with transition kernel P is
geometrically ergodic with stationary distribution π(·)
if

‖Pn(x, ·) − π(·)‖1 ≤ M(x)rn(3)

for some positive r < 1 and M(·) ≥ 0; if M(·) is
bounded above, then the chain is uniformly ergodic.

Here ‖F(·) − G(·)‖1 denotes the total variational dis-
tance between measures F(·) and G(·) (see, e.g., Meyn
and Tweedie, 1993), and P n is the n-step transition
kernel. Efficiency of a geometrically ergodic algorithm
is measured by the geometric rate of convergence, r ,
which over a large number of iterations is well approxi-
mated by the second largest eigenvalue of the transition
kernel [the largest eigenvalue being 1, and correspond-
ing to the stationary distribution π(·)]. Geometric er-
godicity is usually a purely qualitative property since
in general the constants M(x) and r are not known.
Crucially for practical MCMC, however, any geomet-
rically ergodic reversible Markov chain satisfies a cen-
tral limit theorem for all functions with finite second
moment with respect to π(·). Thus there is a σ 2

f < ∞
such that

n1/2(
f̂n − Eπ [f (X)]) ⇒ N(0, σ 2

f ),(4)

where ⇒ denotes convergence in distribution. The cen-
tral limit theorem (4) not only guarantees convergence
of the Monte Carlo estimate (5) but also supplies its
standard error, which decreases as n−1/2.

When the second largest eigenvalue is also 1, a Markov
chain is termed polynomially ergodic if

‖P n(x, ·) − π(·)‖1 ≤ M(x)n−r .

Clearly polynomial ergodicity is a weaker condition
than geometric ergodicity. Central limit theorems for
polynomially ergodic MCMC are much more delicate;
see the article by Jarner and Roberts (2002) for details.

In this article a chain is referred to as having
“reached stationarity” or “converged” when the dis-
tribution from which an element is sampled is as close
to the stationary distribution as to make no practical
difference to any Monte Carlo estimates.

An estimate of the expectation of a given function
f (X), which is more accurate than a naive Monte
Carlo average over all the elements of the chain, is
likely to be obtained by discarding the portion of
the chain X0, . . . ,Xm up until the point at which it
was deemed to have reached stationarity; iterations
1, . . . ,m are commonly termed “burn in.” Using only
the remaining elements Xm+1, . . . ,Xm+n (with m +
n = N ) our Monte Carlo estimator becomes

f̂n := 1

n

m+n∑
m+1

f (Xi ).(5)

Convergence and burn in are not discussed any further
here, and for the rest of this section the chain is as-
sumed to have started at stationarity and continued for
n further iterations.
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2.2.2 Practical measures of mixing efficiency. For a
stationary chain, X0 is sampled from π(·), and so for
all k > 0 and i ≥ 0

Cov[f (Xk), f (Xk+i)] = Cov[f (X0), f (Xi )].
This is the autocorrelation at lag i. Therefore at sta-
tionarity, from the definition in (4),

σ 2
f := lim

n→∞nVar[f̂n]

= Var[f (X0)] + 2
∞∑
i=1

Cov[f (X0), f (Xi )]

provided the sum exists (e.g., Geyer, 1992). If ele-
ments of the stationary chain were independent, then
σ 2

f would simply be Var[f (X0)] and so a measure of
the inefficiency of the Monte Carlo estimate f̂n relative
to the perfect i.i.d. sample is

σ 2
f

Var[f (X0)] = 1 + 2
∞∑
i=1

Corr[f (X0), f (Xi )].(6)

This is the integrated autocorrelation time (ACT) and
represents the effective number of dependent samples
that is equivalent to a single independent sample. Alter-
natively n∗ = n/ACT may be regarded as the effective
equivalent sample size if the elements of the chain had
been independent.

To estimate the ACT in practice one might exam-
ine the chain from the point at which it is deemed to
have converged and estimate the lag-i autocorrelation
Corr[f (X0), f (Xi)] by

γ̂i = 1

n − i

n−i∑
j=1

(
f (Xj ) − f̂n

)(
f (Xj+i) − f̂n

)
.(7)

Naively, substituting these into (6) gives an estimate of
the ACT. However, contributions from all terms with
very low theoretical autocorrelation in a real run are
effectively random noise, and the sum of such terms
can dominate the deterministic effect in which we are
interested (e.g., Geyer, 1992). For this article we em-
ploy the simple solution suggested by Carlin and Louis
(2009): the sum (6) is truncated from the first lag, l, for
which the estimated autocorrelation drops below 0.05.
This gives the (slightly biased) estimator

ACTest := 1 + 2
l−1∑
i=1

γ̂i .(8)

Given the potential for relatively large variance in esti-
mates of integrated ACT howsoever they might be ob-
tained (e.g., Sokal, 1997), this simple estimator should

be adequate for comparing the relative efficiencies of
the different algorithms in this article. Geyer (1992)
provided a number of more complex window estima-
tors and provided references for regularity conditions
under which they are consistent.

A given run will have a different ACT associated
with each parameter. An alternative efficiency mea-
sure, which is aggregated over all parameters, is pro-
vided by the Mean Squared Euclidean Jump Distance
(MSEJD)

S2
Euc := 1

n − 1

n−1∑
i=1

∥∥x(i+1) − x(i)
∥∥2

2.

The expectation of this quantity at stationarity is re-
ferred to as the Expected Squared Euclidean Jump Dis-
tance (ESEJD). Consider a single component of the tar-
get with variance σ 2

i := Var[Xi] = Var[X′
i], and note

that E[X′
i − Xi] = 0, so

E[(X′
i − Xi)

2] = Var[X′
i − Xi]

= 2σ 2
i (1 − Corr[Xi,X

′
i]).

Thus when the chain is stationary and the posterior
variance is finite, maximizing the ESEJD is equivalent
to minimizing a weighted sum of the lag-1 autocorre-
lations.

If the target has finite second moments and is
roughly elliptical in shape with (known) covariance
matrix �, then an alternative measure of efficiency is
the Mean Squared Jump Distance (MSJD)

S2
d := 1

n − 1

n−1∑
i=1

(
x(i+1) − x(i))t�−1(

x(i+1) − x(i)),
which is proportional to the unweighted sum of the
lag-1 autocorrelations over the principal components
of the ellipse. The theoretical expectation of the MSJD
at stationarity is known as the expected squared jump
distance (ESJD).

Figure 1 shows traceplots for three different Markov
chains. Estimates of the autocorrelation from lag-0 to
lag-40 for each Markov chain appear alongside the
corresponding traceplot. The simple window estimator
for integrated ACT provides estimates of, respectively,
39.7, 5.5, and 35.3. The MSEJDs are, respectively,
0.027, 0.349, and 0.063, and are equal to the MSJDs
since the stationary distribution has a variance of 1.

2.2.3 Assessing accuracy. An MCMC algorithm
might efficiently explore an unimportant part of the pa-
rameter space and never find the main posterior mass.
ACT’s will be low, therefore, but the resulting posterior
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FIG. 1. Traceplots [(a), (b), and (c)] and corresponding autocorrelation plots [(d), (e), and (f)], for exploration of a standard Gaussian ini-
tialized from x = 0 and using the random walk Metropolis algorithm with Gaussian proposal for 1000 iterations. Proposal scale parameters
for the three scenarios are, respectively, (a) and (d) 0.24, (b) and (e) 2.4, and (c) and (f) 24.

estimate will be wildly inaccurate. In most practical
examples it is not possible to determine the accuracy
of the posterior estimate, though consistency between
several independent runs or between different portions
of the same run can be tested.

For the purposes of this article it was important to
have a relatively accurate estimate of the posterior, not
determined by a RWM algorithm. Fearnhead and Sher-
lock (2006) detailed a Gibbs sampler for the MMPP;
this Gibbs sampler was run for 100,000 iterations on
each of the datasets analyzed in this article. A “burn
in” of 1000 iterations was allowed for, and a posterior
estimate from the last 99,000 iterations was used as a
reference for comparison with posterior estimates from
RWM runs of 10,000 iterations (after burn in).

2.2.4 Theoretical approaches for algorithm effi-
ciency. To date, theoretical results on the efficiency
of RWM algorithms have been obtained through two

very different approaches. We wish to quote, explain,
and apply theory from both and so we give a heuris-
tic description of each and define associated notation.
Both approaches link some measure of efficiency to the
expected acceptance rate—the expected proportion of
proposals accepted at stationarity.

The first approach was pioneered by Roberts, Gel-
man and Gilks (1997) for targets with independent
identically distributed components and then general-
ized by Roberts and Rosenthal (2001) to targets of the
form

π(x) =
d∏
1

Cif (Cixi).

The inverse scale parameters, Ci , are assumed to be
drawn from some distribution with a given (finite)
mean and variance. A single component of the d-
dimensional chain (without loss of generality the first)
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is then examined; at iteration i of the algorithm it is de-
noted X

(d)
1,i . A scaleless, speeded up, continuous-time

process which mimics the first component of the chain
is defined as

W
(d)
t := C1X

(d)
1,[td],

where [u] denotes the nearest integer less than or
equal to u. Finally, proposed jumps are assumed to be
Gaussian

Y(d) ∼ N(0, λ2
dI).

Subject to conditions on the first two deriviatives of
f (·), Roberts and Rosenthal (2001) showed that if
E[Ci] = 1 and E[C2

i ] = b, and provided λd = μ/d1/2

for some fixed μ (the scale parameter but “rescaled”
according to dimension), then as d → ∞, W

(d)
t ap-

proaches a Langevin diffusion process with speed

h(μ) = C2
1μ2

b
αd

(9)

where αd := 2�

(
−1

2
μJ 1/2

)
.

Here �(x) is the cumulative distribution function of a
standard Gaussian, J := E[((logf )′)2] is a measure of
the roughness of the target, and αd corresponds to the
acceptance rate.

Bédard (2007) proved a similar result for a triangu-
lar sequence of inverse scale parameters ci,d , which are
assumed to be known. A necessary and sufficient con-
dition equivalent to (11) below is attached to this result.
In effect this requires the scale over which the smallest
component varies to be “not too much smaller” than
the scales of the other components.

The second technique (e.g., Sherlock and Roberts,
2009) uses expected squared jump distance (ESJD)
as a measure of efficiency. Exact analytical forms for
ESJD (denoted S2

d ) and expected acceptance rate are
derived for any unimodal elliptically symmetric target
and any proposal density. Many standard sequences
of d-dimensional targets (d = 1,2, . . .), such as the
Gaussian, satisfy the condition that as d → ∞ the
probability mass becomes concentrated in a spherical
shell which itself becomes infinitesimally thin relative
to its radius. Thus the random walk on a rescaling of
the target is, in the limit, effectively confined to the sur-
face of this shell. Sherlock and Roberts (2009) consid-
ered a sequence of targets which satisfies such a “shell”
condition, and a sequence of proposals which satis-
fies a slightly stronger condition. Specifically it is re-

quired that there exist sequences of positive real num-
bers, {k(d)

x } and {k(d)
y }, such that

‖X(d)‖
k
(d)
x

p−→ 1 and
‖Y(d)‖
λdk

(d)
y

m.s.−→ 1.

For such combinations of target and proposal, as d →
∞

d

k
(d)
x

2 S2
d(μ) → μ2αd

(10)

with αd(μ) := 2�

(
−1

2
μ

)
.

Here αd is the limiting expected acceptance rate, and
μ := d1/2λdk

(d)
y /k

(d)
x . For target and proposal distrib-

utions with independent components, such as are used
in the diffusion results, k

(d)
x = k

(d)
y = d1/2, and hence

(consistently) μ = d1/2λd .
It is also required that the elliptical target not be too

eccentric. Specifically, for a sequence of target den-
sities πd(x) := fd(

∑d
i=1 c2

i,dx2
i ) (for some appropriate

sequence of functions {fd})
maxi c

2
i,d∑d

i=1 c2
i,d

→ 0 as d → ∞.(11)

Theoretical results from the two techniques are re-
markably similar and as will be seen, lead to identi-
cal strategies for optimizing algorithm efficiency. It is
worth noting, however, that results from the first ap-
proach apply only to targets with independent compo-
nents and results from the second only to targets which
are unimodal and elliptically symmetric. That they lead
to identical strategies indicates a certain potential ro-
bustness of these strategies to the form of the target.
This potential, as we shall see, is borne out in practice.

2.3 The Markov Modulated Poisson Process

Let Xt be a continuous-time Markov chain on dis-
crete state space {1, . . . , d} and let ψ := [ψ1, . . . ,ψd]
be a d-dimensional vector of (nonnegative) intensi-
ties. The linked but stochastically independent Poisson
process Yt whose intensity is ψXt is a Markov modu-
lated Poisson process—it is a Poisson process whose
intensity is modulated by a continuous-time Markov
chain.

The idea is best illustrated through two examples,
which also serve to introduce the notation and datasets
that will be used throughout this article. Consider a
two-dimensional Markov chain Xt with generator Q
with q12 = q21 = 1.
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FIG. 2. Two 2-state continuous-time Markov chains simulated for
10 seconds from generator Q with q12 = q21 = 1; the rug plots
show events from an MMPP simulated from these chains, with in-
tensity vectors ψ = [10,30] (upper graph) and ψ = [10,17] (lower
graph).

Figure 2 shows realizations from two such chains
over a period of 10 seconds. Now consider a Poisson
process Yt which has intensity 10 when Xt is in state 1
and intensity 30 when Xt is in state 2. This is an MMPP
with event intensity vector ψ = [10,30]. A realization
(obtained via the realization of Xt ) is shown as a rug
plot underneath the chain in the upper graph. The lower
graph shows a realization from an MMPP with event
intensities [10,17].

It can be shown (e.g., Fearnhead and Sherlock, 2006)
that the likelihood for data from an MMPP which starts
from a distribution ν over its states is

L(Q,�, t)
(12)

= ν ′e(Q−�)t1� · · · e(Q−�)tn�e(Q−�)tn+11.

Here � := diag(ψ), 1 is a vector of 1’s, n is the num-
ber of observed events, t1 is the time from the start of
the observation window until the first event, tn+1 is the
time from the last event until the end of the observa-
tion window, and ti(2 ≤ i ≤ n) is the time between the
(i −1)th and ith events. In the absence of further infor-
mation, the initial distribution ν is often taken to be the
stationary distribution of the underlying Markov chain.

The likelihood of an MMPP is invariant to a re-
labeling of the states. Hence if the prior is similarly
invariant, then so too is the posterior: if the pos-
terior for a two-dimensional MMPP has a mode at
(ψ1,ψ2, q12, q21), then it has an identical mode at
(ψ2,ψ1, q21, q12). In this article our overriding interest
is in the efficiency of the MCMC algorithms rather than
the exact meaning of the parameters and so we choose
the simplest solution to this identifiability problem: the
state with the lower Poisson intensity ψ is always re-
ferred to as state 1.

FIG. 3. Estimated marginal posteriors for ψ1 and ψ2 and for ψ1
and q12 from long runs of the Gibbs sampler for datasets D1 (top)
and D2 (bottom).

2.3.1 MMPP data in this article. The two datasets
of event times used in this article arose from two inde-
pendent MMPP’s simulated over an observation win-
dow of 100 seconds. Both underlying Markov chains
have q12 = q21 = 1; dataset D1 has event intensity vec-
tor ψ = [10,30] whereas dataset D2 has ψ = [10,17],
so that the overall intensity of events in D2 is lower
than in D1. As mentioned in Section 2.2.3, a posterior
sample from a long run of the Gibbs sampler of Fearn-
head and Sherlock (2006) was used to approximate the
true posterior. Figure 3 shows estimates of the marginal
posterior distribution for (ψ1,ψ2) and for (ψ1, q12) for
D1 (top) and D2 (bottom).

Because the difference in intensity between the
states is so much larger in D1 than in D2 it is easier
with D1 than D2 to distinguish the state of the under-
lying Markov chain, and thus the values of the Markov
and Poisson parameters. Further, in the limit of the un-
derlying chain being known precisely, for example as
ψ2 → ∞ with ψ1 finite, and provided the priors are
independent, the posteriors for the Poisson intensity
parameters ψ1 and ψ2 are completely independent of
each other and of the Markov parameters q12 and q21.
Dependence between the Markov parameters is also
small, being O(1/T ) (e.g., Fearnhead and Sherlock,
2006).

In Section 4, differences between D1 and D2 will be
related directly to observed differences in efficiency of
the various RWM algorithms between the two datasets.
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3. IMPLEMENTATIONS OF THE RWM: THEORY
AND PRACTICE

This section describes several theoretical results for
the RWM or for MCMC in general. Intuitive explana-
tion of the principle behind each result is emphasized
and the manner in which it informs the RWM imple-
mentation is made clear. Each algorithm was run three
times on each of the two datasets.

3.1 Optimal Scaling of the RWM

Intuition: Consider the behavior of the RWM as a
function of the overall scale parameter of the proposed
jump, λ, in (1). If most proposed jumps are small com-
pared with some measure of the scale of variability
of the target distribution, then, although these jumps
will often be accepted, the chain will move slowly
and exploration of the target distribution will be rel-
atively inefficient. If the jumps proposed are relatively
large compared with the target distribution’s scale, then
many will not be accepted, the chain will rarely move,
and will again explore the target distribution ineffi-
ciently. This suggests that given a particular target and
form for the jump proposal distribution, there may ex-
ist a finite scale parameter for the proposal with which
the algorithm will explore the target as efficiently as
possible. These ideas are clearly demonstrated in Fig-
ure 1 which shows traceplots for a one-dimensional
Gaussian target explored using a Gaussian proposal
with scale parameter an order of magnitude smaller (a)
and larger (c) than is optimal, and (b) with a close to
optimal scale parameter.

Theory: Equation (9) gives algorithm efficiency for
a target with independent and identical (up to a scal-
ing) components as a function of the “rescaled” scale
parameter μ = d1/2λd of a Gaussian proposal. Equa-
tion (10) gives algorithm efficiency for a unimodal el-
liptically symmetric target explored by a spherically
symmetric proposal with μ = d1/2λdk

(d)
y /k

(d)
x . Effi-

ciencies are therefore optimal at μ ≈ 2.38/J 1/2 and
μ ≈ 2.38, respectively. These correspond to actual
scale parameters of respectively

λd = 2.38

J 1/2d1/2 and λd = 2.38k
(d)
x

d1/2k
(d)
y

.

The equivalence between these two expressions for
Gaussian data explored with a Gaussian target is clear
from Section 2.2.4. However, the equations offer little
direct help in choosing a scale parameter for a target
which is neither elliptical nor possesses components
which are i.i.d. up to a scale parameter. Substitution of

each expression into the corresponding acceptance rate
equation, however, leads to the same optimal accep-
tance rate, α̂ ≈ 0.234. This justifies the relatively well-
known adage that for random walk algorithms with a
large number of parameters, the scale parameter of
the proposal should be chosen so that the acceptance
rate is approximately 0.234. On a graph of asymptotic
efficiency against acceptance rate (e.g., Roberts and
Rosenthal, 2001), the curvature near the mode is slight,
especially to its right, so that an acceptance rate of any-
where between 0.2 and 0.3 should lead to an algorithm
of close to optimal efficiency.

In practice updates are performed on a finite number
of parameters; for example, a two-dimensional MMPP
has four parameters (ψ1,ψ2, q12, q21). A block update
involves all of these, while each update of a simple
Metropolis-within-Gibbs step involves just one para-
meter. In finite dimensions the optimal acceptance rate
can in fact take any value between 0 and 1. Sherlock
and Roberts (2009) provided analytical formulas for
calculating the ESJD and the expected acceptance rate
for any proposal and any elliptically symmetric uni-
modal target. In one dimension, for example, the opti-
mal acceptance rate for a Gaussian target explored by
a Gaussian proposal is 0.44, while the optimum for a
Laplace target (π(x) ∝ e−|x|) explored with a Laplace
proposal is exactly α̂ = 1/3. Sherlock (2006) consid-
ered several simple examples of spherically symmetric
proposal and target across a range of dimensions and
found that in all cases curvature at the optimal accep-
tance rate is small, so that a range of acceptance rates
is nearly optimal. Further, the optimal acceptance rate
is itself between 0.2 and 0.3 for d ≥ 6 in all the cases
considered.

Sherlock and Roberts (2009) also weakened the
“shell” condition of Section 2.2.4 and considered se-
quences of spherically symmetric targets for which the
(rescaled) radius converges to some random variable R

rather than a point mass at 1. It is shown that, provided
the sequence of proposals still satisfies the shell condi-
tion, the limiting optimal acceptance rate is strictly less
than 0.234. Acceptance rate tuning should thus be seen
as only a guide, though a guide which has been found
to be robust in practice.

ALGORITHM 1 (Blk). The first algorithm (Blk)
used to explore datasets D1 and D2 is a four-dimen-
sional block updating RWM with proposal Y ∼ N(0,

λ2I) and λ tuned so that the acceptance rate is approx-
imately 0.3.
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3.2 Optimal Scaling of the RWM-Within-Gibbs

Intuition: Consider first a target either spherically
symmetric, or with i.i.d. components, and let the over-
all scale of variability of the target be η. For full
block proposals the optimal scale parameter should be
O(η/d1/2) so that the square of the magnitude of the
total proposal is O(η2). If a Metropolis-within-Gibbs
update is to be used with k sub-blocks and d∗ = d/k of
the components updated at each stage, then the optimal
scale parameter should be larger, O(η/d

1/2∗ ). How-
ever, only one of the k stages of the RWM-within-
Gibbs algorithm updates any given component whereas
with k repeats of a block RWM that component is up-
dated k times. Considering the squared jump distances
it is easy to see that, given the additivity of squared
jump distances, the larger size of the RWM-within-
Gibbs updates is exactly canceled by their lower fre-
quency, and so (in the limit) there is no difference in
efficiency when compared with a block update. The
same intuition applies when comparing a random scan
Metropolis-within-Gibbs scheme with a single block
update.

Now consider a target for which different compo-
nents vary on different scales. If sub-blocks are cho-
sen so as to group together components with similar
scales, then a Metropolis-within-Gibbs scheme can ap-
ply suitable scale paramaters to each block whereas a
single block update must choose one scale parameter
that is adequate for all components. In this scenario,
Metropolis-within-Gibbs updates should therefore be
more efficient.

Theory: Neal and Roberts (2006) considered a ran-
dom scan RWM-within-Gibbs algorithm on a target
distribution with i.i.d. components and using i.i.d.
Gaussian proposals all having the same scale para-
meter λd = μ/d1/2. At each iteration a fraction, γd ,
of the d components are chosen uniformly at random
and updated as a block. It is shown [again subject to
differentiability conditions on f (·)] that the process
W

(d)
t := X

(d)
1,[td] approaches a Langevin diffusion with

speed

hγ (μ) = 2γμ2�
(−1

2μ(γ J )1/2)
,

where γ := limd→∞ γd . The optimal scaling is there-
fore larger than for a standard block update (by a fac-
tor of γ −1/2) but the optimal speed and the optimal
acceptance rate (0.234) are identical to those found by
Roberts, Gelman and Gilks (1997).

Sherlock (2006) considered sequential Metropolis-
within-Gibbs updates on a unimodal elliptically sym-
metric target, using spherical proposal distributions

but allowing different scale parameters for the pro-
posals in each sub-block. The k sub-blocks are as-
sumed to correspond to disjoint subsets of the prin-
cipal axes of the ellipse and updates for each are as-
sumed to be optimally tuned. Efficiency is considered
in terms of ESEJD and is again found to be optimal
(as d → ∞) when the acceptance rate for each sub-
block is 0.234. For equal sized sub-blocks, the rela-
tive efficiency of the Metropolis-within-Gibbs scheme
compared to k optimally scaled single block updates is
shown to be

r = (1/k)
∑

c2
i

((1/k)
∑

1/c2
i )−1

,(13)

where c2
i is the mean of the squares of the in-

verse scale parameters for the ith block. Since r

is the ratio of an arithmetic mean to a harmonic
mean, it is greater than or equal to 1 and thus the
Metropolis-within-Gibbs step is always at least as ef-
ficient as the block Metropolis. However, the more
similar the blocks, the less the potential gain in effi-
ciency.

In practice, parameter blocks do not generally cor-
respond to disjoint subsets of the principal axes of
the posterior or, in terms of single parameter updates,
the parameters are not generally orthogonal. Equation
(13) therefore corresponds to a limiting maximum ef-
ficiency gain, obtainable only when the parameter sub-
blocks are orthogonal.

ALGORITHM 2 (MwG). Our second algorithm
(MwG) is a sequential Metropolis-within-Gibbs algo-
rithm with proposed jumps Yi ∼ N(0, λ2

i ). Each scale
parameter is tuned separately to give an acceptance rate
of between 0.4 and 0.45 (approximately the optimum
for a one-dimensional Gaussian target and proposal).

3.3 Tailoring the Shape of a Block Proposal

Intuition: First consider a two-dimensional target
with roughly elliptical contours and with the scale of
variation along one of the principal axes much larger
than the scale of variation along the other (e.g., the
two right-hand panels of Figure 3). The size of updates
from a proposal of the type used in Algorithm 1 is con-
strained by the smaller of the two scales of variation.
Thus, even when Algorithm 1 is optimally tuned, the
efficiency of exploration along the larger axis depends
on the ratio of the two scales and so can be arbitrarily
low in targets where this ratio is large. Now consider
a general target with roughly elliptical contours and
covariance matrix �. It seems intuitively sensible that



LINKING THEORY AND PRACTICE 181

a “tailored” block proposal distribution with the same
shape and orientation as the target will tend to produce
larger jumps along the target’s major axes and smaller
jumps along its minor axes and should therefore allow
for more efficient exploration of the target.

Theory: Sherlock (2006) considered exploration of
a unimodal elliptically symmetric target with either a
spherically symmetric proposal or a tailored elliptically
symmetric proposal in the limit as d → ∞. Subject to
condition (11) (and a “shell”-like condition similar to
that mentioned in Section 2.2.4), it is shown that with
each proposal shape it is in fact possible to achieve the
same optimal expected squared jump distance. How-
ever, if a spherically symmetric proposal is used on an
elliptical target, some components are explored better
than others and in some sense the overall efficiency is
reduced. This becomes clear on considering the ratio,
r , of the expected squared Euclidean jump distance for
an optimal spherically symmetric proposal to that of an
optimal tailored proposal. Sherlock (2006) showed that
for a sequence of targets, where the target with dimen-
sion d has elliptical axes with inverse scale parameters
cd,1, . . . , cd,d , the limiting ratio is

r = limd→∞((1/d)
∑d

i=1 c−2
d,i )

−1

limd→∞ (1/d)
∑d

i=1 c2
d,i

.

The numerator is the limiting harmonic mean of the
squared inverse scale parameters, which is less than or
equal to their arithmetic mean (the denominator), with
equality if and only if (for a given d) all the cd,i are
equal. Roberts and Rosenthal (2001) examined sim-
ilar relative efficiencies but for targets and proposals
with independent components with inverse scale para-
meters C sampled from some distribution. In this case
the derived measure of relative efficiency is the relative
speeds of the diffusion limits for the first component of
the target

r∗ = E[C]2

E[C2] .
This is again less than or equal to 1, with equality when
all the scale parameters are equal. Hence efficiency is
indeed directly related to the relative compatibility be-
tween target and proposal shapes.

Furthermore, Bédard (2008) showed that if a pro-
posal has i.i.d. components yet the target (assumed to
have independent components) is wildly asymmetric,
as measured by (11), then the limiting optimal accep-
tance rate can be anywhere between 0 and 1. How-
ever, even at this optimum, some components will be
explored infinitely more slowly than others.

In practice the shape � of the posterior is not known
and must be estimated, for example by numerically
finding the posterior mode and the Hessian matrix H
at the mode, and setting � = H−1. We employ a sim-
ple alternative which uses an earlier MCMC run.

ALGORITHM 3 (BlkShp). Our third algorithm first
uses an optimally scaled block RWM algorithm (Algo-
rithm 1), which is run for long enough to obtain a “rea-
sonable” estimate of the covariance from the posterior
sample. A fresh run is then started and tuned to give an
acceptance rate of about 0.3 but using proposals

Y ∼ N(0, λ2�̂).

For each dataset, so that our implementation would re-
flect likely statistical practice, each of the three repli-
cates of this algorithm estimated the � matrix from it-
erations 1000–2000 of the corresponding replicate of
Algorithm 1 (i.e., using 1000 iterations after “burn in”).
In all, therefore, six different variance matrices were
used.

3.4 Improving Tail Exploration

Intuition: A posterior with relatively heavy polyno-
mial tails such as the one-dimensional Cauchy dis-
tribution has considerable mass some distance from
the origin. Proposal scalings which efficiently explore
the body of the posterior are thus too small to ex-
plore much of the tail mass in a “reasonable” number
of iterations. Further, polynomial tails become flatter
with distance from the origin so that for unit vector u,
π(x + λu)/π(x) → 1 as ‖x‖2 → ∞. Hence the accep-
tance rate for a random walk algorithm approaches 1 in
the tails, whatever the direction of the proposed jump.
The algorithm therefore loses almost all sense of the
direction to the posterior mass.

Theory: Roberts (2003) brought together literature
relating the tails of the d-dimensional posterior and
proposal to the ergodicity of the Markov chain and
hence its convergence properties. Three important
cases are noted:

(1) If ∃s > 0 such that π(x) ∝ e−s‖x‖2 , at least outside
some compact set, then the random walk algorithm
is geometrically ergodic.

(2) If ∃r > 0 such that the tails of the proposal are
bounded by some multiple of ‖x‖−(r+d)

2 and if

π(x) ∝ ‖x‖−(r+d)
2 , at least outside some compact

set, then the algorithm is polynomially ergodic
with rate r/2.
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(3) If ∃r > 0 and η ∈ (0,2) such that π(x) ∝
‖x‖−(r+d)

2 , at least for large enough x, and the pro-

posal has tails q(x) ∝ ‖x‖−(d+η)
2 , then the algo-

rithm is polynomially ergodic with rate r/η.

Thus posterior distributions with exponential or lighter
tails lead to a geometrically ergodic Markov chain,
whereas polynomially tailed posteriors can lead to
polynomially ergodic chains, and even this is only
guaranteed if the tails of the proposal are at least as
heavy as the tails of the posterior. However, by using a
proposal with tails so heavy that it has infinite variance,
the polynomial convergence rate can be made as large
as is desired.

ALGORITHM 4 (BlkShpCau). Our fourth algo-
rithm is identical to BlkShp but samples the proposed
jump from the heavy-tailed multivariate Cauchy. Pro-
posals are generated by simulating V ∼ N(0, �̂) and
Z ∼ N(0,1) and setting Y∗ = V/Z. No acceptance
rate criteria exist for proposals with infinite variance
and so the optimal scaling parameter for this algorithm
was found (for each dataset and �̂) by repeating several
small runs with different scale parameters and noting
which produced the best ACT’s for each dataset.

ALGORITHM 5 (BlkShpMul). The fifth algorithm
relies on the fact that taking logarithms of parame-
ters shifts mass from the tails to the center of the dis-
tribution. It uses a random walk on the posterior of
θ̃ := (logψ1, logψ2, logq12, logq21). Shape matrices
�̃ were estimated as for Algorithm 3, but using the
logarithms of the posterior output from Algorithm 1.
In the original parameter space this algorithm is equiv-
alent to a proposal with components X∗

i = Xie
Y ∗

i and
so has been called the multiplicative random walk (see,
e.g., Dellaportas and Roberts, 2003). In the original pa-
rameter space the acceptance probability is

α(x,x∗) = min
(

1,

∏d
1 x∗

i∏d
1 xi

π(x∗)
π(x)

)
.

Since the algorithm is simply an additive random walk
on the log parameter space, the usual acceptance rate
optimality criteria apply.

A logarithmic transformation is clearly only appro-
priate for positive parameters and can in fact lead to
a heavy left-hand tail if a parameter (in the original
space) has too much mass close to zero. The transfor-
mation θ̃i = sign(θi) log(1 + |θi |) circumvents both of
these problems.

3.5 Additional Strategies

Scaling and shaping of the proposal, the choice of
proposal distribution (here Gaussian or Cauchy), and
an informed choice between RWM and Metropolis-
within-Gibbs updates can all lead to a more effi-
cient algorithm. Building on these possibilities, we
now consider two further mechanisms for improving
efficiency: adaptive MCMC, and utilizing problem-
specific knowledge.

3.5.1 Adaptive MCMC.
Intuition: Algorithm 3 used the output from a pre-

vious MCMC run to estimate the shape Matrix �. An
overall scaling parameter was then varied to give an
acceptance rate of around 0.3. With adaptive MCMC
a single chain is run, and this chain gradually alters its
own proposal distribution (e.g., changing �), by learn-
ing about the posterior from its own output. This simple
idea has a major potential pitfall, however.

If the algorithm is started away from the main poste-
rior mass, for example in a tail or a minor mode, then
it initially learns about that region. It therefore alters
the proposal so that it efficiently explores this region of
minor importance. Worse, in so altering the proposal
the algorithm may become even less efficient at find-
ing the main posterior mass, remain in an unimportant
region for longer, and become even more influenced
by that unimportant region. Since the transition kernel
is continually changing, potentially with this positive
feedback mechanism, it is no longer guaranteed that
the overall stationary distribution of the chain is π(·).

A simple solution is so-called finite adaptation
wherein the algorithm is only allowed to evolve for
the first n0 iterations, after which time the transition
kernel is fixed. Such a scheme is equivalent to running
a shorter “tuning” chain and then a longer subsequent
chain (e.g., Algorithm 3). If the tuning portion of the
chain has only explored a minor mode or a tail, this
still leads to an inefficient algorithm. We would pre-
fer to allow the chain to eventually correct for any er-
rors made at early iterations and yet still lead to the
intended stationary distribution. It seems sensible that
this might be achieved provided changes to the kernel
become smaller and smaller as the algorithm proceeds
and provided the above-mentioned positive feedback
mechanism can never pervert the entire algorithm.

Theory: At the nth iteration let �n represent the
choice of transition kernel; for the RWM it might
represent the current shape matrix � and the overall
scaling λ. Denote the corresponding transition kernel
P�n(x, ·). Roberts and Rosenthal (2007) derived two
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conditions which together guarantee convergence to
the stationary distribution. A key concept is that of di-
minishing adaptation, wherein changes to the kernel
must become vanishingly small as n → ∞,

sup
x

‖P�n+1(x, ·) − P�n(x, ·)‖1
p−→ 0 as n → ∞.

A second containment condition considers the ε-
convergence time under repeated application of a fixed
kernel, γ , and starting point x,

Mε(x, γ ) := inf
n

{n ≥ 1 :‖P n
γ (x, ·) − π(·)‖1 ≤ ε},

and requires that for all δ > 0 there is an N such that
for all n

P
(
Mε(Xn,�n) ≤ N |X0 = x0,�0 = γ0

) ≥ 1 − δ.

The containment condition is difficult to check in prac-
tice; some criteria are provided in the work of Bai,
Roberts and Rosenthal (2009).

Adaptive MCMC is a highly active research area and
so we confine ourselves to an adaptive version of Al-
gorithm 5. Roberts and Rosenthal (2010) described an
adaptive RWM algorithm for which the proposal at the
nth iteration is sampled from a mixture of an adaptive
N(0, 1

d
2.382�̂n) and a nonadaptive Gaussian distribu-

tion; here �̂n is the variance matrix calculated from the
previous n− 1 iterations of the scheme. Changes to the
variance matrix are O(1/n) at the nth iteration and so
the algorithm satisfies the diminishing adaptation con-
dition.

Choice of the overall scaling factor 2.382/d follows
directly from the optimal scaling limit results reviewed
in Section 3.1, with J = 1 or k

(d)
x = k

(d)
y . In general,

therefore, a different scaling might be appropriate, and
so our scheme extends that of Roberts and Rosenthal
(2010) by allowing the overall scaling factor to adapt.

ALGORITHM 6 (BlkAdpMul). Our adaptive
MCMC algorithm is a block multiplicative random
walk which samples jump proposals on the log-posterior
from the mixture

Y ∼
⎧⎪⎨
⎪⎩

N(0,m2
n�̃n) w.p. 1 − δ,

N

(
0,

1

d
λ2

0I
)

w.p. δ.

Here δ = 0.05, d = 4, and �̃n is the variance matrix of
the logarithms of the posterior sample to date. A few
minutes were spent tuning the block multiplicative ran-
dom walk with proposal variance 1

4λ2
0I to give at least

a reasonable value for λ0 (acceptance rate ≈ 0.3), al-
though this is not strictly necessary.

To ensure a sensible nonsingular �̃n, proposals from
the adaptive part of the mixture were only allowed once
there had been at least 10 proposed jumps accepted.
The overall scaling factor for the adaptive part of the
kernel, mn, was initialized to m0 = 2.38/d1/2 and an
adaptation quantity � = m0/100 was defined. If itera-
tion i was from the nonadaptive part of the kernel, then
mi+1 ← mi ; otherwise:

• If the proposal was rejected, then mi+1 ← mi −
�/i1/2.

• If the proposal was accepted, then mi+1 ← mi +
2.3�/i1/2.

This leads to an equilibrium acceptance rate of 1/3.3 ≈
30%, the target acceptance rate for the other block up-
dating algorithms which use Gaussian proposals (Al-
gorithms 1, 3, and 5). Changes to m are scaled by i1/2

since they must be large enough to adapt to changes in
the covariance matrix yet small enough that an equilib-
rium value is established relatively quickly. As with the
variance matrix, such a value would then only change
noticeably if there were consistent evidence that it
should.

3.5.2 Utilizing problem-specific knowledge.
Intuition: Algorithms are always applied to specific

datasets with specific forms for the likelihood and
prior. Combining techniques such as optimal scaling
and shape adjustment with problem-specific knowl-
edge can often markedly improve efficiency. In the case
of the MMPP we define a reparameterization based on
the intuition that for an MMPP with ψ1 ≈ ψ2 (as in D2)
the data contain a great deal of information about the
average intensity but relatively little information about
the difference between the intensities.

Theory: For a two-dimensional MMPP define an
overall transition intensity, stationary distribution,
mean intensity at stationarity, and a measure of the dif-
ference between the two event intensities as follows:

q := q12 + q21, ν := 1

q
[q21, q12],

(14)

ψ := νtψ and δ := (ψ2 − ψ1)

ψ.

Let tobs be the total observation time and t the vector
of observed event times. If the Poisson event intensities
are similar, δ is small, and Taylor expansion of the log-
likelihood in δ (see Sherlock, 2006) gives

l(ψ, q, δ, ν1)

= n logψ − ψtobs + 2δ2ν1ν2f (ψt, qt)(15)

+ δ3ν1ν2(ν2 − ν1)g(ψt, qt) + O(δ4)
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for some f (·, ·) and g(·, ·). Consider a reparameteriza-
tion from (ψ1,ψ2, q12, q21) to (ψ,q,α,β) with

α := 2δ(ν1ν2)
1/2 and β := δ(ν2 − ν1).(16)

Parameters ψ ; q and α; and β (in this order) capture
decreasing amounts of variation in the log-likelihood
and so, conversely, it might be anticipated that there
be corresponding decreasing amounts of information
about these parameters contained in the likelihood.
Hence very different scalings might be required for
each.

ALGORITHM 7 (MwGRep). A Metropolis-within-
Gibbs update scheme was applied to the reparameteri-
zation (ψ, q,α,β). A multiplicative random walk was
used for each of the first three parameters (since they
are positive) and an additive update was used for β .
Scalings for each of the four parameters were chosen
to give acceptance rates of between 0.4 and 0.45.

ALGORITHM 8 (MwGRepCau). Our final algo-
rithm is identical to MwGRep except that additive up-
dates for β are proposed from a Cauchy distribution.
The Cauchy scaling was optimized to give the best
ACT over the first 1000 iterations.

4. RESULTS

The eight algorithms described in Section 3 are sum-
marized in Table 1. The table includes two further
algorithms, an independence sampler (Algorithm 9:
IndShp), and the Gibbs sampler of Fearnhead and
Sherlock (2006) (Algorithm 10: Gibbs); these were
included to benchmark the efficiency of RWM algo-
rithms against some sensible alternatives. The indepen-
dence sampler used a multivariate t distribution with

five degrees of freedom and the same set of covariance
matrices as Algorithm 3.

Each RWM variation was tested against datasets D1
and D2 as described in Section 2.3.1. For each dataset,
each algorithm was started from the known “true” pa-
rameter values and was run three times with three dif-
ferent random seeds (referred to as Replicates 1–3). All
algorithms were run for 11,000 iterations; a burn in of
1000 iterations was sufficient in all cases.

Priors were independent and exponential with means
the known “true” parameter values. The likelihood of
an MMPP with maximum and minimum Poisson in-
tensities ψmax and ψmin and with n events observed
over a time window of length tobs is bounded above
by ψn

maxe
−ψmintobs . In this article only MMPP parame-

ters and their logarithms are considered for estimation.
Since exponential priors are employed the parameters
and their logarithms therefore have finite variance, and
geometric ergodicity is guaranteed.

The accuracy of posterior simulations is assessed via
QQ plot comparison with the output from a very long
run of a Gibbs sampler (see Section 2.2.3). QQ plots for
almost all replicates were almost entirely within their
95% confidence bounds. Figure 4 shows such plots for
Algorithms 1–3 and 9 (the independence sampler) on
dataset D2 (Replicate 1). In general these combinations
produced the least accurate performance, and only with
the independence sampler is there reason to doubt that
the posterior sample is a reasonable representation of
the true posterior. The relatively poor performance on
D2 of Algorithms 1–3 and especially Algorithm 9 is
repeated for the other two replicates. The third replicate
of Algorithm 4 on D2 also showed an imperfect fit in
the tails.

The integrated ACT was estimated for each para-
meter and each replicate using the final 10,000 iter-

TABLE 1
Summary of the algorithms used in this paper

No. Abbreviation Description

1 Blk Block additive with tuned proposal N(0, λ2I).
2 MwG Sequential additive with tuned proposals N(0, λ2

i ) (i = 1, . . . ,4).
3 BlkShp Block additive with tuned proposal N(0, λ2�̂).
4 BlkShpCau Block additive with tuned proposal Cauchy(0, λ2�̂).
5 BlkShpMul Block multiplicative with tuned proposal N(0, λ2�̃).

6 BlkAdpMul Block multiplicative with adaptively tuned mixture proposal.
7 MwGRep Sequential multiplicative/additive Gaussian; reparameterization.
8 MwGRepCau Sequential multiplicative Gaussian and additive Cauchy; reparameterization.

9 IndShp Block independence sampler with tuned proposal t5(0, �̂).
10 Gibbs Hidden data Gibbs sampler of Fearnhead and Sherlock (2006).
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FIG. 4. QQ plots for algorithms Blk, MwG, BlkShp, and IndShp, on D2 (Replicate 1). Dashed lines are approximate 95% confidence limits
obtained by repeated sampling from iterations 1000 to 100,000 of a Gibbs sampler run; sample sizes were 10,000/ACT, which is the effective
sample size of the data being compared to the Gibbs run.

ations from that replicate. Calculation of the likeli-
hood is by far the most computationally intensive op-
eration (taking approximately 99.8% of the total CPU
time) and is performed four times for each Metropolis-
within-Gibbs-iteration (once for each parameter) and
only once for each block update; a similar calculation is
performed once for each update of the Gibbs sampler.
To give a truer indication of overall efficiency the ACTs
for each Metropolis-within-Gibbs replicate have there-
fore been multiplied by 4. Table 2 shows the mean ad-
justed ACT for each algorithm, parameter, and dataset.
For each set of three replicates most of the ACTs lay

within 20% of their mean, and for the exceptions (Blk
and BlkShpCau for datasets D1 and D2, and BlkShp
and BlkShpMul for dataset D2) full sets of ACTs are
given in Table 3 in the Appendix.

In general all algorithms performed better on D1
than on D2 because, as discussed in Section 2.3.1,
dataset D1 contains more information on the parame-
ters than D2; it therefore has lighter tails and is more
easily explored by the chain.

The simple block additive algorithm using Gaussian
proposals with variance matrix proportional to the
identity matrix (Blk) performs relatively poorly on
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TABLE 2
Mean estimated integrated autocorrelation time for the four parameters over three independent replicates for datasets D1 and D2

D1 D2

Algorithm ψ1 ψ2 log(q12) log(q21) ψ1 ψ2 log(q12) log(q21)

Blk 66 126 15 19 176 175 80 70
MwG∗ 22 22 33 33 103 90 114 99
BlkShp 13 18 13 15 46 25 37 36
BlkShpCau 19 32 25 24 63 50 56 38
BlkShpMul 13 17 13 15 33 26 22 16

BlkAdpMul 12 12 14 14 20 20 17 23
MwGRep∗ 13 14 32 44 20 23 23 21
MwGRepCau∗ 14 15 37 42 24 233 25 23

IndShp+ 3.7 5.5 3.5 3.7
Gibbs 4.2 3.2 5.7 5.9 26 19 32 27

Notes: ∗Estimates for MwG replicates have been multiplied by 4 to provide figures comparable with full block updates in terms of CPU time.
+ACT results for the independence sampler for D2 are irrelevant since the MCMC sample was not an accurate representation of the posterior.

both datasets. In absolute terms there is much less un-
certainty about the transition intensities q12 and q21
(both are close to 1) than in the Poisson intensities ψ1
(10) and ψ2 (17 for D1 and 30 for D2) since the vari-
ance of the output from a Poisson process is propor-
tional to its value. The optimal single-scale parameter
necessarily tunes to the smallest variance and hence ex-
plores q12 and q21 much more efficiently than ψ1 and
ψ2.

Overall performance improves enormously once
block proposals are from a Gaussian with approxi-
mately the correct shape (BlkShp). The efficiency of
the Metropolis-within-Gibbs algorithm with additive
Gaussian updates (MwG) lies somewhere between the
efficiencies of Blk and BlkShp but the improvement
over Blk is larger for dataset D1 than for dataset D2.
As discussed in Section 2.3.1 the parameters in D1 are
more nearly independent than the parameters in D2.
Thus for dataset D1 the principal axes of an elliptical
approximation to the posterior are more nearly parallel
to the cartesian axes. Metropolis-within-Gibbs updates
are (by definition) parallel to each of the cartesian axes
and so can make large updates almost directly along
the major axis of the ellipse for dataset D1.

For the heavy-tailed posterior of dataset D2 we
would expect block updates resulting from a Cauchy
proposal (BlkShpCau) to be more efficient than those
from a Gaussian proposal. However, for both datasets
Cauchy proposals are slightly less efficient than Gauss-
ian proposals. It is likely that the heaviness of the
Cauchy tails leads to more proposals with at least one
negative parameter, such proposals being automatically

rejected. Moreover, �̂ represents the main posterior
mass, yet some large Cauchy jump proposals from this
mass will be in the posterior tail. It may be that �̂ does
not accurately represent the shape of the posterior tails.

Multiplicative updates (BlkShpMul) make little dif-
ference for D1, but for the relatively heavy-tailed D2
there is a definite improvement over BlkShp. The adap-
tive multiplicative algorithm (BlkAdpMul) is slightly
more efficient still, since the estimated variance matrix
and the overall scaling are refined throughout the run.

As was noted earlier in this section, due to our choice
of exponential priors the quantities estimated in this
article have exponential or lighter posterior tails and
so all the nonadaptive algorithms in this article are
geometrically ergodic. The theory in Section 3.4 sug-
gests ways to improve tail exploration for polynomi-
ally ergodic algorithms and so, strictly speaking, need
not apply here. However, the exponential decay only
becomes dominant some distance from the posterior
mass, especially for dataset D2. Polynomially increas-
ing terms in the likelihood ensure that initial decay
is slower than exponential, and that the multiplicative
random walk is therefore more efficient than the addi-
tive random walk.

The adaptive overall scaling m showed variability of
O(0.1) over the first 1000 iterations after which time
it quickly settled down to 1.2 for all three replicates
on D1 and to 1.1 for all three replicates on D2. Both
of these values are very close to the scaling of 1.19
that would be used for a four-dimensional update in
the scheme of Roberts and Rosenthal (2010). The algo-
rithm similarly learned very quickly about the variance
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FIG. 5. Traceplots for the first 2000 iterations of BlkAdpMul on
dataset D2 (Replicate 1).

matrix �, with individual terms settling down after less
than 2000 iterations, and with exploration close to op-
timal after less than 500 iterations. This can be seen
clearly in Figure 5 which shows traceplots for the first
2000 iterations of the first replicate of BlkAdpMul on
D2.

The adaptive algorithm uses its own history to learn
about d(d + 1)/2 covariance terms and a best overall
scaling. One would therefore expect that the larger the
number of parameters, d , the more iterations are re-
quired for the scheme to learn about all of the adap-
tive terms and hence reach a close to optimal effi-
ciency. To test this a dataset (D3) was simulated from
a three-dimensional MMPP with ψ = [10,17,30]t and
q12 = q13 = q21 = q23 = q31 = q32 = 0.5. The follow-
ing adaptive algorithm was then run three times, each
for 20,000 iterations.

ALGORITHM 6B [BlkAdpMul(b)]. This adaptive
algorithm is identical to BlkAdpMul (with d = 9) ex-
cept that no adaptive proposals were used until at least
100 nonadaptive proposals had been accepted, and that
if an adaptive proposal was accepted then the overall
scaling was updated with m ← m+3�/i1/2 so that the
equilibrium acceptance rate was approximately 0.25.

Figure 6 shows the evolution of four of the 46 adap-
tive parameters (Replicate 1). All parameters seem
close to their optimal values after 10,000 iterations, al-
though covariance parameters appear to be still slowly

FIG. 6. Plots of the adaptive scaling parameter m and three esti-
mated covariance parameters Var[ψ1], Var[q12], and Cov[ψ1, q12]
for BlkAdpMul(b) on dataset D3 (Replicate 1).

evolving even after 20,000 iterations. In contrast, tra-
ceplots of parameters (not shown) reveal that the speed
of exploration of the posterior is close to its final opti-
mum after only 1500 iterations. This behavior was re-
peated across the other two replicates, indicating that,
as with the two-dimensional adaptive and nonadaptive
runs, even a very rough approximation to the variance
matrix improves efficiency considerably. Over the full
20,000 iterations, all three replicates showed a definite
multimodality with λ2 often close to either λ1 or λ3,
indicating that the data might reasonably be explained
by a two-dimensional MMPP. In all three replicates
the optimal scaling settled between 0.25 and 0.3, no-
ticeably lower than the Roberts and Rosenthal (2010)
value of 2.38/

√
9. With reference to Section 3.1 this

is almost certainly due to the roughness inherent in a
multimodal posterior.

The reparameterization of Section 3.5.2 was de-
signed for datasets similar to D2, and on this dataset
the resulting Metropolis-within-Gibbs algorithm (Mw-
GRep) is at least as efficient as the adaptive multi-
plicative random walk. On dataset D1, however, explo-
ration of q12 and q21 is arguably less efficient than for
the Metropolis-within-Gibbs algorithm with the origi-
nal parameter set. The lack of improvement when using
a Cauchy proposal for β (MwGRepCau) suggests that
this inefficiency is not due to poor exploration of the
potentially heavy-tailed β . Further investigation in the
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(ψ,q,α,β) parameter space showed that for dataset
D1 only q was explored efficiently; the posteriors of
ψ and β were strongly positively correlated (ρ ≈ 0.8),
and both ψ and β were strongly negatively correlated
with α (ρ ≈ −0.65). Posterior correlations were small
|ρ| < 0.3 for all parameters with dataset D2 and for all
correlations involving q for dataset D1.

The optimal scaling for the one-dimensional addi-
tive Cauchy proposal in MwGRepCau was approxi-
mately two thirds of the optimal scaling for the one-
dimensional additive Gaussian proposal in MwGRep.
In four dimensions the ratio was approximately one
half. These ratios allow the Cauchy proposals to pro-
duce similar numbers of small to medium sized jumps
to the Gaussian proposals.

The independence sampler is arguably the most effi-
cient of all of the algorithms considered for D1. How-
ever, as discussed earlier in this section, there are
doubts about the accuracy of its exploration of D2.
Mengersen and Tweedie (1996) showed that an in-
dependence sampler is uniformly ergodic if and only
if the ratio of the proposal density to the target den-
sity is bounded below, and that one minus this ratio
gives the geometric rate of convergence. To ensure the
lower bound it is advisable to propose from a relatively
heavy-tailed distribution, such as the t5 used here. The
problem in this instance arises because dataset D2
could, just possibly, have been generated by a sin-
gle Poisson process with intensity ψ ≈ (ψ1 + ψ2)/2.
The resulting minor mode (or, more precisely, ridge) is
some distance from the center of the distribution, re-
sulting in a low ratio of proposal and target densities.

The Gibbs sampler of Fearnhead and Sherlock
(2006) is accurate, with its efficiency directly related
to the amount of information about the hidden Markov
chain that is available from the data (Sherlock, 2006).
Thus for D1 the Gibbs sampler is more efficient than
the best RWM algorithms, but this is not the case for
D2.

5. DISCUSSION

We have described the theory and intuition behind
a number of techniques for improving the efficiency of
random walk Metropolis algorithms and tested these on
two data sets generated from Markov modulated Pois-
son processes (MMPPs). Tests on these datasets also
showed a sensibly implemented RWM to be at least as
good as some of the other available MCMC algorithms.
Some RWM implementations were uniformly success-
ful at improving efficiency, while for others success de-
pended on the shape and/or tails of the posterior. All of

the underlying concepts discussed here are quite gen-
eral and easily applied to statistical models other than
the MMPP.

Simple acceptance rate tuning to obtain the optimal
overall variance term for a symmetric Gaussian pro-
posal can increase efficiency by many orders of magni-
tude. However, with our datasets, even after such tun-
ing, the RWM algorithm was very inefficient. The ef-
fectiveness of the sampling increased enormously once
the shape of the posterior was taken into account by
proposing from a Gaussian with variance proportional
to an estimate of the posterior variance. For Algo-
rithms 3, 4, and 5 the posterior variance was estimated
through a short “training run”—the first 1000 iterations
after burn in of Algorithm 1.

As expected, use of the “multiplicative random
walk” (Algorithm 5), a random walk on the poste-
rior of the logarithm of the parameters, improved effi-
ciency most noticeably on the posterior with the heav-
ier tails. However, contrary to expectation, even on the
heavier tailed posterior an additive Cauchy proposal
(Algorithm 4) was, if anything, less efficient than a
Gaussian. Tuning of Cauchy proposals was also more
time-consuming since simple acceptance rate criteria
could not be used.

Algorithm 6 combined the successful strategies of
optimal scaling, shape tuning, and transforming the
data, to create a multiplicative random walk which
learned the most efficient shape and scale parameters
from its own history as it progressed. This adaptive
scheme was easy to implement and was arguably the
most efficient RWM for each of the datasets. A slight
variant of this algorithm was used to explore the pos-
terior of a three-dimensional MMPP, and showed that
in higher dimensions such algorithms take longer to
discover close to optimal values for the adaptive pa-
rameters. These runs also confirmed the finding for
the two-dimensional MMPP that RWM efficiency im-
proves enormously with knowledge of the posterior
variance, even if this knowledge is only approximate.
For a multimodal posterior such as that found for the
three-dimensional MMPP it might be argued that a dif-
ferent variance matrix should be used for each mode.
Such “regionally adaptive” algorithms present addi-
tional problems, such as the definition of the differ-
ent regions, and are discussed further by Roberts and
Rosenthal (2010).

Metropolis-within-Gibbs updates performed bet-
ter when the parameters were close to orthogonal,
at which point the algorithms were almost as effi-
cient as an equivalent block updating algorithm with
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TABLE 3
Estimated ACT for the four parameters, on three independent replicates for Blk and BlkShpCau

on dataset D1 and Blk, BlkShp, BlkShpCau, and BlkShpMul on dataset D2

Algorithm ψ1 ψ2 log(q12) log(q21)

Blk (D1) 59,64,75 120,155,104 12,15,17 19,21,17
BlkShpCau (D1) 28,16,12 36,29,31 20,20,35 26,23,24
Blk (D2) 121,259,146 107,262,157 41,139,61 51,110,48
BlkShp (D2) 54,51,34 23,24,29 40,45,27 50,35,23
BlkShpCau (D2) 46,51,92 46,57,48 31,42,94 39,41,34
BlkShpMul (D2) 53,24,23 22,33,25 20,23,24 17,18,13

tuned shape matrix. The best Metropolis-within-Gibbs
scheme for dataset D2 arose from a new reparame-
terization devised specifically for the two-dimensional
MMPP with parameter orthogonality in mind. On D2
this performed nearly as well as the best scheme, the
adaptive multiplicative random walk.

The adaptive schemes discussed here provide a sig-
nificant step toward a goal of completely automated al-
gorithms. However, as already discussed, for d model-
parameters, a posterior variance matrix has O(d2)

components. Hence the length of any “training run”
or of the adaptive “learning period” increases quickly
with dimension. For high dimension it is therefore es-
pecially important to utilize to the full any problem-
specific knowledge that is available so as to provide as
efficient a starting algorithm as possible.

APPENDIX: RUNS WITH HIGHLY VARIABLE ACTS

Three replicates were performed for each dataset and
algorithm, and ACTs are summarized by their mean in
Table 2. However, for certain combinations of the algo-
rithms and datasets the ACTs varied considerably; full
sets of ACTs for these replicates are given in Table 3.
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