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Population Structure and Cryptic
Relatedness in Genetic
Association Studies
William Astle and David J. Balding1

Abstract. We review the problem of confounding in genetic association
studies, which arises principally because of population structure and cryptic
relatedness. Many treatments of the problem consider only a simple “island”
model of population structure. We take a broader approach, which views pop-
ulation structure and cryptic relatedness as different aspects of a single con-
founder: the unobserved pedigree defining the (often distant) relationships
among the study subjects. Kinship is therefore a central concept, and we re-
view methods of defining and estimating kinship coefficients, both pedigree-
based and marker-based. In this unified framework we review solutions to
the problem of population structure, including family-based study designs,
genomic control, structured association, regression control, principal compo-
nents adjustment and linear mixed models. The last solution makes the most
explicit use of the kinships among the study subjects, and has an established
role in the analysis of animal and plant breeding studies. Recent computa-
tional developments mean that analyses of human genetic association data
are beginning to benefit from its powerful tests for association, which pro-
tect against population structure and cryptic kinship, as well as intermediate
levels of confounding by the pedigree.

Key words and phrases: Cryptic relatedness, genomic control, kinship,
mixed model, complex disease genetics, ascertainment.

1. CONFOUNDING IN GENETIC EPIDEMIOLOGY

1.1 Association and Linkage

Genetic association studies (Clayton, 2007) are de-
signed to identify genetic loci at which the allelic state
is correlated with a phenotype of interest. The associa-
tions of interest are causal, arising at loci whose differ-
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ent alleles have different effects on phenotype. Even if
a causal locus is not genotyped in the study, it may be
possible to identify an association indirectly through
a genotyped locus that is nearby on the genome. In
this review we are concerned with the task of guarding
against spurious associations, those which do not arise
at or near a causal locus. We first introduce background
material describing linkage and association studies,
population structure and linkage disequilibrium, the
problem of confounding by population structure and
cryptic relatedness. In Section 2 we discuss definitions
and estimators of the kinship coefficients that are cen-
tral to our review of methods of correcting for con-
founding by population structure and cryptic related-
ness, which is presented in Section 3. Finally, in Sec-
tion 4 we present the results of a small simulation study
illustrating the merits of the most important methods
introduced in Section 3.
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Although association designs are used to study other
species, we will mainly take a human-genetics view-
point. For example, we will focus on binary pheno-
types, such as disease case/control or drug respon-
der/nonresponder, which remain the most commonly
studied type of outcome in humans, although quanti-
tative (continuous), categorical and time-to-event traits
are increasingly important. The subjects of an associ-
ation study are sometimes sampled from a population
without regard to phenotype, as in prospective cohort
designs. However, retrospective ascertainment of indi-
viduals on the basis of phenotype, as in case-control
study designs, is more common in human genetics, and
we will focus on such designs here.

Linkage studies (Thompson, 2007) form the other
major class of study designs in genetic epidemiology.
These seek loci at which there is correlation between
the phenotype of interest and the pattern of transmis-
sion of DNA sequence over generations in a known
pedigree. In contrast, association studies are used to
search for loci at which there is a significant associ-
ation between the phenotypes and genotypes of unre-
lated individuals. These associations arise because of
correlations in transmissions of phenotypes and geno-
types over many generations, but association analy-
ses do not model these transmissions directly, whereas
linkage analyses do. The relatedness of study subjects
is therefore central to a linkage study, whereas the re-

latedness of association study subjects is typically un-
known and assumed to be distant; any close relatedness
is a nuisance (Figure 1).

In the last decade, association studies have become
increasingly prominent in human genetics, while, al-
though they remain important, the role of linkage stud-
ies has declined. Linkage studies can provide strong
and robust evidence for genetic causation, but are lim-
ited by the difficulty of ascertaining enough suitable
families, and by insufficient recombinations within
these families to refine the location of a causal vari-
ant. When only a few hundred of genetic markers
were available, lack of within-family recombinations
was not a limitation. Now, cost-effective technology
for genotyping ∼106 single nucleotide polymorphism
(SNP) markers distributed across the genome has made
possible genome-wide association studies (GWAS)
which investigate most of the common genetic vari-
ation in a population, and obtain orders of magni-
tude finer resolution than a comparable linkage study
(Morris and Cardon, 2007; Altshuler, Daly and Lan-
der, 2008). GWAS are preferred for detecting com-
mon causal variants (say, population fraction > 0.05),
which typically have only a weak effect on phenotype,
whereas linkage studies remain superior for the detec-
tion of rare variants of large effect (because these ef-
fects are more strongly concentrated within particular
families).

FIG. 1. Schematic illustration of differences between linkage studies, which track transmissions in known pedigrees, and population asso-
ciation studies which assume “unrelated” individuals. Open circles denote study subjects for whom phenotype data are available and solid
lines denote observed parent-child relationships. Dotted lines indicate unobserved lines of descent, which may extend over many genera-
tions, and filled circles indicate the common ancestors at which these lineages first diverge. Unobserved ancestral lineages also connect the
founders of a linkage study, but these have little impact on inferences and are ignored, whereas they form the basis of the rationale for an
association analysis and constitute an important potential confounder.
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Because genes are essentially immutable during an
individual’s lifetime, and because of the independence
of allelic transmissions at unlinked loci (Mendel’s Sec-
ond Law), linkage studies are virtually immune to con-
founding. Association studies are, however, susceptible
to genetic confounding, which is usually thought of as
coming in two forms: population structure and cryp-
tic relatedness. These are in fact two ends of a spec-
trum of the same confounder: the unobserved pedigree
specifying the (possibly distant) relationships among
the study subjects (Figure 1, right). Association studies
are also susceptible to confounding if genotyping error
rates vary with phenotype (Clayton et al., 2005). This
can resemble a form of population structure and is not
discussed further here.

We can briefly encapsulate the genetic confounding
problem as follows. Association studies seek genomic
loci at which differences in the genotype distributions
between cases and controls indicate that their ances-
tries are systematically different at that locus. How-
ever, pedigree structure can generate a tendency for
systematic ancestry differences between cases and con-
trols at all loci not subject to strong selection. Figure 2
illustrates two possible ancestral lineages of the study
subject alleles at a locus. Lineages are correlated be-
cause they are constrained to follow the underlying
pedigree. For example, if the pedigree shows cluster-
ing of individuals into subpopulations, then ancestral
lineages at neutral loci will tend to reflect this. The

FIG. 2. Schematic illustration of the confounding role of pedigree
on ancestral lineages at individual loci. Two possible single-locus
lineages are shown (solid lines), each embedded in the pedigree of
Figure 1 (right). Moving upwards from the study subjects (open cir-
cles), when two lineages meet at a common ancestor (filled circle),
they either coalesce into a single lineage, or else they pass through
different alleles of the common ancestor and do not coalesce. Dot-
ted lines show pedigree relationships that do not contribute to the
ancestry of the study subjects at this locus. Although lineages are
random, they are constrained by the pedigree, features of which are
therefore reflected in lineages across the genome.

goal of correction for population structure is to allow
for the confounding pedigree effects when assessing
differences in ancestry between cases and controls at
individual loci. In the following sections we seek to
expand on this brief characterization.

1.2 Population Structure

Informally, a population has structure when there are
large-scale systematic differences in ancestry, for ex-
ample, varying levels of immigrant ancestry, or groups
of individuals with more recent shared ancestors than
one would expect in a panmictic (random-mating) pop-
ulation. Shared ancestry corresponds to relatedness, or
kinship, and so population structure can be defined in
terms of patterns of kinship among groups of individ-
uals. Population structure is often closely aligned with
geography, and in the absence of genetic information,
stratification by geographic region may be employed to
try to identify homogeneous subpopulations. However,
this approach does not account for recent migration or
for nongeographic patterns of kinship based on social
or religious groups.

The simplest model of population structure assumes
a partition of the population into “islands” (subpopu-
lations). Mating occurs preferentially between pairs of
individuals from the same island, so that the island al-
lele fractions tend to diverge to an extent that depends
on the inter-island migration rates. An enhancement
of the island model to incorporate admixture allows
individual-specific proportions of ancestry arising from
actual or hypothetical ancestral islands.

Below we will focus on island models of popu-
lation structure, because these are simple and parsi-
monious models that facilitate discussion of the main
ideas. Moreover, several popular statistical methods for
detecting population structure and correcting associa-
tion analysis for its effects have been based entirely on
such models. However, human population genetic and
demographic studies suggest that island models typi-
cally do not provide a good fit for human genetic data.
Colonization often occurs in waves and is influenced
by geographic and cultural factors. Such processes are
expected to lead to clinal patterns of genetic varia-
tion rather than a partition into subpopulations (Han-
dley et al., 2007). Modern humans are known to have
evolved in Africa with the first wave of human migra-
tion from Africa estimated to have been approximately
60,000 years ago. Reflecting this history, current hu-
man genetic diversity decreases roughly linearly with
distance from East Africa (Liu et al., 2006). Within Eu-
rope, Lao et al. (2008) found that the first two principal
components of genome-wide genetic variation accu-
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rately reflect latitude and longitude: there is population
structure at a Europe-wide level, but no natural classi-
fication of Europeans into a small number of subpopu-
lations. Similarly, there does not appear to be a simple
admixture model based on hypothetical ancestral sub-
populations that can adequately capture European ge-
netic variation, although a model based on varying lev-
els of admixture from hypothetical “North Europe” and
“South Europe” subpopulations could at least capture
the latitude effect. The admixture model may be appro-
priate when the current population results from some
intermixing following large-scale migrations over large
distances, such as in Brazil or the Caribbean.

Because the term “population stratification” can im-
ply an underlying island model, we avoid this term
and adhere to “population structure,” which allows for
more complex underlying demographic models.

1.3 Linkage Disequilibrium

In a large, panmictic population, and in the absence
of selection, pairs of genetic loci that are not tightly
linked (close together on a chromosome) are unassoci-
ated at the population level (McVean, 2007). Such link-
age equilibrium arises because recombination events
ensure the independent assortment of alleles when they
are transmitted across generations (a process some-
times called Mendelian Randomization). Conversely,
because recombination is rare (∼1 recombination per
chromosome per generation), tightly linked loci are
generally correlated, or in linkage disequilibrium (LD)
in the population. This is because many individuals can
inherit a linked allele pair from a remote common an-
cestor without an intervening recombination. Associa-
tion mapping relies on LD because, even for a GWAS,
only a small proportion of genetic variants are directly
measured. Signals from ungenotyped causal variants
can only be detected through phenotype association
with a genotyped marker that is in sufficiently strong
LD with the causal variant (Figure 3). LD is a double-
edged sword: the stronger the LD around a causal vari-
ant, the easier it is to detect, because the greater the
probability it is in high LD with at least one genotyped
marker (Pritchard and Przeworski, 2001). However, in
a region of high LD it is hard to fine-map a causal
variant because there will be multiple highly-correlated
markers each showing a similar strength of association
with the phenotype.

1.4 Spurious Associations due to
Population Structure

Unfortunately, population structure can cause LD
between unlinked loci and consequently generate spu-
rious marker-phenotype associations. For example, in

FIG. 3. Illustration of the role of linkage disequilibrium in gen-
erating phenotypic association with a noncausal genotyped marker
due to a tightly-linked ungenotyped causal locus.

the island model of population structure, if the pro-
portion of cases among the sampled individuals varies
across subpopulations, then alleles that vary in fre-
quency across subpopulations will often show associa-
tion with phenotype. One or more such alleles may in
fact be involved in phenotype determination, but stan-
dard association statistics may not distinguish them
from the many genome-wide alleles with frequencies
that just happen to vary across subpopulations because
of differential genetic drift or natural selection. To ex-
press this another way, many alleles across the genome
are likely to be somewhat informative about an indi-
vidual’s subpopulation of origin, and hence be predic-
tive of any phenotype that varies across subpopula-
tions. For example, in a large sample drawn from the
population of Great Britain, many genetic variants are
likely to show association with the phenotype “speaks
Welsh.” These will be alleles that are relatively com-
mon in Wales, which has a different population history
from England (Weale et al., 2002), and do not “cause”
speaking Welsh.

Under an island model, one could potentially solve
the problem of spurious associations by matching for
ancestry, for example, by choosing for each case a con-
trol from the same subpopulation. However, as noted
above, an island model is unlikely to describe the an-
cestry of a human population adequately. We each have
a distinct pattern of ancestry, to a large extent unknown
beyond a few generations, making precise matching
impractical while crude matching may be insufficient.
The spouse of a case, or another relative by marriage,
can provide a genetically unrelated control approxi-
mately matched for ancestry, but there are obvious lim-
itations to this approach.
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There are at least three reasons why, in an unmatched
study, the phenotypes of study subjects might vary
systematically with ancestry (e.g., with subpopulation
in an island model). The most straightforward reason
is that the disease prevalence varies across subpopu-
lations in accordance with the frequencies of causal
alleles, and the differing sample case:control ratios
across subpopulations reflect the differing subpopula-
tion prevalences. Alternatively, subpopulation preva-
lences may vary because of differing environmental
risks. Third, ascertainment bias can make an important
contribution to associations between ancestry and phe-
notype. Ascertainment bias can arise if there are dif-
ferences in the sampling strategies between cases and
controls that are correlated with ancestry. In the island
model, this means that the sample case:control ratios
across subpopulations do not reflect the subpopulation
prevalences. This may happen, for example, because
cases, but not controls, are sampled from clinics that
over-represent particular groups.

1.5 Extent of the Problem

The vulnerability of association studies to confound-
ing by population structure has been recognized for
many years. In a famous example, Knowler et al.
(1988) found a significant association between an im-
munoglobulin haplotype and type II diabetes. The
study subjects were native North Americans with some
European ancestry and the association disappeared af-
ter stratification by ancestry. Many commentators fail
to note that Knowler et al. understood the problem and
performed an appropriate analysis, so that no false as-
sociation was reported: they merely noted the potential
for confounding in an unstratified analysis.

Marchini et al. (2004a) concluded from a simulation
study that, even in populations with relatively mod-
est levels of structure (such as Europe or East Asia),
when the sample is large enough to provide the re-
quired power, the most significant SNPs can have their
p-values reduced by a factor of three because of popu-
lation structure, thus exaggerating the significance of
the association. Freedman et al. (2004) examined a
study into prostate cancer in (admixed) African Amer-
icans and estimated a similar reduction in the small-
est p-values. Another study of European-Americans
found a SNP in the lactase gene significantly associated
with variation in height (Campbell et al., 2005). When
the subjects were stratified according to North/West
or South/East European ancestry, the association dis-
appeared. Since we expect connections among lactase

tolerance, diet and height, the association could be gen-
uine and involve different diets, but the confounding
with population structure makes this difficult to estab-
lish. Helgason et al. (2005) used pedigree and marker
data from the Icelandic population, and found evidence
of population structure in rural areas, which would re-
sult on average in a 50% increase in the magnitude of
a χ2

1 association statistic.
Following Pritchard and Rosenberg (1999) and Gor-

roochurn et al. (2004), Rosenberg and Nordborg (2006)
considered a general model for populations with con-
tinuous and discrete structure and presented necessary
and sufficient conditions for spurious association to oc-
cur at a given locus. They defined a parameter measur-
ing the severity of confounding under general ascer-
tainment schemes, and showed that, broadly speaking,
the case of two discrete subpopulations is worse than
the cases of either more subpopulations or an admixed
population. As the number of subpopulations becomes
larger, the problem of spurious association tends to di-
minish because the law of large numbers smoothes out
correlation between disease risk and allele frequencies
across subpopulations (Wang, Localio and Rebbeck,
2004).

In recent years results have been published from
hundreds of GWAS into complex genetic traits
(NHGRI GWAS Catalog, 2009). McCarthy et al.
(2008) described the current consensus. The impact of
population structure on association studies should be
modest “as long as cases and controls are well matched
for broad ethnic background, and measures are taken
to identify and exclude individuals whose GWAS data
reveal substantial differences in genetic background.”
This is consistent with a report from a study of type II
diabetes in UK Caucasians which estimated that pop-
ulation structure was responsible for only ∼4% infla-
tion in χ2

1 association statistics (Clayton et al., 2005).
The Wellcome Trust Case Control Consortium (2007)
study of seven common diseases using a UK popula-
tion sample found fewer than 20 loci exhibiting strong
geographic variation. The genome-wide distribution of
test statistics suggested that any confounding effect
was modest and no adjustment for population structure
was made for the majority of their analyses.

In conclusion, the magnitude of the effect of struc-
ture depends on the population sampled and the sam-
pling scheme, and well-designed studies should usu-
ally suffer only a small impact. However, most of the
associated variants so far identified by GWAS have
been of small effect size (NHGRI GWAS Catalog,
2009), and as study sizes increase in order to detect



456 W. ASTLE AND D. J. BALDING

smaller effects, even modest structure could substan-
tially increase the risk of false positive associations.

1.6 Cryptic Relatedness

Cryptic relatedness refers to the presence of close
relatives in a sample of ostensibly unrelated individ-
uals. Whereas population structure generally describes
remote common ancestry of large groups of individ-
uals, cryptic relatedness refers to recent common an-
cestry among smaller groups (often just pairs) of indi-
viduals. Like population structure, cryptic relatedness
often arises in unmatched association studies and can
have a confounding effect on inferences. Indeed, De-
vlin and Roeder (1999) argued that cryptic relatedness
could pose a more serious confounding problem than
population structure. A subsequent theoretical investi-
gation of plausible demographic and sampling scenar-
ios (Voight and Pritchard, 2005) showed that the effect
of cryptic relatedness in well-designed studies of out-
bred populations should be negligible, but it can be no-
ticeable for small and isolated populations. Using pedi-
gree and empirical genotype data from the Hutterite
population, these authors found that cryptic relatedness
reduces an association p-value of 10−3 by a factor of
approximately 4, and that the smaller the p-value the
greater is the relative effect.

2. GENETIC RELATIONSHIPS

2.1 Kinship Coefficients Based on
Known Pedigrees

The relatedness between two diploid individuals can
be defined in terms of the probabilities that each subset
of their four alleles at an arbitrary locus is identical
by descent (IBD), which means that they descended
from a common ancestral allele without an interme-
diate mutation. The probability that the two homolo-
gous alleles within an individual i are IBD is known as
its inbreeding coefficient, fi . When no genotype data
are available, IBD probabilities can be evaluated from
the distribution of path lengths when tracing allelic lin-
eages back to common ancestors (Figure 2), convolved
with a mutation model (Malécot, 1969). More com-
monly, IBD is equated with “recent” common ances-
try, where “recent” may be defined in terms of a spec-
ified, observed pedigree, whose founders are assumed
to be completely unrelated. In theoretical models, “re-
cent” may be defined, for example, in terms of a speci-
fied number of generations, or since the last migration
event affecting a lineage. Linkage analysis conditions
on the available pedigree, and in this case the definition

FIG. 4. Schematic illustration of the nine relatedness classes
for two individuals, whose four alleles are indicated by filled cir-
cles, that are specified by the eight Jacquard identity-by-descent
(IBD) coefficients. Within-individual allele pairs are regarded as
unordered, and solid lines link alleles that are IBD.

of IBD in terms of shared ancestry within that pedigree,
and the assumption of unrelated founders, cause no
difficulty. However, the strong dependence on the ob-
served pedigree, or other definition of “recent” shared
ancestry, is clearly unsatisfactory for a more general
definition of relatedness.

A full description of the relatedness between two
diploid individuals requires 15 IBD probabilities, one
for each nonempty subset of four alleles, but if we re-
gard the pair of alleles within each individual as un-
ordered, then just eight identity coefficients (Jacquard,
1970) are required (Figure 4). An assumption of no
within-individual IBD (no inbreeding) allows these
eight coefficients to be collapsed into two (Cotterman,
1940), specifying probabilities for the two individuals
to share exactly one and two alleles IBD. Both these
coefficients are required for models involving domi-
nance, but for additive genetic models they can be re-
duced to a single kinship coefficient, Kij , which is the
probability that two alleles, one drawn at random from
each of i and j , are IBD. Similarly, Kii is the proba-
bility that two alleles, sampled with replacement from
i, are IBD. Thus, Kii = (1 + fi)/2, and, in particular,
the kinship of an outbred individual with itself is 1/2.

The kinship matrix K of a set of individuals in a
pedigree can be computed by a recursive algorithm that
neglects within-pedigree mutation (Thompson, 1985).
K is positive semi-definite if the submatrix of assumed
founder kinships is positive semi-definite (which is sat-
isfied if, as is typical, founders are assumed unrelated).
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2.2 Kinship Coefficients Based on Marker Data

The advent of GWAS data means that genome-
average relatedness can now be estimated accurately. It
can be preferable to use these estimates in association
analyses even if (unusually) pedigree-based estimates
are available. There is a subtle difference between ex-
pectations computed from even a full pedigree, and re-
alized amounts of shared genomic material. For exam-
ple, if two lineages from distinct individuals meet in
a common ancestor many generations in the past, then
this ancestor will contribute (slightly) to the pedigree-
based relatedness of the individuals but may or may not
have passed any genetic material to both of them. Sim-
ilarly, two pairs of siblings in an outbred pedigree may
have the same pedigree relatedness, but (slightly) dif-
ferent empirical relatedness (Weir, Anderson and Hep-
ler, 2006).

Thompson (1975) proposed maximum likelihood es-
timates (MLEs) of the Cotterman coefficients, while
Milligan (2003) made a detailed study of MLEs un-
der the Jacquard model. These MLEs can be prone
to bias when the number of markers is small and
can be computationally intensive to obtain particularly
from genome-wide data sets (Ritland, 1996; Milligan,
2003).

Method of moments estimators (MMEs) are typi-
cally less precise than MLEs, but are computationally
efficient and can be unbiased if the ancestral allele frac-
tions are known (Milligan, 2003). Under many popula-
tion genetics models, if two alleles are not IBD, then
they are regarded as random draws from some muta-
tion operator or allele pool (Rousset, 2002), which cor-
responds to the notion of “unrelated.” The kinship coef-
ficient Kij is then a correlation coefficient for variables
indicating whether alleles drawn from each of i and j

are some given allelic type, say, A. If xi and xj count
the numbers of A alleles (0, 1 or 2) of i and j , then

Cov(xi, xj ) = 4p(1 − p)Kij ,(2.1)

where p is the population fraction of A alleles. Thus,
Kij can be estimated from genome-wide covariances
of allele counts. Specifically, if we write x as a column
vector over individuals and let the subscript index the
L loci (rather than individuals), then

K̂ = 1

L

L∑
l=1

(xl − 2pl1)(xl − 2pl1)T

4pl(1 − pl)
(2.2)

is an unbiased and positive semi-definite estimator for
the kinship matrix K . Entries in K̂ can also be inter-
preted in terms of excess allele sharing beyond that ex-
pected for unrelated individuals, given the allele frac-
tions. According to Ritland (1996), who considered

similar estimators and gave a generalization to loci
with more than two alleles, (2.2) was first given in Li
and Horvitz (1953) but only for inbreeding coefficients.

In practice, we do not know the allele fractions pl .
The natural estimators assume outbred and unrelated
individuals, deviation from which can exaggerate the
downward bias in the Kij estimates that arises from
the overfitting effect of estimating the pl from the same
data. To reduce the first problem, one could iteratively
re-estimate the pl after making an initial estimate of K

with

p̂l = 1T K̂−1xl

1T K̂−11
.

Although the correlations arising from shared ances-
try are in principle positive, because of bias arising
from estimation of the pl , off-diagonal entries of (2.2)
can be negative, a property that has caused some au-
thors to shun such estimators of K (Milligan, 2003; Yu
et al., 2006; Zhao et al., 2007). Rousset (2002) also
criticized the model underlying (2.1) in the context of
certain population genetics models, but did not pro-
pose an alternative estimator of genetic covariance in
actual populations. For our purpose, that of modeling
phenotypic correlations, genotypic correlations seem
intuitively appropriate and the interpretation of Kij as
a probability seems unimportant. Under the interpre-
tation of K̂ij as excess allele sharing, negative values
correspond to individuals sharing fewer alleles than ex-
pected given the allele frequencies.

Table 1 shows the probability that alleles chosen at
random from each of two individuals match, that is, are
identical by state (IBS), at a genotyped diallelic locus.
The genome-wide average IBS probability can be ex-
pressed as

1

2L

L∑
l=1

(xl − 1)(xl − 1)T + 1

2
.(2.3)

If the mutation rate is low, IBS usually arises as a re-
sult of IBD, and (2.3) can be regarded as an MME of
the pedigree-based kinship coefficient in the limiting
case that IBS implies IBD. This estimator overcomes
the problem with pedigree-based estimators of depen-
dence on the available pedigree, but it is sensitive to
recurrent mutations.

Software for computing average allele sharing (IBS)
is included in popular packages for GWAS analysis
such as PLINK (Purcell et al., 2007). However, because
the excess allele-sharing (genotypic correlation) esti-
mator of kinship coefficients (2.2) incorporates weight-
ing by allele frequency, it is typically more precise
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TABLE 1
Identity-by state (IBS) coefficients at a single diallelic locus, defined as the probability that alleles drawn at random from i and j match,

which gives 0.5 in the case of a pair of heterozygotes. Another definition, based on the number of alleles in common between i and j ,
gives 1 for a pair of heterozygotes

Genotype of i aa Aa AA aa Aa AA aa Aa AA

Genotype of j aa aa aa Aa Aa Aa AA AA AA

IBS coefficient 1 1
2 0 1

2
1
2

1
2 0 1

2 1

than (2.3). Sharing a rare allele suggests closer kinship
than sharing a common allele, because the rare allele
is likely to have arisen from a more recent mutation
event (Slatkin, 2002). To illustrate the increased preci-
sion of (2.2) over (2.3), we simulated 500 genetic data
sets comprising 200 idealized cousin pairs (no muta-
tion, and the alleles not IBD from the common grand-
parents were independent draws from an allele pool)
and 800 unrelated individuals, all genotyped at 10,000
unlinked SNPs. After rescaling to ensure the two es-
timators give the same difference between the mean
kinship estimate of cousin pairs and mean kinship es-
timate of unrelated pairs, the resulting standard devia-
tions (Table 2) are about 40% larger for the total allele
sharing (IBS) estimator (2.3) than for the excess allele-
sharing (genetic correlation) estimator (2.2).

The marker-based estimates of kinship coefficients
discussed above do not take account of LD between
markers, nor do they exploit the information about
kinship inherent from the lengths of genomic regions
shared between two individuals from a recent com-
mon ancestor (Browning, 2008). Hidden Markov mod-
els provide one approach to account for LD (Boehnke
and Cox, 1997; Epstein, Duren and Boehnke, 2000).
In outbred populations, the IBD status along a pair of
chromosomes, one taken from each of a pair of individ-
uals in a sibling, half sib or parent-child relationship,
is a Markov process. However, the Markovian assump-
tion fails for more general relationships in outbred pop-
ulations. When relationships are more distant, regions
of IBD will tend to cluster. For example, in the case of

TABLE 2
Estimated standard deviations of two kinship coefficient MMEs,

after linear standardization to put the estimates on
comparable scales

Estimator Unrelated pair Cousin pair

Genetic correlation (2.2) 5.0 5.3
IBS (2.3) 7.3 7.2

first cousins IBD regions will cluster into larger regions
that correspond to inheritance from one of the two
shared grandparents. McPeek and Sun (2000) showed
how to augment the Markov model to describe the IBD
process when the chromosomes correspond to an avun-
cular or first cousin pair. Despite the invalidity of the
Markov assumption, Leutenegger et al. (2003) found
that in practice it can lead to reasonable estimates for
relationships more distant than first-degree.

3. CORRECTING ASSOCIATION ANALYSIS
FOR CONFOUNDING

In this review, we seek to use kinship to illuminate
connections among popular methods for protecting as-
sociation analyses from confounding. Many of these
methods can be formulated within standard regression
models that express the expected value of yi , the phe-
notype of the ith individual, as a function of its geno-
type xi at the SNP of interest:

g(E[yi]) = α + xiβ,(3.1)

where, for simplicity, we have not included covariates.
Here g is a link function and β is a scalar or column
vector of genetic effect parameters at the SNP. Often xi

counts the number of copies of a specified allele carried
by i, or it can be a two-dimensional row vector that
implies a general genetic model.

For a case-control study, g is typically the logit func-
tion and β are log odds ratios. This is a prospective
model, treating case-control status as the outcome, but
inferences about β are typically the same as for the ret-
rospective model, which is more appropriate for case-
control data (Prentice and Pyke, 1979; Seaman and
Richardson, 2004). However, in some settings ascer-
tainment effects are not correctly modeled prospec-
tively, and it is necessary to consider retrospective
models of the type

g(E[xi]) = α + yiβ,(3.2)

where g is typically the identity function.
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3.1 Family-Based Tests of Linkage and
Association (FBTLA)

The archetypal FBTLA is the transmission disequi-
librium test (TDT) (Spielman, McGinnis and Ewens,
1993) for systematic differences between the geno-
types of affected children and those expected under
Mendelian randomization of the alleles of their unaf-
fected parents. If an allele is directly risk-enhancing, it
will be over-transmitted to cases. If not directly causal
but in LD with a causal allele, it may also be over-
transmitted, but in this case it must also be linked with
the causal variant, since otherwise Mendelian random-
ization will eliminate the association between causal
and tested alleles. Thus, the TDT is a test for both as-
sociation and linkage. The linkage requirement means
that the test is robust to population structure, while the
association requirement allows for fine-scale localiza-
tion.

Parents that are homozygous at the tested SNP are
uninformative and not used. Transmissions from het-
erozygote parents are assumed to be independent,
which implies a multiplicative disease model. Let na

and nA denote respectively the number of a and A alle-
les transmitted to children by Aa heterozygote parents.
If there is no linkage, each parental allele is equally
likely to be transmitted, so that the null hypothesis for
the TDT is

H0 : E[na] = E[nA].
Conditional on the number of heterozygote parents
na + nA, the test statistic na has a Binomial(na + nA,

1/2) null distribution, but McNemar’s statistic

(na − nA)2

na + nA
,(3.3)

which has an approximate χ2
1 null distribution (Agresti,

2002), is widely used instead. The TDT can be derived
from the score test of a logistic regression model in
which transmission is the outcome variable, and the
parental genotypes are predictors (Dudbridge, 2007).
In Section 3.3 we outline a test which can exploit
between-family as well as within-family information
when it is available, while retaining protection from
population structure. Tiwari et al. (2008) survey varia-
tions of the TDT in the context of a review of methods
of correction for population structure.

The main disadvantages of the TDT and other
FBTLA are the problem of obtaining enough families
for a well powered study (particularly for adult-onset
diseases) and the additional cost of genotyping: three

individuals must be genotyped to obtain the equivalent
of one case-control pair, and homozygous parents are
uninformative. Given the availability of good analysis-
based solutions to the problem of population structure
(see below), the design-based solution of the FBTLA
pays too high a price for protection against spuri-
ous associations (Cardon and Palmer, 2003). However,
FBTLA designs (like other linkage designs) can also be
used to investigate parent-of-origin effects (Weinberg,
1999), which is not usually possible for population-
based case-control studies.

3.2 Genomic Control

Genomic Control (GC) is an easy-to-apply and com-
putationally fast method for reducing the inflation of
test statistics caused by population structure or cryp-
tic relatedness. It can be applied to data of any fam-
ily structure or none. GC was developed (Devlin and
Roeder, 1999) for the Armitage test statistic, which is
asymptotically equivalent to a score statistic under lo-
gistic regression (Agresti, 2002) and, in the absence of
confounding, has an asymptotic χ2

1 null distribution.
The Armitage test assumes an additive disease model,
but GC has also been adapted for tests of other disease
models (Zheng et al., 2005; Zheng, Freidlin and Gast-
wirth, 2006).

Figure 5(A) illustrates the inflation of Armitage test
statistics at 2000 null SNPs simulated under an island
model with admixture and ascertainment bias. This in-
flation could reflect many genome-wide true associa-
tions, but it is more plausible (and correct for this sim-
ulation) that the inflation is due to a combination of
population structure and ascertainment bias. The figure
suggests that the inflation of test statistics is approxi-
mately linear, and Devlin and Roeder argued that this
holds more generally. They therefore proposed to cali-
brate the type I error of the Armitage test by adjusting
all test statistics by a constant factor λ. This leaves the
ranking of markers in terms of significance unchanged
[Figure 5(B)], and so GC is equivalent to adjusting the
significance threshold.

For most complex phenotypes, only a few genome-
wide SNPs correspond to strong causal associations,
with test statistics in the upper tail of the empirical
distribution. Consequently, the bulk of the empirical
distribution, away from the upper tail, should reflect
the null distribution and can be used to estimate λ.
Bacanu, Devlin and Roeder (2000) suggested estimat-
ing λ as the ratio of the empirical median to its null
value (=0.455), because the median is robust to a few
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FIG. 5. Q–Q plots for likelihood ratio tests of association in logistic regression (equivalent to the Armitage trend test), at 2000 null
SNPs simulated under a three-island model with FST = 1%. From Island 1 there are 200 controls and 100 cases. Each of the remaining
700 individuals is admixed, the ith individual having a proportion ai of their ancestry from Island 2, the remainder from Island 3, where
the ai are independent and Uniform(0,1). The ith admixed individual has a probability 0.3 + 0.5 × ai of being a case, so that case status
is positively correlated with Island 2 ancestry. (A) expected versus observed quantiles, unadjusted; (B) expected versus observed after GC
median-adjustment; (C) expected versus observed when the first two principal components are included as covariates; (D) GC-adjusted
versus PC-adjusted quantiles.

large values in the upper tail. For the simulation of Fig-
ure 5, the median of the test statistics is 0.59, leading
to λ = 1.31, a large value reflecting the strong ascer-
tainment bias.

Setakis, Stirnadel and Balding (2006) pointed out
that ascertainment bias can cause median-adjusted GC
to be very conservative. Marchini et al. (2004a) had
previously noticed that for strong population structure
GC can be anti-conservative when the number of test
statistics used to estimate λ is <100, and conserva-
tive when the number is � 100. Devlin, Bacanu and
Roeder (2004) ascribed this problem to failure to ac-
count for the uncertainty in the estimate of λ, but Mar-
chini et al. (2004b) noted that this may not be the most
important cause of the problem (see also below). To
allow for this uncertainty, Devlin, Bacanu and Roeder

(2004) suggested using the mean of the test statistics to
estimate λ, since the mean-adjusted test statistics have
an F1,m null distribution. In the absence of true asso-
ciations, Dadd, Weale and Lewis (2009) found mean-
adjusted GC to be slightly superior to median adjust-
ment. However, the median is more robust to true pos-
itives than the mean. As a compromise, Clayton et al.
(2005) proposed adjusting on a trimmed mean, discard-
ing say the highest 5% or 10% of test statistics.

LEMMA 1. The mean of the smallest 100q% val-
ues in a large random sample of χ2

1 statistics has ex-
pected value

1

q
d3(d

−1
1 (q)),
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where dk is the distribution function of a χ2
k random

variable.

PROOF. Let X ∼ χ2
1 , then

E
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X|X < d−1

1 (q)
) =
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1 (q)

0
x

1
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√

2π

e−x/2
√

x
dx

=
∫ d−1

1 (q)

0

1

q
√

2π

√
xe−x/2 dx

= 1

q
d3(d

−1
1 (q)). �

A limitation of all GC methods is that they do not
distinguish markers at which the pattern of association
is correlated with the underlying pedigree from those
at which the pedigree does not contribute to the as-
sociation and so for which no adjustment should be
necessary. Figure 5(B) and (C) shows that median-GC-
adjustment performs similarly to PC-adjustment (see
Section 3.6 below) in countering the overall inflation
of test statistics, but the corrected statistics can be very
different [Figure 5(D)] because PC-adjustment is SNP-
specific. GC often shows reduced power to detect as-
sociation compared to rival methods for adjusting for
population structure.

In the remainder of this section we show connections
between λ and the kinship of study subjects. The Ar-
mitage test statistic can be written as T 2/V , where T is
the difference between the allele fractions in the sam-
ples of n1 cases and n0 controls,

T = ∑
i

(
yi

n1
− 1 − yi

n0

)
xi,

V is an estimate of the variance of T ,

V =
(

1

n0
+ 1

n1

)(
1

n

∑
i

x2
i −

[
1

n

∑
i

xi

]2)
,

and n = n0 + n1. In the following we assume retro-
spective ascertainment, so that the case/control status
y is fixed by the study design, while the allele count
xi is random. Devlin and Roeder (1999) noticed that
E[T ] = 0, irrespective of population structure, but that
Var[T ] can be inflated relative to V . In general,

Var[T ] = ∑
i,j

(
yiyj

n2
1

+ (1 − yi)(1 − yj )

n2
0

(3.4)

− (yi − yj )
2

n1n0

)

· Cov(xi, xj ),

and substituting (2.1) into (3.4) leads to

Var[T ] = 4p(1 − p)

n0n1
(D + R),

where

D = ∑
i

(
n0

n1
yi + n1

n0
(1 − yi)

)
Kii

≥ min
(

n0

n1
,
n1

n0

)
Tr[K],

R = ∑
i �=j

(
n0

n1
yiyj + n1

n0
(1 − yi)(1 − yj )

)
Kij

(3.5)
− ∑

i �=j

(yi − yj )
2Kij .

It also follows that

E[V ] = 4p(1 − p)

n0n1

(∑
i

Kii − 1

n

∑
i,j

Kij

)
,(3.6)

which reduces to 2p(1−p)n/n0n1 if all study subjects
are outbred and unrelated. Thus, provided that

V

E[V ]
P→ 1 as n → ∞,(3.7)

we have

λ = E

[
T 2

V

]
≈ Var[T ]

E[V ] = D + R∑
i Kii − (1/n)

∑
i,j Kij

.

Since K is positive semi-definite, the second summa-
tion in (3.6) is ≥ 0, so that

λ ≥ D + R

Tr[K] ≥ min
(

n0

n1
,
n1

n0

)
+ R

Tr[K] .
The dominant quantity bounding λ is R/Tr[K] and
since Tr[K] ∝ n,

λ ∼ R

Tr[K] ∼ R/n.

The large n behavior of λ depends on that of R.
From (3.5) we see that increasing levels of kinship ei-
ther among cases or among controls will tend to in-
crease R, while greater case-control kinship tends to
reduce R. In the worst-case scenario, a typical individ-
ual will be related at each degree of kinship to a fixed
proportion of the study sample as n varies so that, un-
less the average kinship among cases and among con-
trols is balanced by the average case-control kinship
(such as when cases and controls are matched within
subpopulations under an island model), R ∝ n2 and

λ ∼ n,
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which generalizes the result of Devlin and Roeder
(1999). In practice, it is unclear how λ should scale
with n in well designed GWAS studies of homoge-
neous populations.

The statistic T 2/λV has the correct median or mean,
but it will not have an asymptotic χ2

1 null distribution
unless (3.7) holds. This condition does not hold, for
example, in an island model with a fixed number of
islands. This fact may underlie the poor performance
of GC in the settings discussed above. See Zheng et al.
(2010) for a detailed discussion of variance distortion
in GC.

3.3 Explicit Modeling of Genetic Correlations

GC is designed to correct the null distribution of a
test statistic derived under a probability model which
is invalid in the presence of structure. An alternative
strategy is to derive a statistic from a probability model
that better reflects the actual data generating process.
For a retrospective study, the individual allele counts
xi should be modeled as random variables satisfying
(2.1). If we are prepared to assume the higher order
moments of x are small, this can be achieved with a
regression model of the form (3.2) with linear link and
residuals

x − 1α − yβ ∼ N(0, σ 2K).

If we assign to α a diffuse Gaussian prior N(0, τ−2),
with τ ↓ 0, and to σ 2 the improper (Jeffreys) prior
with density proportional to σ−2, we can derive the
score statistic T 2/V , with a χ2

1 asymptotic distribu-
tion, where

T = yT Px

and

(n − 1)V = yT Py · xT Px − (yT Px)2

for

P = K−1 − K−111T K−1

1T K−11
.(3.8)

If the subjects are unrelated (2K = I ), then T re-
duces to a comparison between the mean allele counts
in cases and controls, as in the Armitage test, but the
variance V is slightly smaller due to the final term.
When the relatedness between study subjects is un-
known, as in a typical GWAS, the estimate K̂ of (2.2)
may be substituted for K . A similar approach, but with
a different form for V , has recently been proposed by
Rakovski and Stram (2009), who point out that when

the kinships are known T 2/V is equivalent to the QLS
statistic of Bourgain et al. (2003).

The test described here could be used to analyze
family data, either using K from the known pedigree
or K̂ estimated from genotype data. For example, for
pedigree-based K in trios of two unrelated and un-
affected parents and an affected child, T 2 matches
(up to a constant) the numerator of (3.3). V differs
slightly from the denominator of (3.3), reflecting the
fact that the TDT conditions on the parental genotypes,
whereas the test described here treats them as random.
If the kinships are estimated from genome-wide marker
data, this test can exploit the between-family as well
as the within-family information, thus potentially in-
creasing power over FBTLA, while retaining protec-
tion from population structure. Moreover, this is a very
general approach, which applies for any ascertainment
scheme and degree of relatedness or population struc-
ture among study subjects. Thus, if a researcher were
unaware of the TDT, but applied the retrospective re-
gression model to family trio data, s/he would auto-
matically “invent” a test similar to the TDT but with
potentially superior properties.

3.4 Structured Association

Structured association (SA) methods are based on
the island model of population structure, and assume
that the ancestry of each individual is drawn from
one or more of the “islands.” Popular software pack-
ages include ADMIXMAP (Hoggart et al., 2003)
and STRUCTURE/STRAT (Pritchard and Donnelly,
2001; Falush, Stephens and Pritchard, 2003). These
approaches model variation in ancestral subpopula-
tion along a chromosome as a Markov process. Strat-
ified tests for association (Clayton, 2007), such as
the Mantel–Haenszel test, can then be performed to
combine signals of association across subpopulations.
More generally, a logistic regression model of the form
(3.1) can be employed, with admixture proportions
(one for each subpopulation) entering as covariates.

Similar to GC, SA methods can be effective using
only ∼102 SNPs, but unlike GC, they can be compu-
tationally intensive, although a simplified and fast ver-
sion of SA is implemented in PLINK (Purcell et al.,
2007). The number of subpopulations can be estimated
from the data by optimizing a measure of model good-
ness of fit, but this increases the computational burden
and there is usually no satisfactory estimate because, as
we noted above in Section 1.2, the island model is not
well suited to most human populations. Indeed, AD-
MIXMAP was primarily designed for admixture map-
ping, in which the genomes of admixed individuals are



POPULATION STRUCTURE 463

scanned for loci at which cases show an excess of an-
cestry from one of the founder populations (McKeigue,
2007). Because of the limited number of generations
since the admixture event, this approach has features
in common with linkage as well as association study
designs.

3.5 Regression Control

Wang, Localio and Rebbeck (2005) showed that it
is possible to control for population structure within
a logistic regression model of the form (3.1) by in-
cluding among the covariates the genotype at a single
marker that is informative about ancestry. Setakis, Stir-
nadel and Balding (2006) proposed using a set of ∼102

widely-spaced SNPs, which are assumed to be non-
causal (in practice, a “random” set of SNPs). These null
SNPs are informative about the underlying pedigree,
which we have argued forms the basis of the problem
of inflation of test statistics due to population structure.
Including these SNPs as regression covariates while
testing a SNP of interest should eliminate most or all
of the pedigree (population structure) effect.

Setakis, Stirnadel and Balding (2006) suggest two
standard procedures to avoid overfitting the SNP co-
variates: a backward (stepwise) selection and a shrink-
age penalty approach. In the absence of ascertainment
bias, both methods performed similarly to GC and SA,
while being computationally fast and allowing the flex-
ibility of the regression framework. With ascertainment
bias, the regression control approach substantially out-
performed GC.

Another approach (Epstein, Allen and Satten, 2007),
which is also related to propensity score methods, uses
ancestry-informative SNPs to create a risk score, strat-
ifies study subjects according to this score, and per-
forms a stratified test of association.

3.6 Principal Component Adjustment

Zhang, Zhu and Zhao (2003) proposed controlling
for population structure in quantitative trait association
analysis by including principal components (PCs) of
genome-wide SNP genotypes as regression covariates.
Price et al. (2006) presented a similar method, focusing
on its application to case-control GWAS. PC regres-
sion is similar to the regression control approach of
Setakis, Stirnadel and Balding (2006), but minimizes
overfitting by using only a few linear combinations of
SNPs (the PCs), rather than a larger number of individ-
ual SNPs. However, many more SNPs (typically ∼104)
are required in the PC-based approach.

Let X denote a matrix with n rows corresponding
to individuals and L columns corresponding to SNPs.
Genotypes are initially coded as allele counts (0, 1 or
2) but are then standardized to have zero mean and unit
variance. Then the n × n matrix XXT /L is the esti-
mated kinship matrix K̂ introduced at (2.2). Since K̂ is
symmetric and positive semi-definite, it has an eigen-
value decomposition

K̂ = 1

L
XXT = v	vT ,(3.9)

where the columns of v are the eigenvectors, or PCs,
of K̂ , while 	 is a diagonal matrix of corresponding
(nonnegative) eigenvalues in decreasing order.

Standard principal components analysis uses the L×
L matrix XT X specifying the empirical correlations
between the columns of the design matrix. Here, the
variables of interest are the individuals, corresponding
to rows, and, hence, we focus on K̂ = XXT /L. How-
ever, because X is column-standardized, and not row-
standardized, K̂ is not an empirical correlation matrix.
In particular, the diagonal entries of XT X are all one,
whereas the diagonal entries of K̂ vary over individu-
als according to their estimated inbreeding coefficient
(Section 2).

To maximize the empirical variance of XT v1, the
first PC v1 will typically be correlated with many
SNPs. For example, in a two-island model, it will
have greatest correlation with the SNPs whose allele
fractions are most discrepant between the two islands.
Thus, v1 acts as a strong predictor of island member-
ship, and can also identify admixed individuals (inter-
mediate scores). More generally, in an S-island model
the first S − 1 PCs predict island memberships and in-
dividual admixture proportions (Patterson, Price and
Reich, 2006) (see Figure 6 for an illustration with
S = 3). The subsequent PCs represent the within-island
pedigree effects. Cryptic kinship typically generates
weaker LD than large-scale population structure, and
the effects of small groups of close (even first-degree)
relatives are usually not reflected in the leading PCs.

Tightly linked SNPs tend to be in high LD with
each other, and sometimes one or more of the lead-
ing PCs will be dominated by large LD blocks. Since
such blocks are genomically local, they convey little if
any information about population structure. One way
to avoid this problem is to filter GWAS SNPs prior to
extracting the PCs, to exclude one in each pair of high
LD SNPs.

As for structured association and regression control,
the idea motivating PC adjustment is that if a corre-
lation between the phenotype and the tested SNP can
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FIG. 6. First two principal component scores for the cases
(green) and controls (red) of the simulation underlying Figure 5.
Triangles indicate individuals from Island 1, and circles the ad-
mixed individuals with ancestry from Islands 2 and 3.

be partly explained by measures of ancestry, here PCs,
then including these as regression covariates prevents
that part of the signal from contributing to the test sta-
tistic. In particular, in the case of linear regression,
only the components of the phenotype and genotype
vectors that are orthogonal to the PCs included in the
model contribute to the test statistic. This should pro-
tect against spurious associations, provided that suffi-
cient PCs are included in the model to explain poten-
tially confounding structure. For example, in the popu-
lation of Figure 6, v1 and v2 can, with accuracy, jointly
predict the proportion of an individual’s ancestry aris-
ing from each of the three subpopulations, and because
of the varying case-control ratios across the subpopula-
tions, they can also to some extent predict case-control
status. Including the PCs as covariates in the regres-
sion model discards information, for example, indicat-
ing that alleles common in the high-risk subpopulation
are more likely to be causal. Because of the danger of
ascertainment bias in retrospective studies, such infor-
mation may be dangerous and it is safer to discard it,
but if ascertainment is not a problem, for example, in a
prospective study, discarding this information is ineffi-
cient.

For computational reasons the EIGENSTRAT soft-
ware (Price et al., 2006), which implements PC ad-
justment, does not include PCs as logistic regression

covariates, but instead uses a linear adjustment of
both phenotypes and genotypes. Such an adjustment
is valid only under the assumption that the yi form a
homoskedastic sample (Agresti, 2002, page 120) and
should be reasonable if the sample case:control ratio is
not too far from 1, and the effect sizes are small.

By default, the EIGENSTRAT software includes the
first ten PCs. Patterson, Price and Reich (2006) pro-
posed a test to determine whether the lead eigenvalue
of K̂ is significantly larger than one would expect un-
der a null model, but it remains unclear what signif-
icance threshold for this test might be appropriate, if
any, for protecting association test statistics from in-
flation. As for any other regression covariate, there is
an argument for only including a PC in the model if
it shows an association with the phenotype (Novembre
and Stephens, 2008; Lee, Wright and Zou, 2010). Ex-
perience seems to suggest that between 2 and 15 PCs
are typically sufficient, and in large studies for which
n may be several thousand, these will correspond to a
small loss of total genotypic information.

While the intuition motivating PC-adjustment is
valid under an island model, protection from popu-
lation structure effects is not guaranteed under more
complicated and realistic models of population struc-
ture. In particular, inflation of test statistics due to
cryptic relatedness is not ameliorated by PC adjust-
ment. Moreover, if leading PCs reflect genome-local
effects, PC adjustment could lose valuable information
and lead to true effects being missed.

3.7 Mixed Regression Models

We assume here a quantitative phenotype with g the
identity link. The linear mixed model (MM) extends
(3.1) by including for each individual i a latent variable
δi such that

E[yi |δi] = α + xiβ + δi .(3.10)

The value of δi is interpreted as a polygenic contribu-
tion to the phenotype, due to many small, additive, ge-
netic effects distributed across the genome. In animal
breeding genetics, the equivalent term is referred to
as the breeding value. The additive assumption seems
to be well supported for traits with a complex genetic
basis (Hill, Goddard and Visscher, 2008), although it
is also possible to include latent variables correspond-
ing to dominance effects. Under the additive polygenic
assumption, the variance-covariance structure of δ is
proportional to the correlation structure of genotypes
coded as allele counts, which from (2.1) is proportional
to K , the kinship matrix. Hence, we assume

δ ∼ N(0,2σ 2h2K),(3.11)
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where h2 ∈ [0,1] is the narrow sense heritability, and
is defined as the proportion of phenotypic variation
that can be attributed to additive polygenic effects. The
residuals are assumed to satisfy

yi − α − xiβ − δi ∼ N
(
0, σ 2(1 − h2)I

)
.

The origins of this linear MM lie in the partitioning by
Fisher (1918) of the variance of a quantitative trait into
independent genetic and environmental components,
and derivation of the genetic correlation of trait values
of a pair of relatives assuming Mendelian inheritance
(Gianola, 2007). It is conventional to introduce the 2 in
(3.11) because 2K reduces to I in the limiting case of
completely unrelated and completely outbred individ-
uals, in which case h2 becomes inestimable.

The model (3.10) has long been used for mapping
quantitative trait loci in outbred pedigrees, using a
pedigree-based kinship matrix (Höschele, 2007). Yu
et al. (2006), who were interested in association map-
ping in maize, were first to suggest using the same
model to correct association analysis for population
structure, but with K estimated from marker data. In
fact, Yu et al. also include in their model additional
population structure terms, namely, the ancestral pro-
portions estimated by the STRUCTURE software (Sec-
tion 3.4). Zhao et al. (2007) used the same model to
analyze an Arabidopsis thaliana data set and, like Yu
et al., found that the additional terms improved the fit
of the model. However, neither set of authors formally
assess the improvements in fit which, by visual inspec-
tion of the genome-wide p-value distributions, seem
modest. In principle, K already includes population
structure information, making the additional terms re-
dundant. However, the structure terms provide a low-
dimensional summary of key features of K which are
likely to be better estimated than individual kinships,
and this may generate some advantage to including the
structure terms in the regression model as well as K .
Typically, ∼105 SNPs are required for adequate esti-
mation of K in human populations, more than are re-
quired for estimation of PCs, but this number is usually
available from a GWAS.

Kang et al. (2008) have developed the software pack-
age EMMA for fast inference in linear MMs using a
likelihood ratio test. Alternatively, for very large sam-
ples one can use the score test which is computa-
tionally faster because it only requires parameter es-
timates under the null hypothesis (β = 0). Another fast
method for inference in mixed models, GRAMMAR,
has been proposed by Aulchenko, de Koning and Haley
(2007). Although GRAMMAR is faster than EMMA,

it is an approximate method and the authors found that
it could be conservative and hence have reduced power.
GRAMMAR uses the mixed model to predict the phe-
notype under the null hypothesis,

ŷ = α̂ + δ̂,

where δ̂ is the best linear unbiased predictor (BLUP) of
δ, which is equivalent to the empirical Bayes estimate
for δ with prior (3.11) (Robinson, 1991). This predic-
tion only needs to be made once for the whole data set.
The next step is to use the residuals from the prediction
as the outcome in a linear regression,

y − ŷ = 1μ + xβ + ε,(3.12)

and test the parameter β for each SNP. An assumption
underlying (3.12) is that the residuals are independent
and identically distributed, which is strictly false. In-
deed, both E(y − ŷ) and Var(y − ŷ) are functions of
K unless h2 = 0, which may be the reason that an ad-
ditional GC-style variance inflation correction is often
required to calibrate the GRAMMAR type I error rate.

Note that (3.10) can be reparametrized as

E[yi |γ ] = α + xiβ + viγ,

with

γ ∼ N(0,2σ 2h2	),

where 	 and vi are defined above at (3.9). Thus, the
MM approach uses the same latent variables as PC ad-
justment but deals differently with the vector γ of nui-
sance parameters. From a Bayesian point of view, both
methods put independent priors on the components of
γ . Using k PCs as regression covariates can be viewed
as assigning to each of the n − k trailing components
of γ a prior with unit mass at zero, while each of the
k leading components receives a diffuse prior. These
assignments imply certainty that the polygenic com-
ponent of the phenotype is fully captured by the first
k PCs. In contrast, the MM approach puts a Gaussian
prior on each component of γ , with variances propor-
tional to the corresponding eigenvalues.

4. SIMULATIONS

4.1 Case-Control Studies Without
Ascertainment Bias

We show here the results of a small simulation study
designed to illustrate the merits of some of the meth-
ods introduced above for correcting GWAS analysis
for population structure. Although we have criticized
the island model as unrealistic, it remains the most
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convenient starting point and we use it below, the
only complication considered here being ascertainment
bias. More extensive and realistic simulations will be
published elsewhere.

We simulated data from 500 case-control studies,
each with 1000 cases and 1000 controls drawn from
a population of 6000 individuals partitioned into three
equal-size subpopulations. Ancestral minor allele frac-
tions were Uniform[0.05,0.5] for all 10,000 unlinked
SNPs. For each SNP, we drew subpopulation allele
fractions from the beta-binomial model described in
Balding and Nichols (1995). Under this model, a
marker with ancestral population allele fraction p has
subpopulation allele fractions that are independent
draws from

Beta
(

1 − F

F
p,

1 − F

F
(1 − p)

)
,

where F is Wright’s FST , a measure of population
divergence (Balding, 2003). In order to discriminate
among the methods, we simulated a high level of pop-
ulation structure, F = 0.1, which is close to between-
continent levels of human differentiation; this is larger
than is typical for a well-designed GWAS, but some
meta-analyses may include populations at this level
of differentiation. The studies simulated here are rel-
atively small by the standards of current GWAS, and
larger studies will be affected by less pronounced struc-
ture than that simulated here.

We simulated the disease phenotype under a logis-
tic regression model, with 20 SNP markers each as-
signed allelic odds ratio 1.18. The population disease
prevalence was 0.18. We performed tests for disease-
phenotype association for all the markers in each data
set, using median-adjusted GC, principal component
adjustment with 10 PCs (PC10) and the likelihood ra-
tio test from the linear mixed model (MM). Note that
the PC10 and MM approaches apply a linear regression
model to binary outcome data, which (as noted in Sec-
tion 3.6) should be reasonable if the case:control ratio
is not extreme and the effect sizes are small. We also
performed the score test described in Section 3.3. This
retrospective model is consistent with the case-control
ascertainment, although in fact the resulting score sta-
tistic is symmetric in x and y. We call this test MCP to
stand for Multivariate Gaussian model Conditional on
Phenotype.

The PC10, MM and MCP approaches all require
specification of K , the kinship matrix of the study sub-
jects. Figure 7 shows the observed and expected p-
values at the null markers, aggregated over the 500

FIG. 7. Expected versus observed − log 10 (p-values) for four
test statics, GC (black), PC10 (blue), MM (red) and MCP (green)
evaluated at 5 million SNPs (10,000 per dataset) simulated under
the null of no association in population case-control studies (see
text for details of the simulation).

simulations, using K̂ estimated via genetic correlations
(2.2). We see that the type I error is well calibrated
for all the methods except GC, which has a conserv-
ative null distribution. We repeated the analysis using
the true K used for the simulation and the results are
similar (not shown). GC is conservative because in this
extreme scenario with large FST and a small number
of subpopulations, the assumption that the test statistic
asymptotically follows a linear-inflated χ2

1 distribution
fails. The condition (3.7) is not satisfied in the beta-
binomial model with fixed FST unless the number of
subpopulations increases with n.

In order to compare power across the methods, we
plotted ROC curves for the statistics from the four
methods using both the true K and the estimated K̂

(Figure 8). GC has lower power than the other three
methods, even though the ROC calibrates its bad false
positive rate. When K is used, the MCP and MM
approaches are equally powerful, and more powerful
than the other two methods, because both exploit the
between-subpopulation information. When K̂ is used
both the MM and MCP methods lose their power ad-
vantage over PC10, which may be due to the sampling
error in the eigenvectors of K̂ . PC correction uses only
the leading eigenvectors to adjust the analysis; these
are less affected by noise and for an island model they
contain all the population structure signal. For an actual
GWAS, the MM and MCP methods should show per-
formance somewhere intermediate between the cases
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FIG. 8. ROC plots comparing true and false-positive rates of GC (black), PC10 (blue), MM (red) and MCP (green) estimated from data
aggregated over 500 simulated retrospective population case-control studies. Left: true kinships, K ; right: estimated kinships, K̂ .

considered here, because many more than 10,000 SNPs
are available to estimate K .

4.2 Case-Control Studies With Ascertainment Bias

We repeated the simulation studies described above
but with ascertainment bias. Specifically, each simu-
lated study sampled 50 controls from two of the three
subpopulations and 900 controls from the remaining
subpopulation. This corresponds to a scenario in which
investigators are forced to search widely across sub-
populations to obtain a sufficient number of cases for
their study, but are able to recruit most controls from
the local subpopulation. The case:control ratio varies
dramatically over subpopulations in this scenario, so
that subpopulation allele frequencies are strong predic-
tors of case-control status.

Once again, PC10, MM and MCP all have good con-
trol of type I error, while GC is dramatically conserv-
ative (not shown). We again plotted ROC curves for
the statistics from the four methods using both K and
K̂ (Figure 9). GC shows almost no power in these
simulations. When K is used the MCP and MM ap-
proaches are equally powerful and more powerful than
PC10. Their power advantage over PC10 is more sub-
stantial than in the previous scenario without ascer-
tainment bias, because here the leading eigenvectors
of K are stronger predictors of case-control status.
When K̂ is used the MCP and MM methods again lose
some power compared with PC10 and again the MCP
method suffers a greater loss than the MM test.

5. SUMMARY

The theme of our review has been the unifying role
of the matrix of kinship coefficients, K , and its esti-
mate K̂ defined at (2.2). We view population structure
and cryptic kinship as the extremes of the same con-
founder, the latent pedigree, and K̂ as a good summary
of the pedigree for use in adjusting association analy-
ses. We have also argued that, whereas methods are of-
ten tested under an island model of population struc-
ture, these models do not provide realistic descriptions
of relatedness in human populations.

The median-adjusted Genomic Control (GC) is sim-
ple to apply and, for association studies with moder-
ate sample sizes and small amounts of within sam-
ple relatedness, it is a satisfactory method for protect-
ing against confounding, which requires relatively few
SNPs (∼102). When the study sample is drawn from
a population with a few, distinct subpopulations, GC
should be used with caution because the χ2 approxi-
mation may fail. Our simulations also confirmed previ-
ous reports that GC is very sensitive to ascertainment
bias. Structured association and regression adjustment
may also be used with relatively few SNPs, and the lat-
ter has important advantages over GC.

Linear mixed models (MM) and the multivariate
Gaussian model conditioning on phenotype (MCP) ex-
plicitly model genetic correlations using K , and are
respectively appropriate for prospective and retrospec-
tive studies with genome-wide SNP data. They are par-
ticularly suited to modeling complex patterns of kin-
ship, including intermediate scenarios between close



468 W. ASTLE AND D. J. BALDING

FIG. 9. ROC plots comparing true and false-positive rates of GC (black), PC10 (blue), MM (red) and MCP (green) estimated from data
aggregated over 500 simulated population case-control studies with biased ascertainment of controls. Left: true kinships, K ; right: estimated
kinships, K̂ .

relationships and large scale structure, which can arise
in plant genetics, human population isolates and in
animal breeding studies. Previous computational lim-
itations have largely been overcome in recent years.
These models also provide powerful and computation-
ally efficient methods for analyzing family data of any
structure, and combinations of families and apparently
unrelated individuals.

Principal components (PC) adjustment in effect
eliminates from test statistics the part of the pheno-
typic signal that can be predicted from large scale pop-
ulation structure. In particular, if natural selection leads
to large allele frequency differences across subpopula-
tions at a particular SNP, and case-control ratios vary
across subpopulations, then spurious associations can
arise that PC adjustment will control, because the SNP
genotypes are strongly correlated with subpopulation,
whereas the MM and MCP methods will not. On the
other hand, the MM and MCP methods can gain power
over PC adjustment because they explicitly model the
phenotype-genotype correlations induced by related-
ness and genetic drift. For example, they should pro-
vide better power than PC adjustment when analyzing
data from human population isolates which are homo-
geneous for environmental exposures.

There are probably better ways to extract the sig-
nals of population structure from an estimate of K than
those considered here. Selection of the first few princi-
pal components of K̂ can be viewed as a form of sig-
nal denoising, but PC regression adjustment does not in

general optimize power. It may be possible to adapt the
MM approach to maintain the power advantage over
PC while reducing noise, for example, by smoothing
or truncating the lower order eigenvalues of K̂ .
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