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Accurate Parametric Inference for Small
Samples
Alessandra R. Brazzale and Anthony C. Davison

Abstract. We outline how modern likelihood theory, which provides essen-
tially exact inferences in a variety of parametric statistical problems, may
routinely be applied in practice. Although the likelihood procedures are based
on analytical asymptotic approximations, the focus of this paper is not on the-
ory but on implementation and applications. Numerical illustrations are given
for logistic regression, nonlinear models, and linear non-normal models, and
we describe a sampling approach for the third of these classes. In the case of
logistic regression, we argue that approximations are often more appropriate
than ‘exact’ procedures, even when these exist.
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1. INTRODUCTION

Monte Carlo inference has developed remarkably
over the last 30 years. Bootstrap procedures (Efron,
1979) are used for a wide range of problems (Efron
and Tibshirani, 1993, Davison and Hinkley, 1997).
Markov chain Monte Carlo simulation has transformed
Bayesian modelling (Robert and Casella, 2004). The
combination of iterative simulation with importance
sampling and improved algorithms for full enumera-
tion of discrete sample spaces has had a strong im-
pact on the analysis of contingency tables (Forster, Mc-
Donald and Smith, 1996, Smith, Forster and McDon-
ald, 1996, Diaconis and Sturmfels, 1998, Mehta, Patel
and Senchaudhuri, 2000). More recently there has been
a rise in Bayesian nonparametric modelling (Denison
et al., 2002), which parallels the use of the bootstrap
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for nonparametric frequentist inference. All these tech-
niques use simulation to avoid tailoring analytical work
to specific problems.

Parallel with these developments has been the de-
velopment of analytical approximations for paramet-
ric inference in small samples, initiated by Fisher
(1934) but largely overlooked until new developments
were stimulated by Efron and Hinkley (1978) and
Barndorff-Nielsen and Cox (1979). A flood of subse-
quent work is summarized in the books of Barndorff-
Nielsen and Cox (1994), Pace and Salvan (1997), and
Severini (2000). The efforts of many researchers, par-
ticularly O. E. Barndorff-Nielsen, (1983, 1986) and
D. A. S. Fraser (e.g., Fraser, 1990; Fraser, Reid and
Wu, 1999) and their co-workers, have led to an el-
egant theory of near-exact inference based on small
samples from parametric models. Its theoretical ba-
sis is saddlepoint and related approximation (Daniels,
1954, 1987), and further developments have been well
described by Reid (1988, 1995, 2003). These methods
are highly accurate in many situations, but are never-
theless under-used compared to the simulation proce-
dures mentioned above. One reason for this may be
their arcane basis in the conditionality principle, an-
cillary statistics and marginalization, and another may
be the forbidding technical details, but the main rea-
son is undoubtedly the lack of suitable software. Un-
like the bootstrap libraries available in general-purpose
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languages such as S-PLUS (S-PLUS, 2007) and R (R
Development Core Team, 2007) or specialized soft-
ware such as WinBUGS (Lunn et al., 2000) or LogXact
(Cytel Inc., 2007), small-sample parametric asymptot-
ics have been implemented piecemeal, usually by spe-
cialists in the area for their personal use.

This paper describes the implementation and use of
libraries of software for higher order inference for sev-
eral special classes of model: for linear exponential
families such as logistic regression models, for nonnor-
mal linear models and for nonlinear regression mod-
els with heteroscedastic normal errors. Its objective is
to make higher order inference for such models avail-
able for use by those without a command of the techni-
cal details. We also describe how Markov chain Monte
Carlo may be used not only to assess conditional cov-
erage and related properties of some of our methods,
but also for inference. A related, more extended, ac-
count may be found in Brazzale, Davison and Reid
(2007), which gives many further examples. Butler
(2007) gives ample evidence for the accuracy of the
approximations that underlie some of the theory used
herein.

Section 2 outlines developments in parametric as-
ymptotics that undergird the numerical approximations
whose implementation is described in Section 3. Appli-
cation to logistic regression is described in Section 4,
where we argue that the conservatism and fragility of
exact inference in this context should lead us to pre-
fer approximation. In Section 5 we discuss regression-
scale models with nonnormal errors, outline how both
analytical approximation and Markov chain Monte
Carlo simulation may be used for approximate condi-
tional inference, and compare them empirically. Sec-
tion 6 describes how the approximate methods may be
applied to nonlinear regression models, which are of-
ten fitted using small samples from bioassays or toxi-
cological studies. The paper concludes with a brief dis-
cussion and appendices containing technical details.

2. BACKGROUND

2.1 First Order Inference

Initially we consider a parametric statistical model
with density f (y; θ), where θ ∈ � ⊆ R

d is a d-
dimensional parameter and y = (y1, . . . , yn) a vector
of continuous responses. Let L(θ) ∝ f (y; θ) denote
the likelihood and �(θ) = logL(θ) the log likelihood
functions. Under mild conditions the maximum like-
lihood estimate θ̂ may be found by solving the score

equation �θ (θ̂) = 0, and its asymptotic variance is ap-
proximated using the inverse of the observed informa-
tion matrix j (θ̂). We distinguish between quantities
of primary interest and others not of direct concern
by writing θ = (ψ,λ), where ψ is a low-dimensional
parameter of interest and λ is a nuisance parameter
whose dimension may be appreciably larger than that
of ψ . This partitioning entails corresponding splits of
the score vector �θ (ψ,λ) into �ψ(ψ,λ) and �λ(ψ,λ),
and of the observed information function j (ψ,λ) into
the sub-matrices jψψ(ψ,λ), jψλ(ψ,λ), jλψ(ψ,λ) and
jλλ(ψ,λ).

Exact inference for linear exponential families and
location-scale models was discussed by Fisher (1934)
in a paper largely ignored for many years. Even where
available, in principle, the effort needed to implement
exact methods in all but the simplest cases means they
are seldom used in practice, but are typically replaced
by asymptotic approximations derived by assuming
that the sample size n, or, more generally, some in-
formation index, tends to infinity. We then eliminate
the nuisance parameter λ by replacing it by the con-
strained maximum likelihood estimate λ̂ψ obtained by
maximizing �(ψ,λ) with respect to λ for fixed ψ . In-
ference about ψ may then be performed using the pro-
file log likelihood function �p(ψ) = maxλ �(ψ,λ) =
�(ψ, λ̂ψ). The corresponding observed information
function, jp(ψ) = −∂2�p(ψ)/∂ψ ∂ψ

T , can be ex-
pressed in terms of the full observed information func-
tion through the identity

jp(ψ) = jψψ(θ̂ψ) − jψλ(θ̂ψ){jλλ(θ̂ψ)}−1jλψ(θ̂ψ),

where θ̂ψ = (ψ, λ̂ψ). For scalar ψ , inference on the pa-
rameter of interest may be based on the Wald statistic,
jp(ψ̂)1/2(ψ̂ − ψ), score statistic, {jp(ψ̂)}−1/2�ψ(ψ,

λ̂ψ), or on the likelihood root,

r(ψ) = sign(ψ̂ − ψ)[2{�p(ψ̂) − �p(ψ)}]1/2,(1)

which have standard normal distributions up to the or-
der O(n−1/2). When the sample size is small these first
order approximations are often inaccurate, especially
in complex models.

2.2 Higher Order Inference

The keys to refining the limiting behavior of the most
important likelihood quantities are two higher order
density approximations: Barndorff-Nielsen’s (1983)
p∗ formula and the tangent exponential model pTEM

developed by Fraser, Reid and Wu (1999). Apart from
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an O(n−1) norming constant, the first gives the den-
sity of the maximum likelihood estimate at the ob-
served data and at other points having the same value
of an ancillary statistic, though these must be known.
The second is an exponential model whose distribu-
tion function at the observed data differs from that of
the conditional model by O(n−3/2) under the observed
conditioning (Fraser, Andrews and Wong, 2005). Both
approximations are exact for transformation models
and give excellent results generally. In full exponential
families they agree with the saddlepoint approximation
to the density of the minimal sufficient statistic given
by Barndorff-Nielsen and Cox (1979).

These density approximations are mainly useful for
deriving approximate distribution functions for appro-
priate pivots, from which we obtain P-values and con-
fidence intervals for the parameters of interest. For
scalar ψ , these approximate distribution functions have
the forms

�∗(r) = �(r) + φ(r)

(
1

r
− 1

q

)
(2)

and

�(r∗) = �

(
r + 1

r
log

q

r

)
,(3)

for r given at (1) and q defined as

q = |ϕ(θ̂) − ϕ(θ̂ψ) ϕλ(θ̂ψ)|
|ϕθ(θ̂)|

{ |j (θ̂)|
|jλλ(θ̂ψ)|

}1/2

,(4)

where �(·) and φ(·) represent the standard normal dis-
tribution and density functions. Here, ϕ(θ) is a repara-
metrization based at the observed data and used to
provide a third order distribution function approxima-
tion through the tangent exponential model, and ϕθ(θ)

and ϕλ(θ) represent the d × d matrix with (i, j) ele-
ment ∂ϕi/∂θj and the d × (d − 1) matrix with (i, j)

element ∂ϕi/∂λj . Special expressions for (4) can be
found in Appendix A.1. Expression (2) is known as a
Lugannani–Rice-type approximation, and the quantity
r∗ in the Barndorff-Nielsen-type approximation (3) is
known as a modified likelihood root. Under ordinary
repeated sampling, approximations (2) and (3) are ex-
act up to the third order, that is,

pr(R ≤ r; θ) = �∗(r) + O(n−3/2),

pr(R∗ ≤ r∗; θ) = �(r∗) + O(n−3/2).

In comparison, the likelihood root r itself is standard
normal only to the first order, O(n−1/2). A rather subtle
Taylor series expansion of �(r∗) around r , taking into
account the dependence of ϕ(θ) on the observed data

point, shows that �(r∗) = �∗(r) + O(n−3/2), rising
to O(n−1) if this dependence is not accommodated; in
particular the more accurate results holds for linear ex-
ponential families (Jensen, 1992), in which ϕ(θ) does
not depend on the observed data. In an exponential
family of order one, �∗(r) equals the Lugannani and
Rice (1980) tail area approximation. In the presence of
nuisance parameters, it gives the approximation due to
Skovgaard (1987).

2.3 Related Ideas

An alternative to the ideas outlined in Section 2.2 is
first to adjust the profile likelihood Lp(ψ) = exp{�p(ψ)}
to account for the presence of nuisance parameters, and
then to correct the first order statistics obtained there-
from in order to improve the standard normal approx-
imation. Pierce and Peters (1992) call these sequential
approximations, as contrasted with the more common
double approximations (Barndorff-Nielsen and Cox,
1979).

The general form of the adjusted profile likelihood is

La(ψ) = Lp(ψ)M(ψ),(5)

with suitably defined correction term M(ψ); see Ap-
pendix A.2. When an exact conditional or marginal
likelihood function for ψ exists, this is approximated
to the order O(n−1) by the adjusted profile likelihood
function. In stratified models with the number of nui-
sance parameters proportional to the number of strata,
Sartori et al. (1999) showed that M(ψ) corrects for the
presence of the nuisance parameters. The maximizing
value ψ̂a usually has a smaller finite-sample bias than
does ψ̂ , and the likelihood root ra(ψ) based on La has a
distribution that is closer to normal than does r(ψ). In-
sight into why likelihood roots obtained from adjusted
likelihoods tend to achieve most of the distributional
improvement achieved by higher order methods, de-
spite their null distribution being standard normal only
to the first order, is provided by Sartori (2003) in a two-
index asymptotics setting and by DiCiccio and Efron
(1996), who relate their findings to the bootstrap.

If the parameter of interest is vector, formula (3)
cannot be used. Skovgaard (2001) suggests adjusting
the likelihood ratio statistic w(ψ) = 2{�p(ψ̂)−�p(ψ)},
which has the χ2 distribution with d0 = dim(ψ) de-
grees of freedom up to the order O(n−1). His proposed
adjusted likelihood ratio statistic

w∗ = w{1 − w−1 logu}2,(6)

with correction term u suitably defined, is also asymp-
totically distributed as χ2

d0
, but behaves much better
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than w in small samples. If ψ is scalar, then u = r/q

with q given by (4), and (6) reduces to (r∗)2.
The above discussion applies only to continuous re-

sponse models. For discrete responses, analogous re-
sults are in general unavailable. However, for distribu-
tions such as the binomial and Poisson whose support
has, or can easily be transformed to, a lattice struc-
ture, the use of a slightly modified form of (2) pro-
vides approximations to tail probabilities with error
O(n−1) (Severini, 2000, Section 6.3.3). Pierce and Pe-
ters (1992) discuss continuity correction for the asymp-
totic approximations. As discussed in Section 4, the
uncorrected version can be interpreted as an approxi-
mation to the mid-P value (Agresti, 2002, page 20)

pmid(x;ψ) = pr(X < x;ψ) + 1
2 pr(X = x;ψ)

for a suitable lattice random variable X. Further discus-
sion is given by Pierce and Peters (1999), Davison and
Wang (2002), and Davison, Fraser and Reid (2006),
who indicate that use of r∗ unmodified in standard dis-
crete cases approximates the mid-P value with error
of the order O(n−1). From a practical point of view,
the most reassuring point is perhaps not the precise as-
ymptotic order of these approximations, but rather the
fact that they are relative, and thus give accurate values
even for small tail probabilities.

3. IMPLEMENTATION

3.1 General

Many journal pages and several books have been
devoted to the ideas sketched in Section 2, but their
widespread adoption in practice has been limited by
the lack of suitable software. The R package bundle
hoa, short for higher order asymptotics, is intended
to make these methods readily accessible by providing
easy-to-use and self-contained code for routine data
analysis with logistic regression models, nonnormal
linear models and nonlinear models with nonconstant
variance (Brazzale, 2005). These models are widely
used in applications: logistic regression is a common
tool in epidemiology and medicine; nonnormal linear
models comprise models used in survival and relia-
bility analyses; and nonlinear heteroscedastic models
are increasingly used in biostatistics, for instance, in
herbicide bioassays and ecotoxicity tests. The code is
organized as four packages, three of which—cond,
marg and nlreg—refer to the model classes just
mentioned. A fourth—csampling—contains condi-
tional sampling routines for nonnormal linear mod-
els and was used to produce the results presented

in Section 5. The code is freely available from http://
statwww.epfl.ch/AA or can be downloaded from CRAN
(http://cran.r-project.org).

The remainder of this section sketches the core ideas
that make it possible to implement higher order asymp-
totics in a numerical computing environment with lim-
ited facilities for algebraic manipulation. The issues in-
herent to the implementation for logistic and nonlin-
ear models are described in Brazzale (1999) and Bellio
and Brazzale (2003), respectively. The complete design
strategy can be found in Brazzale (2000), Chapter 6.

3.2 Building-Blocks

The complexity of the algebraic expressions in-
volved is the main obstacle to the implementation of
higher order asymptotics in numerical computing envi-
ronments, most of which have inefficient symbolic ma-
nipulation capabilities, if any at all. The key to our im-
plementation of the methods presented in Section 2 is
to identify building-blocks into which the higher order
statistics can be decomposed and which are provided
or can efficiently be handled by the computing device.
This builds upon the observation of Davison (1988)
that in linear exponential families the output of stan-
dard fitting routines suffices to calculate the q(ψ) and
M(ψ) correction terms of Section 2. Brazzale (2000),
Section 6.1, derives the corresponding building-blocks
for nonnormal linear and nonlinear heteroscedastic re-
gression models. The first of these classes is character-
ized by the design matrix X, the standardized residu-
als a, minus the logarithm of the density function of
the error term, g0(ε) = − logf (ε), and its first two
derivatives (see Brazzale, Davison and Reid, 2007,
Section 8.6.2). For nonlinear regression models the
only requirements are the mean and variance functions
μ(x;β) and w(x;β,ρ)2 and their first two derivatives
(see Brazzale, Davison and Reid, 2007, Section 8.6.3).
Two design strategies were adopted to make these
quantities available in hoa: either they are provided
by special constructs, called family objects, or they are
derived as needed by exploiting the algebraic manipu-
lation function deriv3 available in R; see Bellio and
Brazzale (2003).

3.3 Pivot Profiling

Inferences provided by fitting routines available in
statistical computing environments such as S-PLUS
and R are generally based upon first order asymptot-
ics. Most often the Wald statistic is used, because its
linearity in the interest parameter ψ yields simple read-
ily computed confidence intervals. The likelihood ratio

http://statwww.epfl.ch/AA
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statistic is parametrization-invariant, and hence more
reliable, but its nonlinearity in ψ means that construc-
tion of confidence intervals entails re-fitting the model
for all the required values of ψ . We deal with this by
using cubic splines to interpolate values of r(ψ) and
related quantities among values calculated exactly for
a grid encompassing the required range of ψ . In R this
may be achieved by using different offsets, for each of
which the necessary output is retrieved and statistics
calculated. Estimates and confidence bounds are read
off from significance functions such as (2) and (3) us-
ing the fitted splines.

Numerical interpolation of higher order solutions
works very well for analytic functions such as the pro-
file and adjusted profile likelihoods, but quantities such
as r∗ have a singularity at ψ = ψ̂ , and the numerical
values calculated may be unstable if ψ is close to ψ̂ .
This problem is particularly acute for logistic regres-
sion. Nonnormal linear models are much less affected,
and in our experience numerical instabilities are al-
most absent for nonlinear models. To avoid singular-
ities in the first two model classes, we implemented a
hybrid algorithm that uses two-step polynomial inter-
polation of the higher order statistics for values of ψ in
a small interval around ψ̂ . The higher order solutions
are expressed as polynomials of the likelihood root r ,
which itself is written as a polynomial in ψ , and the
coefficients of these polynomials are estimated by least
squares. For nonlinear models, it suffices to avoid exact
computation of the higher order statistics for values of
ψ very close to the maximum likelihood estimate.

The procedure just described represents the bulk of
the approximate conditional inference routines in the
cond, marg and nlreg packages, which enable in-
ference for the three model classes of the hoa bundle.
See Section 6.3.2 and Appendix B.2 of Brazzale (2000)
for further details.

3.4 Markov Chain Monte Carlo

The generation of observations conditional on an an-
cillary statistic is useful for inferential purposes such
as the calculation of confidence intervals and P-values
whenever the exact conditional density is unknown
or difficult to obtain without simulation. Such an ap-
proach is described in an unpublished technical report
by Casella, Wells and Tanner (1994), who emphasize
sampling-based calculations for pivotal inference us-
ing the Gibbs sampler.

Conditional inference may also be used to assess the
quality of small-sample solutions. Studies of the prop-
erties of the methods presented in Section 2 (DiCiccio,

Field and Fraser, 1990, DiCiccio and Field, 1991,
Ronchetti and Ventura, 2000) focused on their numer-
ical accuracy, stability and sensitivity to model failure.
So far as we know, there has been no numerical inves-
tigation of these properties conditional on an ancillary
statistic; Severini (1999) and Ventura (1997) grouped
their simulation results by the levels of two nearly in-
dependent functions of the ancillary, but this does not
amount to a fully conditional simulation. Trotter and
Tukey (1956) were the first to simulate conditionally
on an ancillary statistic in the special case of normal
samples, but there have been few contributions since
(Durbin, 1961; Bondesson, 1982; Fraser, Lee and Reid,
1990; Morgenthaler and Tukey, 1991).

The csampling package of the hoa bundle in-
cludes a conditional sampler for general regression-
scale models and extends Bondesson’s (1982) method
by replacing an acceptance-rejection algorithm by the
Metropolis–Hastings algorithm (Robert and Casella,
2004, Chapter 7). Section 5.2 describes a simulation
study performed using this package.

4. LOGISTIC REGRESSION

4.1 Likelihood Approximation

After the linear model, logistic regression of binary
responses y1, . . . , yn on covariates (z1, x1), . . . , (zn, xn)

is perhaps the most widely used parametric regression
procedure. Let X, Z and y denote the n×p, n× k and
n × 1 matrices whose ith rows are respectively x

T

i , z
T

i

and yi . The log likelihood

�(ψ,λ) = y
T
Zψ + y

T
Xλ

−
n∑

i=1

log{1 + exp(z
T

i ψ + x
T

i λ)}

corresponds to a linear exponential family with canon-
ical parameter (ψ,λ) and sufficient statistic (t, s) =
(Z

T
y,X

T
y), so the higher order approximations de-

scribed above are particularly simple and can be ob-
tained by re-arranging the output of standard routines
for fitting logistic models (Davison, 1988); see also
Daniels (1958), Barndorff-Nielsen and Cox (1979),
Pierce and Peters (1992) and Strawderman, Casella and
Wells (1996). Such approximations are provided by
our cond package.

EXAMPLE 1 (Urine data). For illustration, we take
data on the presence or not of crystals in urine samples
(Andrews and Herzberg, 1985, page 249). Full data
on the six quantitative covariates are available for 77
individuals, and we consider the coefficient ψ of the
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variable urea representing urea concentration (mil-
limoles/litre) in a logistic regression model also con-
taining the five other covariates and an intercept. The R
code for first order and higher order inferences is

> uri.glm <- glm( r ~ gravity + ph +
+ osmo + conduct +
+ urea + calc,
+ family = binomial,
+ data = urine )
> summary( uri.glm )
> uri.urea <- cond( uri.glm,
+ offset = urea )
> summary( uri.urea )
> plot( uri.urea )

The first two instructions fit the model by maxi-
mum likelihood and then print the results, and the
last four lines of code compute, summarize and plot
the first and higher order approximations. The max-
imum likelihood estimate and its standard error are
ψ̂ = −0.0320 (0.0161), yielding a Wald statistic of
−1.99 with two-sided P-value 2�(−1.99) = 0.047.
An approximation to the conditional maximum like-
lihood estimate and its standard error is obtained
by maximizing the adjusted profile log likelihood
and taking its curvature at the maximum; this gives
ψ̂a = −0.0276 (0.0149), yielding an approximate con-
ditional Wald statistic of −1.85 and P-value 0.064.
The 95% confidence intervals for ψ based on these
two Wald pivots are respectively (−0.0636,−0.0004)

and (−0.0568,0.0016), and those based on the likeli-
hood root r , and the modified likelihood root r∗ are

(−0.0668,−0.0025) and (−0.0587,0.0005). Thus,
the estimated coefficient changes by around 14%, more
than might be anticipated with six nuisance parame-
ters and 77 observations, and there are corresponding
changes to the confidence intervals.

Figure 1 shows two of the graphs provided by the
plot command: note the large difference between first
and higher order inference summaries, which suggests
that the latter should be used as a matter of course
with binary data models. The adjusted profile likeli-
hood corrects for the finite sample bias in the maxi-
mum likelihood estimator, in analogy to the conditional
likelihood function, while the modified likelihood root
also accounts for the nonnormality of the ordinary and
adjusted likelihood functions.

A simple information computation sheds some light
on the size of the higher order correction in the exam-
ple above. Suppose that we have independent obser-
vations y ′

1, . . . , y
′
n from the logistic density exp(y′

i −
λ − ziψ)/{1 + exp(y′

i − λ − ziψ)}2, where the zi are
known scalar covariates. The asymptotic variance vcont
of the maximum likelihood estimator of ψ based on
the continuous y′

i is a corner of the Fisher information
matrix, which is easily seen to be 3(X̃

T
X̃)−1, where

X̃ denotes the entire design matrix, whose ith row
here is (1, zi). If only the sign of the y′

i is known,
so the continuous observations are replaced by bi-
nary variables, the asymptotic variance of the maxi-
mum likelihood estimator of ψ is a corner of the ma-
trix (X̃

T
WX̃)−1, where W denotes the n × n diag-

onal matrix diag{π1(1 − π1), . . . , πn(1 − πn)}, with

FIG. 1. Graphical output comparing first (solid) and higher order (dashes) inference summaries for the urine data. Left: profile log like-
lihood �p(ψ) (solid) and adjusted profile log likelihood �a(ψ) (dashes), with horizontal gray lines indicating 0.95 and 0.99 confidence sets
for ψ . Right: likelihood root r(ψ) (solid, curved) and modified likelihood root r∗(ψ) (dashes, curved), and Wald pivots based on the profile
likelihood (solid, straight) and the adjusted profile likelihood (dashes, straight). The horizontal gray lines are at the 0.025, 0.5 and 0.975
standard normal quantiles.
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FIG. 2. Efficiency of logistic regression for estimation of ψ rel-
ative to estimation with corresponding continuous responses from
the logistic distribution, as a function of the standardized parame-
ter δ for the continuous model, for λ = 0 (solid), λ = 1 (dashes)
and λ = 2 (dots).

πi = exp(λ + ziψ)/{1 + exp(λ + ziψ)}2. The ratio of
these asymptotic variances gives some idea of the in-
formation content of the binary data compared to the
continuous data. Figure 2 shows this ratio as a func-
tion of the standardized parameter δcont = ψ/(vcont)

1/2

when the covariate z takes n = 21 equi-spaced values
ranging from −3 to 3. The maximum value 0.75 oc-
curs when λ = ψ = 0, but the ratio drops fast as δcont
increases. A value of δcont = 5 that would be easily dis-
tinguished from 0 using the continuous data would cor-
respond to a value of around 2 based on the binary data,
and this would be much less easily distinguished from
zero.

If the same computation is applied to the urine data,
then the numbers of continuous observations equiva-
lent to the 77 binary observations range from 7 to 19,
depending on the parameter considered, with a value
of 16 or so for ψ . In this light the difference between
first order and higher order results seems much more
explicable: we are fitting a model with 6 nuisance pa-
rameters to the equivalent of fewer than 20 continu-
ous observations, and so one would expect an appre-
ciable “degrees of freedom” adjustment. Section 4.2 of
Brazzale, Davison and Reid (2007) gives related dis-
cussion.

4.2 Exact Inference

In a logistic regression model, exact inference for the
interest parameter ψ is available from the conditional
density function of T given the value of S,

pr(T = t | S = s;ψ) = exp(y
T
Zψ)∑

u∈As
exp(uT Zψ)

,(7)

where As = {y :yT
X = s, y ∈ {0,1}n}. The func-

tion (7) does not depend on λ, and this greatly sim-
plifies inference (Cox, 1958). The main practical dif-
ficulty in using (7) is the enumeration of the elements
of As , but recent computational advances have brought
this into reach, at least in simple cases. One possibil-
ity is to use the network algorithm (Mehta and Patel,
1995, Mehta, Patel and Senchaudhuri, 2000) provided
by commercial software such as LogXact, but al-
though helpful in simple problems, it can be imprac-
ticably slow when there are several covariates. Forster,
McDonald and Smith (2003) propose a Markov chain
Monte Carlo algorithm for more complex models, but
as their chain may be reducible, there is no guaran-
tee that As would be fully explored even if the chain
were to be run forever. Their algorithm has been imple-
mented in the elrm package of R by Zamar, McNeney
and Graham (2007).

Apart from the enumeration of As , there are two
deeper problems, both linked to the exactness of (7):
the conservatism of exact tests and confidence inter-
vals, which leads to overly-wide intervals and overly-
large P-values, and the fragility of exact conditional in-
ference in certain discrete cases. We now discuss these,
illustrated by data with n = 16 binary responses:

y
T = (1 0 1 0 1 1 1 0

0 0 0 0 1 0 0 0),

covariate matrices

X
T = 1

2

(
2 2 2 2 2 2 2

−3 −3 −3 −3 −1 −1 −1

2 2 2 2 2 2 2 2 2
−1 1 1 1 1 3 3 3 3

)
,

Z
T = 1

2
(−3 −1 1 3 −3 −1 1 3

−3 −1 1 3 −3 −1 1 3),

and corresponding sufficient statistics s = X
T
y =

(6,−3) and t = Z
T
y = −4. In this case the full sample

space has 216 elements, reducing to 8008 and 13 ele-
ments respectively when conditioned on the first com-
ponent of s and on both components of s. We use this
example in the next two subsections.

4.3 Conservatism of Exact Inference

Exact inference in discrete response models typi-
cally leads to conservative tests and confidence inter-
vals. A striking illustration of this in the context of
simple binomial models is given by Agresti and Coull
(1998), who show how exact intervals such as that due
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FIG. 3. Exact conditional distribution of T in logistic example (step function), with �{r∗(t)} (solid), �{r(t)} (dashes), and �{r∗(t +1/2)}
(dots), shown for t = −6, . . . ,0. Left: ψ = 0. Right: ψ = 0.05. The horizontal gray lines are at 0.025.

to Clopper and Pearson (1934) are conservative for all
values of the underlying parameter, while approximate
intervals based on likelihood quantities have overall
coverage closer to the nominal level. For a variety of
viewpoints on this and some solutions, see Agresti and
Caffo (2000), Brown, Cai and DasGupta (2001) and
Geyer and Meeden (2005).

In the case of our simple example, Figure 3 shows
the lower tail of the exact conditional distribution func-
tion of T when ψ = 0, obtained by computing the gen-
erating function for the combinatorial terms; it has sup-
port on the set {−6,−5, . . . ,6}. Also shown are the
approximate conditional distributions obtained by tak-
ing �{r(t;0)}, �{r∗(t;0)}, and �{r∗(t + 1/2;0)}, for
a grid of values of t in the range (−6,6); the corre-
sponding datasets were constructed to retain the orig-
inal value of the conditioning statistic s. These ap-
proximations correspond respectively to first order and
higher order procedures, and to use of the higher or-
der procedure with a continuity correction. Use of the
function �{r∗(t;ψ)} for ψ = 0 yields a continuous ap-
proximation to the exact conditional distribution func-
tion that closely matches the mid-points of the jumps
in the step-function and thus the mid-P value.

Table 1 compares P-values and confidence limits for
these data. The results for mid-P and the modified like-
lihood root are fairly close, and give tighter inferences
than does the exact solution, which is close to the mod-
ified likelihood root, plus continuity correction. The
kink at t = 0 in the approximations involving r∗ is
due to a numerical instability. Although a different ex-
pression given as a limit for r → 0 is available, it is
rarely used in practice because errors in P-values that
are close to 0.5 are unimportant.

TABLE 1
One-sided P-values for testing ψ = 0 and limits of nominally
equi-tailed 95% confidence intervals for ψ , for the artificial

logistic regression example

P-values Limits of confidence
interval

Exact 0.0528 (−2.992, 0.158)

mid-P 0.0346 (−2.690, 0.069)

Wald 0.0399 (−2.572, 0.144)

Wald, modified 0.0475 (−2.290, 0.183)

Likelihood root, r 0.0190 (−2.950, −0.060)

Modified likelihood root, r∗ 0.0318 (−2.506, 0.050)

with continuity correction 0.0557 (−2.906, 0.172)

The equi-tailed exact confidence interval (ψ−,ψ+)

with level (1 − 2α) has limits given by the solutions to
the equations

pr(T ≥ t | S = s;ψ−) = α,
(8)

pr(T ≤ t | S = s;ψ+) = α,

whereas the limits of the intervals based on r and r∗
are the solutions in ψ of the equations

�{r(t;ψ)} = α,1 − α, �{r∗(t;ψ)} = α,1 − α,

respectively. The right-hand panel of Figure 3 shows
the conditional distribution for T for ψ = 0.05, which
for t < 0 slightly depresses the probabilities relative to
taking ψ = 0, and illustrates why the exact intervals
are wider, and hence more conservative, than are these
approximate ones: it is necessary to take ψ+ > 0.05 to
satisfy the right-hand equation in (8); in fact, the first
line of Table 1 shows that ψ+ = 0.158 is required.
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4.4 Fragility of Exact Conditional Inference

The second issue is the sensitivity of the set As , and
hence of exact conditional inference, to the matrix X.
It seems reasonable to require that small changes to X,
for instance, due to rounding of the explanatory vari-
ables, should lead to small changes in confidence in-
tervals and P-values. To test this, we jittered the sec-
ond column x2 of the matrix X in the simple exam-
ple of Section 4.2. When the elements of x2 were per-
turbed by adding normal noise with standard devia-
tion 0.01, rounded to 3 decimal places, the value of s

changed to (6,−3.013), and the support points of the
conditional distribution reduced from {−6,−5, . . . ,6}
to {−4,−2,0}. The exact tail probability for t , pr(T ≤
t | S = s;ψ = 0), changed from 0.0528 to 0.3333, and
mid-P from 0.0347 to 0.167, but �{r∗(t)} changed
only from 0.0318 to 0.0316.

An attempt to assess the fragility of the inference for
the urine data failed: when the covariates are scaled to
zero mean and unit variance, and rounded to the near-
est integer, giving 5–6 rounded values for each covari-
ate, one million iterations of the algorithm described
by Forster, McDonald and Smith (2003), designed to
enumerate the conditional sample space for the urea
effect, found 13 support points. A Markov chain run
with rounding to the first decimal place failed to move
at all, suggesting that, with this degree of precision in
the covariates, the conditional distribution for the urea
effect is degenerate. Thus, exact conditional inference
seems to be out of reach for these data.

To compare more systematically the effects of per-
turbing the covariate on exact and approximate con-
ditional inferences, we repeated this experiment 1000
times, by adding noise with standard deviation 0.01 to
x2, and rounding to different precisions. Table 2 gives
the sizes of the resulting conditional sample spaces.

TABLE 2
Changes in number of support points of conditional sample space
for a logistic regression model when a covariate is perturbed by
adding small amounts of noise, rounded to different numbers of
decimal places. As the number of decimal places increases, the

conditioning becomes increasingly restrictive

Number of support points of conditional sample spaceDecimal
places 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1000
2 9 8 16 13 33 50 65 103 150 206 181 138 28
3 129 212 191 167 141 101 38 15 4 1 1
4 730 221 46 3

Small changes to the covariates may sharply change
the conditional sample space, and thus may severely af-
fect exact conditional inferences and derived quantities
such as mid-P values, but the approximate conditional
inferences barely change: for each level of round-
ing, the average values of r and r∗ were −2.076 and
−1.855 across the 1000 simulated datasets, with stan-
dard errors of around 0.004 and 0.0035 for all levels of
rounding; the values of r and r∗ are of course constant
when rounding to one decimal place. The mid-P val-
ues are computed with respect to the exact distribution,
and hence are very sensitive to changes in the covari-
ates; the ‘approximating mid-P value’ �(r∗) might in
such cases be regarded as having been computed from
an approximating continuous distribution (Davison and
Wang, 2002).

These results supplement the finding of Pace, Salvan
and Ventura (2004) that rounding of the response has
little effect on higher order likelihood procedures.

5. REGRESSION-SCALE MODELS

5.1 Exact Inference

Nonnormal linear models, also known as regression-
scale models, belong to the wider class of transforma-
tion models. They may be written using matrix notation
as

y = Xβ + σε,(9)

where X is a fixed n × p design matrix with unknown
regression coefficient β ∈ R

p , σ > 0 is a scale parame-
ter, and ε = (ε1, . . . , εn) represents an n-dimensional
vector of errors which are independently and iden-
tically distributed according to a known though not
necessarily normal density f (·) on R. If the maxi-
mum likelihood estimates (β̂, σ̂ ) exist and are finite,
there exists a one-to-one change of variables from y =
(y1, . . . , yn) to (β̂, σ̂ , a), where ai = (yi − x

T

i β̂)/σ̂ ,
i = 1, . . . , n, are the standardized residuals of the
model and x

T

i is the ith row of X. The pair (β̂, σ̂ )

forms a transformation variable, whereas the vector
of standardized residuals a = (a1, . . . , an) is ancillary
with respect to β and σ . As shown by Fraser (1979),
Section 6.1.5, the functionally unique separation of β

and σ is obtained from the pivots Z1 = (β̂ − β)/σ̂ and
Z2 = σ̂ /σ , whose joint distribution given a is known
up to a normalizing constant. Fisher (1934), Fraser
(1979) and others suggest that inference on the para-
meters (β, σ ) should be made conditionally on a. Con-
ditional confidence intervals for single parameters are
based on the marginal densities of the corresponding
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pivots, obtained by integrating out the remaining com-
ponents in

fZ1,Z2|a(z1, z2 | a)
(10)

= c(a)zn−1
2

n∏
i=1

f {(xT

i z1 + ai)z2}|XT
X|1/2.

Lawless (1972, 1973, 1978) gives applications to
Cauchy, logistic, Weibull, and extreme value distrib-
utions and, Kappenmann (1975) to the Laplace distrib-
ution under a location-scale model.

Exact calculation of the marginal distribution for the
pivots of interest usually involves multidimensional
numerical integration, and can be difficult. For in-
stance, the normalizing constant is given by

c(a)−1 =
∫ +∞

0

∫ +∞
−∞

· · ·
∫ +∞
−∞

zn−1
2

·
n∏

i=1

f {(xT

i z1 + ai)z2}

· |XT
X|1/2 dz11

· · · dz1p dz2,

where z1l = (β̂l − βl)/σ̂ . The required computational
effort rapidly becomes infeasible, especially if the
number of parameters is large and the dimension of
the interest parameter is low. There are two ways to
overcome this problem. The first is to use the higher or-
der theory presented in Section 2, which applies rather
naturally to regression-scale models. The tail area ap-
proximations (2) and (3) agree with those proposed by
DiCiccio, Field and Fraser (1990) and by Fraser, Lee
and Reid (1990) for the marginal distribution functions
of the pivots Z1 and Z2. All these methods are avail-
able through the package marg of the hoa bundle,
which is equivalent in its design, syntax and use to the
cond package. Examples of application are given in
Section 5.2 of Brazzale, Davison and Reid (2007) and
in Section 5.3.2 of Brazzale (2000).

The second way to avoid numerical calculation of
the normalizing constant in (10) is to use Markov chain
Monte Carlo (MCMC) techniques to simulate from the
conditional distribution.

5.2 Monte Carlo Simulation

Classical simulation techniques generate observa-
tions that are independent and identically distributed by
sampling directly from the target density. In our case
this is not possible, as the normalizing constant c(a)

in (10) is generally unknown. Among possibilities for

dealing with this are the conditional sampler available
through the rsm.sample routine of the csampling
package, which implements the Metropolis–Hastings
algorithm. This routine samples not from the condi-
tional density (10) of the pivots, but from that of the
maximum likelihood estimates (β̂, σ̂ ), namely,

f
β̂,σ̂ |a(β̂, σ̂ | a;β,σ)

= c(a)
σ̂ n−p−1

σn

n∏
i=1

f [{xT

i (β̂ − β) + σ̂ ai}/σ ](11)

· |XT
X|1/2.

Because of the one-to-one relationship between the
maximum likelihood estimates and the pivots (Z1,Z2)

given a, both approaches yield the same results, but
sampling from (11) makes it easier to investigate the
distributions of higher order statistics. The pseudo-
code for the conditional sampler may be written as:

• Choose a candidate generation density
fc(·).

• Choose an initial value (β̂0, σ̂0).

• For t = 1, . . . , T

1. Generate (β̂c, σ̂c) from fc(·). Take

(β̂t , σ̂t ) =

⎧⎪⎪⎨
⎪⎪⎩

(β̂c, σ̂c)

with probability π,

(β̂t−1, σ̂t−1)

with probability 1 − π,

where

π = min
{

f (β̂c, σ̂c | a;β0, σ0)fc(β̂t−1, σ̂t−1)

f (β̂t−1, σ̂t−1 | a;β0, σ0)fc(β̂c, σ̂c)
, 1

}
,

a is the ancillary and (β0, σ0) the si-
mulation parameters.

2. Reconstitute the sample yt = (y1t , . . . , ynt ),

where yit = x
T

i β̂t + σ̂t ai .

The main implementation issue is the choice of fc(·).
We found it best to make the transformation log σ̂ ,
giving the target density support R

p+1, and to sample
from a multivariate Student t distribution with low de-
grees of freedom and with shape close to that of the
target density. Details can be found in Brazzale (2000),
Chapter 7.

The following two subsections summarize the re-
sults of a study inspired by Example 3 of DiCiccio,
Field and Fraser (1990). The rsm.sample routine
was used to retrieve the empirical distribution of the
pivots Z1 = (β̂ −β)/σ̂ and Z2 = σ̂ /σ for a fixed value
of the ancillary statistic, and to investigate the empiri-
cal accuracy of the tail area approximations (2) and (3).
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5.3 Conditional Distribution of Pivotal Quantities

We considered a sample of size n = 10 from a linear
regression model with the 10 × 6 design matrix

X
T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.686 0.640 0.908 0.886 0.508
0.566 0.632 0.130 0.480 0.669

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1

0.255 0.197 0.056 0.646 0.317
0.930 0.869 0.204 0.961 0.321

1 1 1 1 1
0.255 0.197 0.056 0.646 0.317
0.930 0.869 0.204 0.961 0.321

1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and errors that follow the standard log-Weibull distri-
bution. This is a rather extreme scenario, with only 4
residual degrees of freedom and with highly correlated
estimators of the regression coefficients. The sample
configuration a on which to condition was chosen by
random sampling from the standard log-Weibull distri-
bution using the same parameter values as in DiCiccio,
Field and Fraser (1990). We repeated the study for
various choices of a, all of which yielded similar re-
sults. The candidate generation density—a multivari-
ate t5 distribution—was rescaled and centered so as to
optimize the acceptance rate, of about 25% and 30%, as
was assessed in a pilot study. According to Corollary 4
of Tierney (1994), the resulting Markov chain is uni-
formly ergodic. The sampler was run for T = 100,000
iterations, reached stationarity very quickly, and mixed
well. The corresponding R code is given in the demon-
stration file for the csampling package.

Figure 4 shows the conditional distributions of the
pivots Z13 = (β̂3 − β3)/σ̂ and logZ2 = log(σ̂ /σ ) for

a particular choice of the sample configuration a. Both
distributions are notably nonnormal; the finite sample
distribution of logZ2 is, furthermore, heavily biased.
Non-normal distributions were also observed for the
remaining five regression coefficients. Table 3 com-
pares the exact distribution functions of the two pivots
with the approximations obtained from the likelihood
root r and the modified likelihood root r∗. The first
order approximation performs rather poorly, especially
for the scale parameter, while the third order solution
competes well in this rather extreme scenario.

5.4 Accuracy of Higher Order Approximations

Table 4 of DiCiccio, Field and Fraser (1990) reports
the overall rates of noncoverage of the one-sided con-
fidence intervals obtained from r and �∗ for the para-
meters β1, β3 and logσ with a simulation of size 1000.
However, as the authors themselves remark, these as-
sessments are in terms of unconditional rather than
conditional coverage.

Our Table 4 extends Table 4 of DiCiccio, Field and
Fraser (1990): it gives the conditional rates of noncov-
erage of upper and lower confidence limits for the para-
meters β1, β3 and logσ obtained from the signed likeli-
hood root pivot r , and the third order tail area approx-
imations (2) and (3), for a particular choice of a. For
the regression coefficients, the likelihood root yields
confidence intervals which are too short, while the two
higher order pivots work well. First order confidence
intervals for logσ are heavily biased. Furthermore,
we observed the feature mentioned by DiCiccio, Field
and Fraser (1990): the tail area approximation �∗(r)
breaks down. In about two-thirds of the samples the
tail area exceeds 1. This is a drawback of Lugannani–
Rice-type approximations, which need not give val-
ues within the interval (0,1). The modified likelihood
root r∗ does not suffer from this drawback and provides

FIG. 4. Histograms of the pivots Z13 and Z2 generated by the Metropolis–Hastings sampling (100,000 iterations). Only every 50th value
is taken, after having discarded an initial sequence of length 5000.
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TABLE 3
Exact and approximate tail probabilities for the pivots Z13 and logZ2 in the log-Weibull regression model with n = 10 and p = 6

considered by DiCiccio, Field and Fraser (1990), Example 3, for a particular choice of a. The approximations considered are �(r) and
�(r∗), where r and r∗ are the likelihood root and its third order modification. The exact distribution was generated by the

Metropolis–Hastings sampling (100,000 iterations, burn-in 5000)

Pr(Z13 ≤ z)

z −52.3 −38.6 −29.0 −20.1 21.8 30.6 40.6 55.3

exact 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
�(r) < 0.001 < 0.001 0.001 0.008 0.996 0.999 1.000 1.000
�(r∗) 0.006 0.016 0.035 0.082 0.913 0.962 0.984 0.995

Pr(logZ2 ≤ z)

z −2.13 −1.89 −1.69 −1.46 −0.30 −0.16 −0.05 0.07

exact 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
�(r) < 0.001 < 0.001 < 0.001 < 0.001 0.170 0.295 0.433 0.586
�(r∗) 0.003 0.009 0.021 0.052 0.837 0.912 0.954 0.979

satisfactory values. Some insight into why this happens
is provided by Figure 5, which shows the normal Q–Q
plots of r and r∗ for β4 and σ . The finite-sample dis-
tribution of r(σ ) is heavily biased with respect to the

standard normal, whereas the tails of the distribution
of r(β4) are too heavy. As noted in the previous para-
graph, the conditional distributions of the maximum
likelihood estimators are far from normal, so first or-

TABLE 4
Conditional rates of noncoverage of confidence intervals for β1, β3 and logσ in the log-Weibull regression model with n = 10 and p = 6
considered by DiCiccio, Field and Fraser (1990), Example 3, for a particular choice of a. The tail area approximations used are based on

the likelihood root, �(r), on its higher order modification, �(r∗), and the third order quantity, �∗(r). The coverages were calculated using
a Metropolis–Hastings chain of length 100,000 after having discarded the first 5000 values. The coverages of confidence intervals for logσ

using �∗(r) are not given, as this statistic breaks down

Upper confidence limit Lower confidence limit

Nominal �(r) �(r∗) �∗(r) �(r) �(r∗) �∗(r)

β1 0.5 7.96 0.91 0.41 11.16 0.89 0.33
1 10.53 1.71 0.85 14.05 1.58 0.52
2.5 15.28 3.65 2.24 18.79 3.36 1.29
5 19.61 6.37 4.45 23.07 6.19 2.81

10 25.19 11.88 9.77 28.87 11.76 6.60
25 36.19 25.98 25.22 39.05 26.71 23.63

β3 0.5 8.29 0.86 0.35 10.89 1.03 0.40
1 10.64 1.73 0.79 14.29 1.72 0.67
2.5 15.15 3.89 2.22 19.23 3.69 1.69
5 19.43 6.66 4.69 23.58 6.11 3.32

10 25.24 11.82 9.63 29.61 11.30 6.76
25 35.68 26.24 25.66 40.05 25.50 21.83

logσ 0.5 44.38 1.53 – 0.00 0.34 –
1 53.46 2.69 – 0.00 0.51 –
2.5 65.68 5.66 – 0.00 1.17 –
5 75.14 9.53 – 0.01 2.64 –

10 83.66 17.10 – 0.06 5.97 –
25 93.46 35.88 – 0.40 16.85 –
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FIG. 5. Normal Q–Q plots of r (solid line) and r∗ (bold line) for β4 (left panel) and σ (right panel) obtained from the Metropolis–Hastings
sampling (100,000 iterations), with diagonal line indicating perfect fit. The Q–Q plots only use every 50th simulated value, after having
discarded an initial sequence of length 5000.

der asymptotics are not useful. Surprisingly, r∗ works
well for all seven parameters, especially since there are
just n = 10 observations.

6. NONLINEAR MODELS

Nonlinear models are widely used in applied statis-
tics, especially for modeling dose-response curves. We
consider the general form

yij = μ(xi;β) + w(xi;β,ρ)εij ,
(12)

i = 1, . . . ,m, j = 1, . . . , ni,

where m is the number of design points, ni the number
of replicates at design point xi , yij represents the re-
sponse of the j th experimental unit in the ith group,
and the errors εij are independent N(0,1) variates.
The mean response is given by the nonlinear function
μ(xi;β), which depends on a vector of unknown re-
gression coefficients β , while the function w(xi;β,ρ)

may also depend on a vector ρ of variance parame-
ters. If w(·)2 is constant, (12) becomes the classical
nonlinear regression model. Inference on β and ρ is
commonly based on first order approximations and lin-
earization techniques (Seber and Wild, 1989, Chap-
ter 5), plus graphical summaries such as profile and
contour plots (Bates and Watts, 1988, Section 6.1),
which allow one to assess the quality of distributional
approximations for the likelihood ratio and Wald sta-
tistics. Bellio and Brazzale (1999) show that nonlin-
earity of the mean function and variance heterogene-
ity can lead to substantial inaccuracies in first order
inferences, especially for the variance parameters, un-
less the sample size is large. This may be overcome

using the higher order solutions presented in Section 2,
which are relatively easily derived in this case (Bellio,
Jensen and Seiden, 2000). To do so, we re-write (12) as
a curved exponential family of order (2m,d), where d

is the dimension of the parameter θ = (β,ρ). Expres-
sions for the quantities needed to calculate the cor-
rection terms q(ψ), M(ψ) and u(ψ) are listed in
Brazzale, Davison and Reid (2007), Sections 8.6.2 and
8.6.3. We now present results of a data analysis per-
formed with the nlreg package of the hoa bundle.
Further examples may be found in Brazzale, Davison
and Reid (2007), Chapters 5 and 6.

EXAMPLE 2 (Herbicide bioassay). Data set C3 of
the nlreg package concerns an in vitro bioassay on
the action of the herbicide chlorsulfuron on the callus
area of colonies of Brassica napus L., also known as
oilseed rape. The experiment is described in Seiden,
Kappel and Streibig (1998) and consists of n = 51
measurements of the callus area (in mm2) for m = 10
different dose levels (in nmol/l). The design is un-
balanced, as the number of replicates per dose varies
from 5 to 8. Bellio, Jensen and Seiden (2000) discuss a
model where the response variable is the logarithm of
the callus area and the mean function is the logarithm
of the four-parameter logistic function

μ(x;β) = β1 + β2 − β1

1 + (x/β4)β3
, x ≥ 0.(13)

This yields a sigmoidal curve which decreases from an
initial value β2 to a limiting value β1 when the concen-
tration x tends to infinity. The parameter β3 determines
the shape of the curve, and β4 corresponds to the EC50.
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A preliminary data analysis further suggests that the re-
sponse variance might slightly decrease with its mean.
The same authors suggest using the error-in-variable
variance function

w(x;β,κ, γ, σ 2)2

= σ 2
[
1 + κxγ

{
∂μ(x;β)/∂x

μ(x;β)

}2]
,(14)

κ, γ, σ 2 > 0,

where κ , γ and σ 2 are variance parameters.
The R code for first and higher order inference for

the nonlinear model defined by (13) and (14) is
> C3.nl <-
+ nlreg(formula = log(area)~
+ log(b1+(b2-b1)/
+ (1+(dose/b4)^b3))
+ weights = ~(1+((k*dose^g*
+ (b2-b1)^2)/
+ (1+(dose/b4)^b3)^4*
+ b3^2*dose^(2*b3-2))/
+ b4^(2*b3)/(b1+(b2-b1)/
+ (1+(dose/b4)^b3))^2),
+ start = c(b1=2.2, b2=1700,
+ b3=2.8, b4=0.28,
+ g=2.7, k=1),
+ control = list(x.tol=1e-12,
+ rel.tol=1e-12,
+ step.min=1e-12),
+ data = C3, hoa = TRUE )
> summary( C3.nl )
> C3.prof <- profile( C3.nl,
+ offset = "all" )
> contour( C3.prof, offset1 = b2,
+ offset2 = k, alpha = 0.95 )
> summary( ria.prof, twoside = TRUE )

The formula and weights arguments in the
nlreg fitting routine determine respectively the mean
and variance functions μ(·) and w(·)2. The maximum
likelihood estimate of σ 2 is available in closed form,
but starting values for the other parameters must be
provided through the start argument. All compu-
tations for σ 2 use the logarithmic scale. Because of
the highly nonlinear model structure, we must refine
the convergence criteria through the control ar-
gument. We obtain β̂1 = 2.206 (0.415), β̂2 = 1662
(117), β̂3 = 2.841 (0.360), β̂4 = 0.2752 (0.0452), γ̂ =
2.605 (0.793), κ̂ = 1.009 (0.580) and log σ̂ 2 = −1.888
(0.234). The values in brackets are the standard er-
rors, as returned by a call to summary. The option
hoa=TRUE indicates that higher order solutions will
be used in the subsequent calculations.

The profile and contour methods extend the
original algorithm of Bates and Watts (1988), Chap-
ter 6, to the higher order solutions presented in Sec-
tion 2. The core routine is based upon pivot profil-
ing as described in Section 3.3. By default, it com-
putes the higher order statistics developed by Skov-
gaard (1996, 2001), although Fraser, Reid and Wu’s
(1999) version is available by setting stats="fr".
The option offset="all" means that all model pa-
rameters are to be profiled. Figure 6 shows the 95%
approximate bivariate contour plots of the Wald, likeli-
hood ratio and w∗ pivots for the parameters β2 and κ .
The contours are plotted on the original scale (right
panel) and on the r scale (left panel), respectively. On
the latter scale the units are those of the likelihood root
statistics. The more elliptical the contours are, the more
quadratic is the likelihood; the closer the curves for w

and w∗, the better the behavior of first order inferences.

FIG. 6. Herbicide bioassay: data set C3. Approximate bivariate contour plots and profile traces for the parameters β2 and κ obtained with
the contour method of the nlreg package (α = 0.05). The pivots used are as follows: likelihood root (—), modified likelihood root w∗
(—) and Wald (- - -). Right panel: original scale; left panel: r scale.
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The profile traces also shown represent the constrained
maximum likelihood estimates of one parameter as a
function of the other and show how the estimates af-
fect each other. If the asymptotic correlation is zero,
the angle between the traces is close to π/2, while an
angle close to zero indicates strong correlation.

Two-sided confidence intervals can be obtained us-
ing the summary function. The 95% confidence in-
tervals for the parameter κ are (−0.1270,2,145),
(0.2697,3.096), (0.3264,3.546) and (0.3321,3.803)

for respectively the Wald, r and r∗ pivots, these last
computed using Skovgaard’s (1996) and Fraser, Reid
and Wu (1999) formulation. Both versions of r∗ and
the likelihood root, but not the Wald statistic, let us re-
ject the null hypothesis of a constant variance function
at the 5% level.

A common problem in nonlinear heteroscedastic re-
gression is the estimation of the variance parame-
ters, whose maximum likelihood estimators are usually
heavily biased. More accurate estimates can be ob-
tained from the adjusted profile likelihood using the
fitting routine mpl:

> C3.mpl <- mpl( C3.nl )
> summary( C3.mpl )

We obtain γ̂a = 2.654 (0.834), κ̂a = 1.081 (0.711) and
log σ̂a = −1.825 (0.248), when the correction term
M(ψ) is based upon the p∗ density approximation.
The pTEM approximation yields γ̂a = 2.650 (0.833),
κ̂a = 1.092 (0.721) and log σ̂a = −1.827 (0.248). The
standard errors are obtained from the profile informa-
tion matrix jp(ψ̂); this is possible because |ja(ψ̂)| =
|jp(ψ̂)|{1 + Op(n−1)} and ψ̂a − ψ̂ = Op(n−1). The
distance between the values obtained from the profile
likelihood and the adjusted profile likelihood functions
gives an idea of the bias of the ordinary maximum like-
lihood estimators. It is reassuring that both versions of
the adjusted profile likelihood yield similar estimates.

7. DISCUSSION

The purpose of this paper is to show that highly ac-
curate likelihood methods may be routinely used in
data analysis, both to check whether standard approx-
imations are adequate and to supplement them when
they are inadequate. Libraries are available that imple-
ment these procedures for a variety of common models.
Although available for the numerical computing en-
vironment R, it would be relatively straightforward to
modify them for other packages. The classes of mod-
els discussed in this paper form a small subset of those

used in practice, but the same ideas can be extended
to other classes for which some unifying structure can
be identified, so that a common statistical computation
setup is possible; see, for example, Guolo, Brazzale
and Salvan (2006). In other cases a general approach
requiring a small amount of programming is described
by Brazzale, Davison and Reid (2007), Section 9.5.

In our work we have focused on so-called double
saddlepoint approximations, although sequential sad-
dlepoint approximations leading to inference based
on expressions such as (5) should also be mentioned
(Pierce and Peters, 1992; DiCiccio and Martin, 1993).
The maximum likelihood estimator ψ̂a provides good
point estimates, for example, when estimating the vari-
ance parameters in a linear or nonlinear regression
model; the bias correction is essentially what is pro-
vided by the use of REML through maximization of the
restricted likelihood function. If an adjusted profile log
likelihood derived from (5) is available, comparison of
it with the corresponding profile log likelihood �p(ψ)

gives valuable information about the bias of the max-
imum likelihood estimator, and if the adjusted profile
log likelihood, logLa(ψ), is close to quadratic, then
it should be safe to base inference for ψ on the cor-
responding likelihood root statistic ra(ψ). However, if
the profile log likelihoods are asymmetric, then infer-
ence based on r∗(ψ) or, if available, r∗

a (ψ), will be
preferable. For instance, the asymmetry of both curves
in the left-hand panel of Figure 1 is a warning to avoid
using Wald statistics.

Different expressions are available for the correction
terms q(ψ) and M(ψ) in (4) and (5). Though almost
equivalent from the analytical and the numerical points
of view, preference for one version or the other is not
merely a matter of taste. Expression (15) in Appen-
dix A.1 requires the availability of an exact ancillary
statistic, and this is rarely the case. Skovgaard’s (1996)
sample space approximations circumvent this problem,
but require the calculation of the covariances that are
involved. Expression (16) of the Appendix is more ver-
satile both in its derivation and implementation, but it
seems unclear if it applies to dependent data. Bellio and
Sartori (2006) illustrate the versatility of the higher or-
der methods discussed in this paper.

A parallel literature on analytical approximations for
Bayesian inference based on marginal posterior densi-
ties leads to remarkably similar expressions. Both the
conceptual and mathematical developments are sim-
pler, the first because arguments involving ancillarity
are not required in the Bayesian paradigm, and the
second because Laplace approximation for integrals is
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used (Tierney and Kadane, 1986, Tierney, Kass and
Kadane, 1989, DiCiccio, Field and Fraser, 1990). Ele-
mentary expositions are given by Davison (2003), Sec-
tion 11.3.1 and Brazzale, Davison and Reid (2007),
Section 8.7. The relation with matching and noninfor-
mative priors (Tibshirani, 1989, Reid, Mukerjee and
Fraser, 2002) yields a close but imperfect rapproche-
ment between objective Bayesian and Fisherian ap-
proaches. If so, the Holy Grail of objective statistical
inference sought by Jeffreys and Fisher will have been
reached—at least approximately! A recent example of
this rapprochement is given by Davison and Sartori
(2008).

Almost all the literature on higher order likelihood
inference concerns regular models, yet nonregular situ-
ations are of growing interest. Testing for zero variance
components plays a role in both spline smoothing ap-
plications and in generalized linear mixed models, for
example, and the boundary hypotheses this entails lead
to modifications of the usual limiting distributions. It
would be valuable to have accurate and practicable an-
alytical approximations for the more common nonreg-
ular situations. A first step in this direction is made by
Castillo and López-Ratera (2006).

We have mainly discussed analytical approxima-
tions, but DiCiccio, Martin and Stern (2001), Lee and
Young (2005), and DiCiccio and Young (2008) have
used the parametric bootstrap to achieve high accuracy.
As yet, the properties of this approach are understood
only in certain, albeit important, cases, and rather large
simulations seem to be needed for it to give solid gains
over analytical approximation, which we believe to be
sufficiently accurate for most applications. Differences
in the first two decimal places of a P-value may in-
fluence decisions taken in practice, while variation in
further places is crucial only in exceptional cases.

In this paper our concern is with implementation
of accurate likelihood inference, which typically en-
tails the elimination of parameters from likelihoods, by
appropriate, often approximate, conditioning or mar-
ginalization. The different roles of conditioning in in-
ference have been aired at length in the literature, and
the interested reader may refer to Cox (1988) or Reid
(1995), for instance, for more general discussion on
this topic. The discussion of Section 4 might be mis-
interpreted as an attack on conditional inference, but
it is rather intended to point out that the properties of
statistical procedures labelled ‘exact’ merit critical ex-
amination. So-called exact inference may come at too
high a price.

Why seek highly accurate inferences for a model that
may be incorrect? Although we entirely agree that the
robustness of conclusions plays a key role in applied
work, we believe that this question is slightly beside
the point. Provided the assumed model is found empiri-
cally acceptable, checking and, if necessary, improving
the usual basis for inference seems worthwhile, even
if the model might be falsified based on a larger sam-
ple. A Jesuitical reply might be: faced with an appar-
ently Gaussian sample of size ten, should one base in-
ference for its mean on a normal approximation or on
the Student t distribution? A reader who would opt for
the latter should also be willing on occasion to use the
approaches described above. It would be worrying if
the higher order methods were very sensitive to model
failure, but published and unpublished work on this
(Fraser, Wong and Wu, 1999, Bellio, 2000), as well as
our own limited simulations, suggest that there is no
dramatic breakdown of them under small model pertur-
bations. It would be reassuring to have more evidence
of this, however.

We hope that this paper will encourage others to use
higher order methods in their applied work: a recipe
may be appetizing in theory, but the proof of a pudding
is in the eating.

APPENDIX: HIGHER ORDER APPROXIMATIONS

A.1 Modified Likelihood Root

The key element in using the modified likelihood
root is the form of (4), whether computed using ϕ(θ)

or using equivalent expressions.
Barndorff-Nielsen (1983) gives

q1 = |�;θ̂ (θ̂ ) − �;θ̂ (θ̂ψ) �
λ;θ̂ (θ̂ψ)|

|�
θ;θ̂ (θ̂ )|

(15)

·
{ |j (θ̂)|

|jλλ(θ̂ψ)|

}1/2

,

where the data vector y in �(θ;y) is expressed as a
one-to-one function of the maximum likelihood esti-
mator θ̂ and of an ancillary statistic a, whose distribu-
tion does not depend on θ . Expression (15) is obtained
by formally setting ϕ(θ)

T = �;θ̂ (θ; θ̂ , a). The numer-
ator on the right-hand side of (15) is the determinant
of a d × d matrix whose first column is the difference
of sample-space derivatives �;θ̂ (θ̂ ) − �;θ̂ (θ̂ψ), defined

as �;θ̂ (θ) = �;θ̂ (θ; θ̂ , a) = ∂�(θ; θ̂ , a)/∂θ̂ , and whose
remaining columns comprise the d × (d − 1) matrix
of mixed derivatives �

λ;θ̂ (θ) = ∂2�(ψ,λ; θ̂ , a)/∂θ̂ ∂λ
T
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evaluated at the constrained estimate θ̂ψ . The denom-
inator contains the d × d matrix of mixed derivatives
�
θ;θ̂ (θ) = ∂2�(θ; θ̂ , a)/∂θ̂ ∂θ

T evaluated at θ̂ .
A difficulty in using (15) is the need to differenti-

ate �(θ;y) partially with respect to the maximum like-
lihood estimator θ̂ , while holding fixed the value of
a full-dimensional ancillary statistic a. Fraser, Reid
and Wu (1999) bypass this difficulty in several ways.
First, they note that only a second order, approximate,
ancillary is needed, so the results apply to a broader
range of models. Second, the ancillary is needed only
at the observed data point, and this is given by tangents
(V1, . . . , Vd) defined in the directions corresponding to
fixed values of the ancillary. Third, any differentiation
in these directions is allowed, but differentiation with
respect to θ̂ is irrelevant. Thus, the nominal reparame-
terization can be given as ϕ(θ)

T = �;V (θ;y) using di-
rectional derivatives and yielding an expression which
compares directly with (15),

q2 = |�;V (θ̂) − �;V (θ̂ψ) �λ;V (θ̂ψ)|
|�θ;V (θ̂)|

(16)

·
{ |j (θ̂)|
|jλλ(θ̂ψ)|

}1/2

.

Here, ϕ(θ) is the canonical parameter of an expo-
nential family with sufficient statistic s = s(y) =
∂�(θ̂0;y)/∂θ , the score function evaluated at the maxi-
mum likelihood estimate θ̂0 for a fixed point y0, which
approximates the true model locally at y0 with a rela-
tive error of the order O(n−3/2) and whose log likeli-
hood function and first derivative with respect to θ at
the fixed point y0 equal those of the original model.
The canonical parameter ϕ is defined using a set of n

vectors of length d through an n × d matrix V , with
rows V1, . . . , Vn, where �;V (θ;y) indicates that the log
likelihood is differentiated on the surface spanned by
the columns of V . If the observations y1, . . . , yn are in-
dependent, then �;V (θ;y) = ∑n

i=1 Vi∂�(θ;y)/∂yi . In
the continuous case, the Vi can be constructed as

V = −
(

∂z

∂yT

)−1(
∂z

∂θ T

)∣∣∣∣
θ=θ̂

,

using a vector of pivotal quantities z = {z1(y1, θ), . . . ,

zn(yn, θ)}, where each component zi(yi, θ) has a fixed
distribution under the model. In the continuous case
such a vector always exists in the form of the proba-
bility integral transformation F(yi; θ).

Skovgaard (1996) develops an approximation to q1,
which avoids specification of a by approximating the

sample space derivatives in (15) as

�;θ̂ (θ̂ ) − �;θ̂ (θ̂ψ)
.= {i(θ̂ )}−1j (θ̂)Q(θ̂, θ̂ψ),

�
θ;θ̂ (θ̂ψ)

.= {i(θ̂ )}−1j (θ̂)S(θ̂ , θ̂ψ),

using moments of quantities such as the expected
Fisher information i(θ) and the covariances

S(θ1, θ2) = covθ1{�θ (θ1), �θ (θ2)},
Q(θ1, θ2) = covθ1{�θ (θ1), �(θ1) − �(θ2)}.

The covariances S and Q are often readily computed,
either analytically or by simulation, though the result-
ing tail area approximation has error O(n−1) rather
than O(n−3/2). In an as-yet unpublished work, Fraser
and Reid (2009) point out that this version may be ob-
tained by replacing ϕ(θ) by ∂E{�(θ;y); θ0}/∂θ0, eval-
uated at θ0 = θ̂ .

A.2 Adjusted Profile Likelihood

The correction term M(ψ) can be derived using
the p∗ approximation,

M1(ψ) = |jλλ(θ̂ψ)|1/2/|�
λ;λ̂(θ̂ψ)|,

which gives rise to Barndorff-Nielsen (1983) modi-
fied profile likelihood, or using the tangent exponential
model,

M2(ψ) = |jλλ(θ̂ψ)|1/2/|ϕλ(θ̂ψ)
T
V̂λ|,

where V̂λ is the n × (d − d0) matrix obtained from
V̂ = V (θ̂) by omitting the columns which relate to the
parameter of interest (Fraser, 2003).
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