
Statistical Science
2007, Vol. 22, No. 4, 523–539
DOI: 10.1214/07-STS227
© Institute of Mathematical Statistics, 2007

Demystifying Double Robustness:
A Comparison of Alternative Strategies for
Estimating a Population Mean from
Incomplete Data1

Joseph D. Y. Kang and Joseph L. Schafer

Abstract. When outcomes are missing for reasons beyond an investigator’s
control, there are two different ways to adjust a parameter estimate for co-
variates that may be related both to the outcome and to missingness. One
approach is to model the relationships between the covariates and the out-
come and use those relationships to predict the missing values. Another is
to model the probabilities of missingness given the covariates and incorpo-
rate them into a weighted or stratified estimate. Doubly robust (DR) proce-
dures apply both types of model simultaneously and produce a consistent
estimate of the parameter if either of the two models has been correctly spec-
ified. In this article, we show that DR estimates can be constructed in many
ways. We compare the performance of various DR and non-DR estimates of
a population mean in a simulated example where both models are incorrect
but neither is grossly misspecified. Methods that use inverse-probabilities as
weights, whether they are DR or not, are sensitive to misspecification of the
propensity model when some estimated propensities are small. Many DR
methods perform better than simple inverse-probability weighting. None of
the DR methods we tried, however, improved upon the performance of sim-
ple regression-based prediction of the missing values. This study does not
represent every missing-data problem that will arise in practice. But it does
demonstrate that, in at least some settings, two wrong models are not better
than one.
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1. INTRODUCTION

1.1 Purpose

A new class of methods called doubly robust (DR)
procedures was designed to mitigate selection bias aris-
ing from uncontrolled nonresponse and attrition, non-
random treatment assignment in observational stud-
ies and noncompliance in randomized experiments
(Robins and Rotnitzky, 2001; van der Laan and Robins,
2003). DR methods require specification of two mod-
els: one that describes the population of responses, and
another that describes the process by which the data
are filtered or selected to produce the observed sam-
ple. The distinguishing feature of DR estimates is that
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they remain asymptotically unbiased if one of the two
models is misspecified—that is, they consistently esti-
mate their targets if either model is true (Robins and
Rotnitzky, 1995).

DR methods are a refinement of a weighted esti-
mating-equations approach to regression with incom-
plete data proposed by Robins, Rotnitzky and Zhao
(1994, 1995) and Rotnitzky, Robins and Scharfstein
(1998). Further explanation and evaluation of DR es-
timators has been given by Lunceford and Davidian
(2004), Carpenter, Kenward and Vansteelandt (2006),
Davidian, Tsiatis and Leon (2005) and Bang and
Robins (2005). What is not widely known, however,
is that the methods developed by Robins et al. are not
the only way to achieve double robustness. Many other
types of estimates possess the DR property. General-
ized regression estimators developed for sample sur-
veys (Cassel, Särndal and Wretman, 1977), also known
as model-assisted survey estimators (Särndal, Swens-
son and Wretman, 1989, 1992), have this property, as
does a new class of parametric methods developed by
Little and An (2004) and several other methods that do
not seem to have been described before.

The first purpose of this article is pedagogical. We
review a variety of incomplete-data estimation strate-
gies, describe various ways in which the DR property
can arise, and connect the recent articles on DR esti-
mation to similar techniques found in the literature on
sample surveys and causal inference. Our second pur-
pose is to investigate the practical behavior of these es-
timators not only when either of the underlying mod-
els is correct, but in a scenario where both models are
moderately misspecified.

1.2 Description of the Problem

For simplicity, we focus on the problem of estimat-
ing a population mean from an incomplete dataset.
Many of the methods we present have been applied
to the more general problem of estimating population-
average regression coefficients, and we will describe
those extensions where appropriate. Let us suppose
that we have a random sample of units i = 1, . . . , n

from an infinite population. The variable of primary
interest is yi . Let ti be the response indicator for yi ,
so that ti = 1 if yi is observed and ti = 0 if yi is miss-
ing. For each unit, there is an observed p-dimensional
vector of covariates xi that may be related both to yi

and to ti . A schematic representation of the sample
data is shown in Figure 1(a). (In this figure, the indices
i = 1, . . . , n have been permuted so that the sample
units having ti = 1 appear first.) Denote the numbers

FIG. 1. Schematic representation of sample data for estimating
(a) a population mean and (b) an average causal effect, with miss-
ing values denoted by shading.

of respondents and nonrespondents by n(1) = ∑
i ti and

n(0) = ∑
i (1 − ti), the population response and non-

response rates by r(1) = P(ti = 1) and r(0) = P(ti =
0), and the sample rates by r̂ (1) = n(1)/n and r̂ (0) =
n(0)/n.

The sample mean of the observed yi ’s,

ȳ(1) = 1

n(1)

∑
i

tiyi,

consistently estimates the mean for the respondents,
μ(1) = E(yi | ti = 1), under any reasonable population
distribution and response mechanism. An estimator
having this property will be said to be strongly robust.
In general, there is no strongly robust estimate of the
mean for the nonrespondents, μ(0) = E(yi | ti = 0),
or for the mean of the entire population, μ = E(yi) =
r(0)μ(0) + r(1)μ(1), based on the observed data alone.
Naive estimates such as ȳ(1) may work well enough
if r̂ (0) is small and the relationships among xi , ti and
yi are weak. As the nonresponse rate and the strength
of these relationships grow, adjusting for selection bias
becomes important, and inferences become sensitive to
the assumptions underlying the adjustment.

This problem is closely related to estimating an aver-
age causal effect from an experiment or observational
study. Suppose now that ti is an indicator of the treat-
ment received by unit i. Associated with unit i is a
pair of potential outcomes: the response yi1 that is re-
alized if ti = 1, and another response yi0 that is real-
ized if ti = 0. This situation is depicted in Figure 1(b).
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The causal effect of the treatment on unit i, defined as
yi1 − yi0, is unobservable because one of the two po-
tential outcomes is necessarily missing. It is often of
interest to estimate the average causal effect (ACE) in
the population,

ACE = E(yi1) − E(yi0),

or the ACE’s among the treated and the untreated,

ACE(1) = E(yi1 | ti = 1) − E(yi0 | ti = 1),

ACE(0) = E(yi1 | ti = 0) − E(yi0 | ti = 0).

The notion of potential outcomes was introduced by
Neyman (1923) for randomized experiments and by
Rubin (1974a) for nonrandomized studies. Reviews of
causal inference from this perspective are given by
Holland (1986), Winship and Sobel (2004), Gelman
and Meng (2004) and Rubin (2005). From Figure 1(b),
it is apparent that the correlation between yi1 and yi0
[more precisely, the partial correlation between them
given xi ; see Rubin (1974b)] cannot be estimated from
the observed data. Without prior information on what
this correlation might be—and it is unclear from where
such information would come—one may separate the
problem of estimating an ACE into independent esti-
mation of the means of yi1 and yi0. Any of the methods
described in this article can be used to estimate an aver-
age causal effect by applying the method separately to
each potential outcome. When estimating ACE’s, rates
of missing information tend to be high and sensitivity
to modeling assumptions may be acute.

1.3 Assumptions

Throughout this article, we will assume that the re-
sponse mechanism is unconfounded in the sense that yi

and ti are conditionally independent given xi (Rubin,
1978); this assumption has also been called strong ig-
norability (Rosenbaum and Rubin, 1983). Under strong
ignorability, the joint distribution of the complete data
can be written as

P(X,T ,Y ) = ∏
i

P (xi)P (ti | xi)P (yi | xi).

Strong ignorability implies that the missing yi ’s are
missing at random (MAR) (Rubin, 1976; Little and
Rubin, 2002). In many applications, MAR is unreal-
istic. Nevertheless, this assumption provides an impor-
tant benchmark and point of departure for sensitivity
analyses, and it is the foundation upon which DR pro-
cedures rest.

None of the methods we examine will require an ex-
plicit model for the covariates, but they will all make

assumptions about P(ti | xi), P(yi | xi) or both. De-
note the response probability for unit i by

P(ti = 1 | xi) = πi(xi) = πi.(1)

This probability is called the propensity score (Rosen-
baum and Rubin, 1983). A proposed functional form
for (1) will be called a π -model. If estimates of the
propensity scores are needed, they are often taken to
be

π̂i = expit(xT
i α̂) = exp(xT

i α̂)

1 + exp(xT
i α̂)

,

where α̂ is the maximum-likelihood (ML) estimate of
the coefficients from the logistic regression of t1, . . . , tn
on x1, . . . , xn. In many situations, of course, the as-
sumed form of the π -model is not correct, and this mis-
specification can be problematic depending on how the
π̂i ’s are used.

Let us also define E(yi | xi) = m(xi) = mi , so that

yi = m(xi) + εi(2)

with E(εi) = 0. A functional form for m(xi) will be
called a y-model. When an estimate of mi is needed,
an obvious candidate is m̂i = xT

i β̂ , where β̂ is the vec-
tor of coefficients from the linear regression of yi on xi

estimated from the respondents; y-models with nonlin-
ear link functions are also straightforward (McCullagh
and Nelder, 1989). In most cases, an analyst’s regres-
sion model will be only a rough approximation to the
true y-model. The implications of this misspecification
can be serious if P(xi | ti = 1) and P(xi | ti = 0) are
very different, because the m̂i ’s for the nonrespondents
will then be based on extrapolation. This is particularly
true when xi is high-dimensional because of the so-
called curse of dimensionality. With many covariates,
it becomes difficult to specify a y-model that is suffi-
ciently flexible to capture important nonlinear effects
and interactions, yet parsimonious enough to keep the
variance of prediction manageably low.

Under ignorability, the πi ’s play no role in like-
lihood-based or Bayesian analyses for the parame-
ters of the y-model (Rubin, 1976). The parametric
approach—specifying a full model for yi and ignoring
the πi ’s—is emphasized in texts on missing data by
Rubin (1987), Schafer (1997), Little and Rubin (2002)
and others. Nevertheless, many advocates of the para-
metric approach also recognize that the πi ’s are use-
ful for model validation and criticism (Gelman, Carlin,
Rubin and Stern, 2004, Chapters 6–7). On the other
hand, much of the literature on causal inference in
the tradition of Rosenbaum and Rubin (1983) eschews
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models for yi in favor of matching and stratification
based on propensity scores (e.g., Rosenbaum, 2002).
The latter is motivated in part by a perceived inability
to model the responses well enough to mitigate the dan-
gers of extrapolation. Other uses for propensity scores,
including inverse-propensity weighting (Robins, Rot-
nitzky and Zhao, 1994), also rely heavily on a π -model
while relaxing assumptions about yi . DR methods will
require both a y-model and a π -model but remain con-
sistent if one or the other is wrong. As we shall see,
however, this property does not necessarily translate
into improved performance when both models fail.

1.4 A Simulated Example

Consider the following example which, although ar-
tificial, bears some resemblance to what we have en-
countered in a real study. For each unit i = 1, . . . , n,
suppose that (zi1, zi2, zi3, zi4)

T is independently dis-
tributed as N(0, I ) where I is the 4×4 identity matrix.
The yi ’s are generated as

yi = 210 + 27.4zi1 + 13.7zi2 + 13.7zi3 + 13.7zi4 + εi,

where εi ∼ N(0,1), and the true propensity scores are

πi = expit(−zi1 + 0.5zi2 − 0.25zi3 − 0.1zi4).

This mechanism produces an average response rate of
r(1) = 0.5, and the means are μ = 210.0, μ(1) = 200.0
and μ(0) = 220.0. The selection bias in this example is
not severe; the difference between the mean of the re-
spondents and the mean of the full population is only
one-quarter of a population standard deviation. Never-
theless, this difference is large enough to wreak havoc
on the performance of the naive estimate ȳ(1) when
used as the basis for confidence intervals and tests.

In this example, a logistic regression of ti on the zij ’s
would be a correct π -model, and a linear regression of
yi on the zij ’s would be a correct y-model. We will
suppose, however, that instead of being given the zij ’s,
the covariates actually seen by the data analyst are

xi1 = exp(zi1/2),

xi2 = zi2/
(
1 + exp(zi1)

) + 10,

xi3 = (zi1zi3/25 + 0.6)3,

xi4 = (z2 + z4 + 20)2.

This implies that logit(πi) and mi are linear functions
of log(xi1), x2, x2

1x2, 1/ log(x1), x3/ log(x1) and x
1/2
4 .

Except by divine revelation, it is unlikely that an an-
alyst who sees only xi would ever formulate a cor-
rect π - or y-model. Rather, he or she would naturally

be drawn to models that are linear and logistic in the
xij ’s, and those incorrect models look trustworthy. To
illustrate, we drew a random sample of n = 200 units
from this population, which happened to produce ex-
actly n(1) = 100 respondents and n(0) = 100 nonre-
spondents. Scatterplots of yi versus xij , j = 1, . . . ,4,
for the 100 respondents are shown in Figure 2. Regress-
ing yi on the xij ’s yields coefficients for xi1, xi3 and xi4

that are highly significant and a coefficient for xi2 that
is nearly significant at the 0.05-level; the prediction is
strong (R2 = 0.81), and a plot of residuals versus fitted
values reveals no obvious outliers and little evidence
of heteroscedasticity or nonlinearity. (In other samples,
some higher-order terms such as x2

1 and x1x2, are sig-
nificant and might be considered for inclusion in the
model. Those terms, however, do little to improve the
performance of any of the regression-based methods
discussed below, and sometimes they are harmful.)

The covariates seen by the analyst are also related
to the ti’s. Side-by-side boxplots of the xij ’s for the
ti = 0 and ti = 1 groups are shown in Figure 3(a)–(d).
Fitting a logistic model to this sample, we find that the
coefficients for xi1 and xi2 are statistically significant,
and all of the deviance residuals lie between −1.85 and
+2.51. Figure 3(e) shows side-by-side boxplots of the
linear predictors η̂i = logit(π̂i). As one would expect,
the distributions of π̂i in the two groups are different
but not drastically so. To check the appropriateness of
the link function, Hinkley (1985) suggested adding η̂2

i

as another covariate to see whether it is related to the
response; the coefficient for this extra term was not
significantly different from zero (p = 0.20), so in this
sample an analyst would have little reason to alter the
link.

Comparing the fitted values of yi under the true and
misspecified y-models, we find that the correlation be-
tween them is approximately 0.9. Similarly, the corre-
lation between the η̂i’s under the true and misspecified
π -models is also about 0.9. This example appears to be
precisely the type of situation for which the DR estima-
tors of Robins et al. were developed. By relying on two
reasonably good models, one hopes that at least one is
close enough to the truth to yield satisfactory results.
Indeed, Bang and Robins (2005, Section 2.1) state:

In our opinion, a DR estimator has the fol-
lowing advantage that argues for its routine
use: if either the [y-model] or the [π -model]
is nearly correct, then the bias of a DR esti-
mator of μ will be small. Thus, the DR es-
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FIG. 2. Scatterplots of response versus observed covariates for respondents in a sample of 200 units.

timator . . . gives the analyst two chances to
get nearly correct inferences about the mean
of Y .

In Sections 2 and 3, we describe various techniques
for estimating μ based on the observed data and evalu-
ate their performance in this simulated example. Some

FIG. 3. Distributions of (a)–(d) observed covariates and (e) estimated propensity scores for nonrespondents and respondents in a sample
of 200 units.



528 J. D. Y. KANG AND J. L. SCHAFER

of these methods use a π -model, some use a y-model,
and some rely on both. All of the dual-modeling strate-
gies possess a DR property, but they do not perform
equally well. Pooling information from two models can
be helpful, but the manner in which the information is
pooled makes a difference. (Due to space limitations,
we will not discuss computation of standard errors.
Tractable variance estimates are available for most of
these methods, but our purpose is to compare the per-
formance of the estimates themselves.) In Section 4,
we will provide further justification for why we con-
structed our example as we did, and we will outline the
crucial differences between this and simulated exam-
ples used by Bang and Robins (2005) and others, so
that apparently contradictory conclusions can be rec-
onciled.

2. WEIGHTING, STRATIFICATION
AND REGRESSION

2.1 Inverse-Propensity Weighting

Weighting observed values by inverse-probabilities
of selection was proposed by Horvitz and Thompson
(1952) in the context of survey inference for finite pop-
ulations. The same idea is used in importance sam-
pling, a Monte Carlo technique for approximating the
moments of a distribution using random draws from
another distribution that approximates it (Hammersley
and Handscomb, 1964; Geweke, 1989). It is easy to see
that n−1 ∑

i tiπ
−1
i yi , which can be computed from the

respondents alone, unbiasedly estimates the mean of
the entire population, because strong ignorability im-
plies that

E(tiπ
−1
i yi) = E(E(tiπ

−1
i yi | xi))

= E(πiπ
−1
i mi) = μ.

Precision is often enhanced if we use a denominator of∑
i tiπ

−1
i rather than n, so that the estimate becomes

a weighted average of the yi ’s for the respondents.
Normalizing the weights in this manner, and replacing
the unknown propensities by estimates derived from a
π -model, the inverse-propensity weighted (IPW) esti-
mate becomes

μ̂IPW-POP =
∑

i ti π̂
−1
i yi∑

i ti π̂
−1
i

.(3)

The “POP” in the subscript indicates that we are
reweighting the respondents to resemble the full popu-
lation. Alternatively, we may reweight them to approx-
imate the population of nonrespondents (Hirano and

Imbens, 2001). An estimate of μ(0) based on that idea
is

μ̂
(0)
IPW-NR =

∑
i ti π̂

−1
i (1 − π̂)yi∑

i ti π̂
−1
i (1 − π̂)

,

and a corresponding estimate of μ is

μ̂IPW-NR = r̂ (1)ȳ(1) + r̂ (0)μ̂
(0)
IPW-NR.(4)

The IPW estimator can also be regarded as the
solution to a simple weighted estimating equation∑

i wiUi = 0, where wi = ti π̂
−1
i and Ui = (yi −μ)/σ 2

for any σ 2 > 0. From this standpoint, the IPW method
can be generalized to estimate a vector of population-
average coefficients for the regression of yi on an ar-
bitrary set of covariates. In the regression setting, Ui

becomes a vector representing the ith unit’s contribu-
tion to a quasi-score function. Coefficients estimated in
this manner are consistent and asymptotically normally
distributed provided that the πi ’s are bounded away
from zero and the π -model has been correctly speci-
fied. Asymptotic properties and methods for variance
estimation are described by Binder (1983) when the
propensities are known, and by Robins, Rotnitzky and
Zhao (1994, 1995) when the propensities have been
estimated.

In the original method of Horvitz and Thompson
(1952), the πi’s were determined by a known survey
design. Surveys are usually designed to ensure that
IPW estimates are acceptably precise, but the forces
of nature that govern uncontrolled nonresponse are of-
ten unkind. In missing-data problems, IPW methods
assign large weights to respondents who closely resem-
ble nonrespondents, causing the estimates to have high
variance. IPW estimates are also sensitive to misspec-
ification of the π -model, because even mild lack of fit
in outlying regions of the covariate space where πi ≈ 0
translates into large errors in the weights. These short-
comings of IPW estimators have been known for many
years; see, for example, the comments of Little and
Rubin (1987, Section 4.4.3) on the IPW methods for
nonresponse proposed by Cassel, Särndal and Wret-
man (1983).

To see how well IPW performs on the artificial pop-
ulation described in Section 1.4, we created 1000 sam-
ples of n = 200 and n = 1000 units each and, for each
sample, estimated the propensity scores in two ways.
First, we fit a correctly specified π -model, regress-
ing the ti ’s on zi1, zi2, zi3 and zi4 using a logit link.
Second, we fit the incorrect model which replaces the
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zij ’s with xij ’s. The behavior of the four IPW esti-
mates (3)–(4) under the correctly and incorrectly spec-
ified π -models is summarized in Table 1. In this table,
“Bias” is the average difference between the estimate
and μ = 210, and “% Bias” is the bias as a percent-
age of the estimate’s standard deviation. (A useful rule
of thumb is that the performance of interval estimates
and test statistics begins to deteriorate when the bias
of the point estimate exceeds about 40% of its stan-
dard deviation.) “RMSE” is square root of the aver-
age value of (μ̂ − μ)2. Examining Table 1, we see
that the IPW estimates are biased when the π -model is
misspecified, and the biases are accompanied by huge
losses in precision. In fact, the bias and RMSE actu-
ally get worse as the sample size grows! IPW esti-
mates have higher variance than other procedures ex-
amined in this article even when the propensities are
correctly modeled, but when the π -model is incorrect,
the method breaks down. Interestingly, NR weighting
performs better than POP weighting; we do not know
whether the superiority of NR is a peculiar feature of
this example or if it tends to hold more generally.

The poor performance of IPW is due in part to occa-
sional highly erratic estimates produced by a few enor-
mous weights. In practice, a good data analyst would
never use a simple IPW estimator if the weights were
too extreme. Unusually large weights may be taken as
a sign of model failure, prompting the researcher to re-
vise the π -model. Outlying weights may be truncated
or shrunk to more sensible values, or the offending
units with large weights may be removed. (Removing
these units is not recommended, because the respon-
dents with the lowest propensities are in fact those
that contain the best information for predicting nonre-
spondent behavior.) Analysts who apply IPW to real
problems quickly learn that it often cannot be used
without ad hoc modifications. The column of Table 1

labeled “MAE” reports the median of the absolute er-
rors |μ̂ − μ|, which discards the worst 50% of the esti-
mates. Even by this robust measure of precision, IPW
performs more poorly than the other methods we ex-
amine when the π -model is misspecified, and it fails to
improve as the sample size grows.

In many applications of IPW methodology, weights
are obtained by logistic regression. Logistic models
can be a poor way to estimate response propensities,
because ML estimates from the logistic model are not
resistant to outliers (Pregibon, 1982). A promising al-
ternative is the robit model, which replaces the logistic
link by the cumulative distribution function of a Stu-
dent’s t-distribution with ν degrees of freedom (Albert
and Chib, 1993). The logit link is well approximated
by the robit with ν = 7, and smaller values of ν lead
to estimates that are more robust (Liu, 2004). In this
example, robit models produce minor improvements
when the covariates are correct and major improve-
ment when the covariates are wrong. We found that,
with samples of n = 1000, replacing the logit link by
robit with ν = 4 reduces the bias and RMSE by nearly
50% when the π -model is incorrect. If IPW must be
used, replacing the logistic regression with a more ro-
bust procedure can be advantageous.

2.2 Propensity-Based Stratification

To mitigate the dangers of extreme weights and mis-
specification of the π -model, some prefer to coarsen
the estimated propensity scores into a few categories
and compute weighted averages of the mean response
across categories. In the context of survey nonre-
sponse, the technique is known as weighting-cell es-
timation or adjustment (Oh and Scheuren, 1983; Little,
1986; Little and Rubin, 2002). Strong ignorability im-
plies that yi and ti are conditionally independent within

TABLE 1
Performance of IPW estimators of μ over 1000 samples from the artificial population

Sample size π -model Method Bias % Bias RMSE MAE

(a) n = 200 Correct IPW-POP −0.27 −7.0 3.86 2.43
IPW-NR −0.29 −8.2 3.60 2.36

Incorrect IPW-POP 1.58 19.2 8.35 3.32
IPW-NR 0.61 10.3 5.99 3.03

(b) n = 1000 Correct IPW-POP −0.01 −0.5 1.81 1.16
IPW-NR −0.03 −1.5 1.68 1.09

Incorrect IPW-POP 5.05 45.9 12.10 2.80
IPW-NR 3.22 49.1 7.29 2.34



530 J. D. Y. KANG AND J. L. SCHAFER

any subpopulation for which πi(xi) is constant (Rosen-
baum and Rubin, 1983). In classes of constant propen-
sity, the mean values of yi for respondents and nonre-
spondents are equal, which implies that

μ =
∫

E(yi | πi, ti = 1) dP (πi).(5)

Suppose we fit a π -model and define strata s =
1, . . . , S by grouping units whose π̂i ’s are similar. De-
fine cis = 1 if unit i belongs to stratum s and 0 other-
wise. The π̂ -stratified estimate of μ approximates (5)
by a weighted average of respondents’ mean in each
stratum, weighted by the proportion of sample units in
that stratum,

μ̂strat-π =
S∑

s=1

(∑
i cis

n

)(∑
i cis tiyi∑
i cis ti

)
.(6)

Similarly, a π̂ -stratified estimate of μ(0) weights the
respondents’ mean in each stratum by the proportion
of nonrespondents in that stratum,

μ̂
(0)
strat-π =

S∑
s=1

(∑
i cis(1 − ti)

n(0)

)(∑
i cis tiyi∑
i cis ti

)
,

which may be combined with ȳ(1) as in (4) to produce
another estimate of μ̂. Rosenbaum and Rubin (1983)
suggest classifying units into S = 5 strata defined by
the sample quintiles of π̂i , as this tends to eliminate
more than 90% of the selection bias if the π -model is
correct (Cochran, 1968).

The performance of the π̂ -stratified estimator (6)
over the 1000 samples from the artificial population
is summarized in Table 2. Comparing these results to
those of Table 1, we see that stratification is less ef-
fective than IPW at removing bias when the π -model
is correct, but the stratified estimators still outper-
form IPW in terms of RMSE. The increase in bias
incurred by coarsening the π̂i ’s is easily offset by
the greater efficiency that results from stabilizing the
largest weights. When the π -model is misspecified,

the stratified estimators are more biased than IPW for
samples of n = 200 but less biased when n = 1000,
because the bias of the stratified estimators does not
worsen as n increases.

2.3 Regression Estimation

IPW and π̂ -stratified estimators pay no heed to re-
lationships between the covariates and yi . Regression
estimators, on the other hand, model yi from xi directly
and use this information to predict the missing values.
Because strong ignorability implies that

E(yi | xi, ti = 0) = E(yi | xi, ti = 1) = E(yi | xi),

we can regress yi on xi among the respondents, apply
the estimated regression function to predict yi for the
entire sample, and then average the predicted values to
obtain an estimate of μ. Let

β̂ =
(∑

j

tj xjx
T
j

)−1(∑
j

tj xjyj

)

denote the ordinary least-squares (OLS) coefficients
from the regression of yi on xi among the respondents,
and let m̂i = xT

i β̂ . The OLS regression estimate for μ

is

μ̂OLS = 1

n

∑
i

m̂i .(7)

This estimate is unbiased if the y-model is true, that is,
if E(yi | xi) = xT

i β for some β ∈ Rp; in addition, it is
highly efficient if σ 2

i = V (yi | xi) is nearly constant. If
the response is heteroscedastic, efficiency can be im-
proved by replacing β̂ with a weighted least-squares
estimate with weights proportional to σ−2

i .
From our 1000 samples, we computed OLS regres-

sion estimates under a correct y-model (regressing yi

on the zij ’s) and an incorrect y-model (regressing yi

on the xij ’s). The results, which are summarized in Ta-
ble 3, verify that the bias is indeed removed when the
y-model is correct but not when the model is wrong.

TABLE 2
Performance of propensity-stratified estimators over 1000 samples from the

artificial population

Sample size π -model Method Bias % Bias RMSE MAE

(a) n = 200 Correct strat-π −1.15 −38.1 3.22 2.17
Incorrect strat-π −2.82 −87.7 4.28 3.13

(b) n = 1000 Correct strat-π −1.08 −81.5 1.71 1.18
Incorrect strat-π −2.87 −202.7 3.19 2.83
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TABLE 3
Performance of ordinary least-squares regression estimators over 1000 samples from the

artificial population

Sample size y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct OLS −0.08 −3.4 2.48 1.68
Incorrect OLS −0.57 −17.7 3.26 2.24

(b) n = 1000 Correct OLS −0.00 −0.1 1.17 0.79
Incorrect OLS −0.84 −56.0 1.72 1.15

Comparing the RMSE values in this table with those
in Tables 1 and 2, we see that estimates based on
the incorrect y-model are more stable and efficient
than those based on the incorrect π -model. The bias
that remains due to misspecification of the y-model
is not large in absolute terms, but it is still troubling
in samples of n = 1000 because there it amounts to
more than 50% of a standard error and begins to im-
pair tests and intervals. Difficulties with parametric
missing-data methods arise when the uncertainty due
to the model specification, which is rarely accounted
for, grows relative to the sampling variation under the
assumed model. In those cases, a point estimate based
on a misspecified but reasonable y-model may still per-
form better than other estimates, but the analyst is too
optimistic about its precision.

The performance of the regression estimate depends
heavily on the strength of the correlation R between yi

and m̂i . As R2 approaches 0, μ̂OLS converges to ȳ(1)

and suffers from the same bias as this naive estimate.
As R2 approaches 1, it converges to the mean of the
full sample, ȳ = n−1 ∑

i yi , which is strongly robust.
Therefore, if the y-model has strong prediction, the re-
gression estimator tends to dominate other methods in
terms of bias, efficiency and robustness. The IPW and
π -stratified estimators, on the other hand, break down
as the predictive ability of the π -model increases.

2.4 Stratification by Propensity Scores and
Predicted Values

We saw that the efficiency and robustness of an
IPW estimator can be enhanced by coarsening the π̂i ’s
into a small number of categories. The efficiency of
these estimators can be further increased by adding
covariates to the π -model that are predictive of yi ,
even if these covariates are unrelated to ti (Lunce-
ford and Davidian, 2004). Vartivarian and Little (2002)
show that further improvement is possible if we cross-
classify units by estimated propensity scores and co-
variates that are strongly related to the outcome. The

idea of combining estimated propensity scores with ad-
ditional covariate information is not new. For example,
Rosenbaum and Rubin (1985) recommended match-
ing respondents to nonrespondents or vice versa by
a Mahalanobis-distance criterion based on xi within
calipers defined by the estimated propensity scores.
Numerous authors have performed regression adjust-
ments based on xi within strata defined by π̂ ; for refer-
ences, see D’Agostino (1998).

To illustrate a simple version of this idea, suppose
that we create 25 strata by cross-classifying units into
cells defined by the sample quintiles of π̂i and m̂i , and
then estimate μ by a weighted average of the mean
response across the cells. If we apply this procedure
over repeated samples, we will occasionally encounter
a cell that contains nonrespondents but no respondents,
in which case the stratified estimates are undefined. For
those samples, we must modify the estimate in some
fashion. For example, we may collapse adjacent rows
or columns in the 5 × 5 table, fuse the offending cell
with an adjacent cell, impute the missing cell mean by
a regression estimate that assumes the response surface
has row and column effects but no interactions, and so
on.

In general, we dislike procedures that require fre-
quent ad hoc adjustments unless their operating char-
acteristics are well understood and the variance of the
adaptive estimator can be approximated. Nevertheless,
it is interesting to see how well the method performs
in our artificial example. For each of our samples, we
computed (π̂ × m̂)-stratified estimators using all four
possible combinations of correct and incorrect π - and
y-models. Missing cell means were imputed by a re-
gression procedure that assumes no row-by-column in-
teractions. The results, which are summarized in Ta-
ble 4, show that dual stratification produces a crude
kind of double robustness; the bias is relatively low if
the π -model is correctly specified or if the y-model is
correctly specified. Under strong ignorability, a strati-
fied estimate of the population mean will be unbiased if
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TABLE 4
Performance of propensity and fitted-value stratified estimators over 1000 samples from the

artificial population

Sample size π -model y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct Correct strat-πm −0.34 −11.6 2.92 1.90
Incorrect strat-πm −0.59 −18.4 3.25 2.19

Incorrect Correct strat-πm −0.49 −17.1 2.89 1.96
Incorrect strat-πm −2.00 −61.4 3.82 2.62

(b) n = 1000 Correct Correct strat-πm −0.27 −21.1 1.31 0.87
Incorrect strat-πm −0.45 −33.7 1.42 0.92

Incorrect Correct strat-πm −0.51 −39.6 1.38 0.92
Incorrect strat-πm −2.10 −148.7 2.53 2.11

either the true πi ’s or the true mi ’s are constant within
strata.

It is also useful to compare the results in Table 4
where both models are incorrect with those of Ta-
ble 2 where the π -model is incorrect. This compari-
son shows that a π -stratified estimator can be improved
with predicted values for the yi ’s, even if those predic-
tions come from a coarsened, misspecified y-model.
The key idea of DR estimation—reducing your re-
liance on one model by specifying two—does produce
modest gains in this example over estimates based on
a π -model alone. Comparing Tables 3 and 4, however,
we find that the approximate DR procedure based on
two incorrect models performs worse than OLS based
on the incorrect y-model. When neither model is ex-
actly true, two models are not necessarily better than
one.

3. CONSTRUCTING DOUBLY ROBUST ESTIMATES

3.1 Regression Estimation with Residual
Bias Correction

Cassel, Särndal and Wretman (1976, 1977) intro-
duced a family of “generalized regression estimators”
for population means and totals that combine model-
based predictions for yi with inverse-probability
weights. These methods, which are part of a methodol-
ogy called model-assisted survey estimation (Särndal,
Swensson and Wretman, 1992), are highly efficient
when the y-model is true, yet remain asymptotically
unbiased when the y-model is misspecified. In the
original formulation, the response probabilities were
a known feature of the survey design, but with un-
controlled nonresponse the propensities may be esti-
mated under a π -model (Cassel, Särndal and Wretman,
1983).

To understand how these generalized regression es-
timators work, consider the simple regression estima-
tor (7). If the regression model holds in the sense that
E(yi |xi) = xT

i β for some β ∈ Rp , then on average the
predictions m̂i = xT

i β̂ will be neither too high nor too
low; the mean of the estimated residuals ε̂i = yi − m̂i

in the population will be zero. Of course, residuals are
seen only for sampled respondents. We can, however,
consistently estimate the mean residual for the full pop-
ulation if we have access to a π -model, and this esti-
mate can in turn be used to correct the OLS estimate for
bias arising from y-model failure. Cassel, Särndal and
Wretman (1976) proposed the bias-corrected estimate

μ̂BC-OLS = μ̂OLS + 1

n

∑
i

ti π̂
−1
i ε̂i .(8)

Notice that if the y-model is true, then E(ε̂i) = 0, and
the second term on the right-hand side of (8) has ex-
pectation zero for arbitrary π̂i ’s. If the π -model is true,
then the second term consistently estimates (minus one
times) the bias of the first term. Therefore, this estimate
is doubly robust.

Many variations on this approach are possible. For
example, we can normalize the weights in the correc-
tion term, so that the estimate becomes

μ̂OLS +
∑

i ti π̂
−1ε̂i∑

i ti π̂
−1 .

Or we can replace the POP weights with NR weights,
so that the correction term estimates the mean residual
in the population of nonrespondents. A bias-corrected
estimate of μ(0) based on this idea is∑

i(1 − ti)x
T
i β̂∑

i (1 − ti)
+

∑
i ti π̂

−1(1 − π̂i)ε̂i∑
i ti π̂

−1(1 − π̂i)
,
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which can be combined with ȳ(1) as in (4) to produce
another DR estimate for μ̂. A third possibility is to re-
place the weighted correction term with a π̂ -stratified
estimate of E(ε̂i). Using five strata based on sample
quintiles of π̂i would remove over 90% of the bias from
the OLS estimate if the π -model were true and reduce
problems of instability caused by very large weights.

A more general version of (8) was independently
proposed by Robins, Rotnitzky and Zhao (1994) for
estimating population-average regression coefficients
from incomplete data. Suppose Ui is the contribution
of sample unit i to a vector-valued quasi-score function
for the regression of yi on an arbitrary set of covariates.
As noted in Section 2.1, the solution to

∑
i wiUi = 0

with wi = ti π̂
−1
i provides a consistent and asymptoti-

cally normal estimate of the population-average regres-
sion coefficients if the model used to estimate the πi ’s
is correct. Now suppose that we change the estimating
equations to

∑
i[wiUi + (1 − wi)φi] = 0, where φi =

φ(xi) is an arbitrary term that may depend on xi but not
on yi . The mean of the additional term (1−wi)φi is es-
sentially zero if the π -model is true, because E(wi) =
E(E(wi | xi)) = E(π̂−1

i πi) ≈ 1. Therefore, the solu-
tion to these augmented inverse-probability weighted
(AIPW) estimating equations is again consistent and
asymptotically normally distributed under a correct
π -model. Robins and Rotnitzky (1995) demonstrate
that a judicious choice for φi can greatly improve upon
the efficiency of the simple IPW estimator. In partic-
ular, choosing φi = E(Ui | xi), where the expectation
is taken with respect to the distribution for yi given xi ,
produces a locally semiparametric efficient estimator,
the most efficient estimator within this class. This es-
timate is DR, maintaining its consistency if either the
π -model or y-model is correct (Scharfstein, Rotnitzky
and Robins, 1999). Taking Ui = (yi − μ)/σ 2, and es-
timating E(yi | xi) by (m̂i − μ)/σ 2 where m̂i = xT

i β̂ ,

the solution to the AIPW estimating equation reduces
to the generalized regression estimator (8). More gen-
erally, it becomes the solution to

1

n

∑
i

Ûi + 1

n

∑
i

ti π̂
−1
i (Ui − Ûi) = 0,(9)

where Ûi is the quasi-score function Ui with yi re-
placed by m̂i .

By analogy to (8), (9) can be viewed as a pre-
dicted estimating equation with a residual bias correc-
tion. Any of the variations on (8) described above—
normalizing the weights, switching to NR weights, or
switching from an IPW bias correction to a π̂ -stratified
one—can be applied to (9) as well. Modifications like
these would take the estimator outside of the AIPW
class. Nevertheless, these changes could potentially
improve performance when either or both models are
misspecified.

The performance of the bias-corrected regression es-
timate (8) in our simulated example is summarized in
Table 5. The bias of this estimate does indeed van-
ish when either of the two models is correct. More-
over, comparing these results to those from the IPW-
POP estimates in Table 1, we see that augmenting the
IPW procedure by information from a correct y-model
does indeed increase the efficiency. In the more realis-
tic condition where both models are misspecified, how-
ever, this DR estimate does worse than IPW. A simi-
lar pattern emerges if we compare the new results to
those from the simple OLS regression estimate in Ta-
ble 3. Bias from an incorrect y-model is repaired by a
π -model if the latter is correct. When both models are
misspecified, however, the DR procedure is substan-
tially worse than OLS. Like IPW, estimates from this
DR procedure often behave erratically because one or
more weights are occasionally enormous. Even if we

TABLE 5
Performance of bias-corrected regression estimators over 1000 samples from the

artificial population

Sample size π -model y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct Correct BC-OLS −0.08 −3.4 2.48 1.68
Incorrect BC-OLS 0.25 7.5 3.28 2.17

Incorrect Correct BC-OLS −0.08 −3.3 2.48 1.70
Incorrect BC-OLS −5.12 −43.0 12.96 3.54

(b) n = 1000 Correct Correct BC-OLS 0.00 −0.1 1.17 0.79
Incorrect BC-OLS 0.06 3.4 1.75 1.02

Incorrect Correct BC-OLS −0.02 −1.4 1.49 0.80
Incorrect BC-OLS −21.03 −13.5 157.21 5.32
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trim away these “bad” samples and judge the perfor-
mance by the MAE, however, the new procedure is still
worse than IPW and OLS. Once again, two models are
not necessarily better than one.

Why does this DR estimate fail to perform better
than IPW and OLS even though the π - and y-models
are reasonably close to being true? The local semipara-
metric efficiency property, which guarantees that the
solution to (9) is the best estimator within its class, was
derived under the assumption that both models are cor-
rect. This estimate is indeed highly efficient when the
π -model is true and the y-model is highly predictive.
In our experience, however, if the π -model is misspeci-
fied, it is not difficult to find DR estimators that outper-
form this one by venturing outside the AIPW class. For
this particular example, normalizing the POP weights,
switching to NR weights, and using a π̂ -stratified bias
correction all improve upon μ̂BC-OLS. There are yet
more ways to construct DR estimates, as we now de-
scribe.

3.2 Regression Estimation with Inverse-Propensity
Weighted Coefficients

The correction term in μ̂BC-OLS repairs the bias in
μ̂OLS = n−1 ∑

i x
T
i β̂ by estimating the mean residual

in the full population. A different way to repair this
bias is to move the estimated coefficients away from β̂ .
Imagine that we could see the OLS coefficients based
on the full sample,

β̂SAMP =
(∑

i

xix
T
i

)−1(∑
i

xiyi

)
.

A well-known property of OLS regression is that the
sum of the estimated residuals yi − xT

i β̂SAMP, i =
1, . . . , n, is zero if xi includes a constant. This is an al-
gebraic identity that holds regardless of the actual form

of E(yi | xi). This identity implies that the regression
estimator based on β̂SAMP replicates the mean of yi in
the full sample,

1

n

∑
i

xT
i β̂SAMP = 1

n

∑
i

yi = ȳ,

which is a strongly robust estimate of μ. We can-
not compute β̂SAMP from the observed data. But with
propensities estimated from a π -model, we can com-
pute a weighted least-squares (WLS) estimate

β̂WLS =
(∑

i

ti π̂
−1
i xix

T
i

)−1(∑
i

ti π̂
−1
i xiyi

)
.

In a well-behaved asymptotic sequence, β̂SAMP and
β̂WLS both converge to the coefficients from the linear
regression of yi on xi in the full population, regardless
of whether that regression is an accurate portrayal of
E(yi | xi). If we compute a regression estimate for μ

based on the WLS coefficients,

μ̂WLS = 1

n

∑
i

xT
i β̂WLS,(10)

the difference between this estimate and ȳ converges
in probability to zero as n → ∞, provided that the
π -model holds.

From this discussion, we see that μ̂WLS consistently
estimates μ if the π -model is true. If the y-model is
true, then β̂WLS will be an inefficient but consistent es-
timate of β , and μ̂WLS will again be consistent; thus it
is DR.

In our simulated example, the WLS regression esti-
mate is sometimes inferior to the bias-corrected OLS
estimate (8) when one of the models is true, but much
better when both models are misspecified (Table 6).
Comparing μ̂WLS to μ̂OLS, we see that the inverse-
propensity weighted estimate of β effectively corrects

TABLE 6
Performance of regression estimators with inverse-propensity weighted coefficients over 1000

samples from the artificial population

Sample size π -model y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct Correct WLS −0.09 −3.4 2.48 1.68
Incorrect WLS 0.38 13.2 2.88 1.92

Incorrect Correct WLS −0.08 −3.4 2.48 1.68
Incorrect WLS −2.20 −70.0 3.83 2.74

(b) n = 1000 Correct Correct WLS 0.00 −0.1 1.17 0.78
Incorrect WLS 0.16 12.0 1.35 0.92

Incorrect Correct WLS 0.00 −0.1 1.17 0.78
Incorrect WLS −2.99 −203.6 3.33 2.98
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the bias from a wrong y-model if the π -model is cor-
rect, but makes matters worse if the π -model is wrong.

Once again, many variations on (10) are possible.
Normalizing the POP weights ti π̂

−1
i has no effect on

β̂WLS, but one might consider switching to NR weights.
Applying NR weights and averaging the predicted val-
ues of xT

i β among nonrespondents produces an esti-
mate of μ̂(0), which can then be combined with ȳ(1)

to produce another estimate of μ. Another possibility
is to coarsen the weights into, say, five categories and
compute a π̂ -stratified estimate of β .

3.3 Regression Estimation with
Propensity-Based Covariates

A third general strategy for constructing a DR esti-
mate is to incorporate functions of estimated propensi-
ties into the y-model as covariates. Ordinary regression
estimates are based on the relationship

μ =
∫

E(yi | xi) dP (xi)

and achieve consistency if E(yi | xi) = E(yi | xi,

ti = 1) is consistently estimated for all xi . In prac-
tice, creating a model that gives unbiased predictions
for yi over the whole covariate space can be a daunt-
ing task, because real data often exhibit nonlinearities,
interactions, etc. that are difficult to identify and por-
tray, especially as the dimension of xi grows. From (5),
however, we see that requiring unbiased prediction for
all xi is much stronger than necessary; it would suffice
to have unbiased prediction of E(yi | π(xi)) = E(yi |
π(xi), ti = 1) for all π(xi) ∈ (0,1). If we want to repair
the bias in a parametric y-model, it makes sense to first
identify and correct for lack of fit in the direction of
the propensity score, because πi = π(xi) is the coars-
est summary of xi that makes yi and ti conditionally
independent (Rosenbaum and Rubin, 1983).

Consider the sample of n = 200 units from our arti-
ficial population that we examined in Section 1.4. Fig-
ure 4 shows the residuals ε̂i from the linear regression
of yi on xi , plotted against the linear predictors η̂i from
the logistic regression of ti on xi , for the n(1) = 100 re-
sponding units. A least-squares line fit to this plot has
an intercept and slope of zero, because the predictor is a
perfect linear combination of covariates already in the
y-model. A smooth curve created by a local polyno-
mial (loess) fit, however, suggests that predictions from
the y-model tend to be slightly low in the middle of the
propensity scale and slightly high at the extremes. The
bias could be corrected by fitting a generalized addi-
tive model (Hastie and Tibshirani, 1990) that allows the

FIG. 4. Scatterplot of raw residuals from y-model against linear
predictors from a π -model, with least-squares and local polyno-
mial fit.

mean of yi to vary smoothly with π̂i in a nonparametric
fashion. Little and An (2004) incorporated a smooth-
ing spline hased on η̂i and demonstrated that the re-
sulting regression estimate of μ is DR in the following
sense: If the y-model correctly describes E(yi | xi) be-
fore the propensity-related terms are added, these addi-
tional terms (or any other functions of xi ) merely cause
the model to be overfitted and add mean-zero noise to
the predicted values. If the π -model is correct, then (5)
guarantees consistent estimation of μ, as long as the
mean of yi varies smoothly with πi and this relation-
ship can be arbitrarily well approximated by the linear
combination of basis functions added to the model. In
the latter case, the propensity-related covariates com-
pletely remove the bias for estimating μ, and any ad-
ditional information provided by xi merely serves to
make the estimate more precise.

In the spirit of Little and An (2004), let Si = S(η̂i)

denote a vector of basis functions (e.g., a spline basis)
that can serve to approximate the relationship between
the mean of yi and η̂i , the estimated linear predictor
from the π -model. Let x∗

i = (xT
i , ST

i )T denote the aug-
mented vector of covariates, and let

β̂∗ =
(∑

i

tix
∗
i x∗T

i

)−1(∑
i

tix
∗
i yi

)
(11)

denote the OLS-estimated coefficients from the aug-
mented y-model. If Si is a spline basis of degree k ≥ 1,
the matrix inverse in (11) will not exist, because Si

will contain a constant and a linear function of η̂i ,
which are themselves linear functions of xi . Problems
of collinearity can be alleviated by switching to a gen-
eralized inverse or by removing the offending terms
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TABLE 7
Performance of propensity-covariate (four dummy indicators) regression estimators over 1000

samples from the artificial population

Sample size π -model y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct Correct π -cov −0.09 −3.4 2.48 1.69
Incorrect π -cov −0.39 −13.5 2.93 2.00

Incorrect Correct π -cov −0.09 −3.4 2.48 1.68
Incorrect π -cov −1.27 −38.6 3.51 2.43

(b) n = 1000 Correct Correct π -cov 0.00 −0.1 1.17 0.79
Incorrect π -cov −0.55 −42.1 1.41 0.87

Incorrect Correct π -cov 0.00 −0.2 1.17 0.79
Incorrect π -cov −1.49 −100.6 2.10 1.56

from Si ; either approach leads to the same predicted
values m̂∗

i = x∗T
i β̂∗. The propensity-covariate regres-

sion estimate for μ is then

μ̂π-cov = 1

n

∑
i

m̂∗
i .(12)

A particular case of (12) was proposed by Scharfstein,
Rotnitzky and Robins (1999) who took Si = π̂−1

i . Us-
ing the inverse-propensity as a single additional covari-
ate is sufficient to achieve double robustness, because
the estimate then becomes the solution to an AIPW es-
timating equation (Bang and Robins, 2005).

We tried (12) in our simulated example with a vari-
ety of spline bases: a quadratic spline with a single knot
at the median of η̂i , a linear spline with knots at the
quartiles, and so on. We found that these polynomial
splines occasionally produced erratic predicted values
of yi for nonrespondents with low propensities, driving
up the variance of the regression estimate. The best per-
formance was achieved by simply coarsening the η̂i’s
into five categories and creating four dummy indicators

to distinguish among them. In other words, we approx-
imated the relationship between the mean of yi and π̂i

by a piecewise-constant function with discontinuities
at the sample quintiles of π̂i . The performance of this
estimate is summarized in Table 7. It performs better
than any of the other DR methods when the π -model
and y-model are both incorrect. It performs better than
any method based on a π -model alone. Yet it is still in-
ferior to the simple OLS regression estimate under the
incorrect y-model.

In contrast, the regression estimate of Scharfstein,
Rotnitzky and Robins (1999) that uses the inverse-
propensity as a covariate behaves poorly under a mis-
specified π -model (Table 8). The performance of this
method is disastrous when some of the estimated
propensities are small.

4. DISCUSSION

Double robustness is an interesting theoretical prop-
erty that can arise in many ways. It does not neces-
sarily translate into good performance when neither

TABLE 8
Performance of inverse-propensity covariate regression estimators over 1000 samples from the

artificial population

Sample size π -model y-model Method Bias % Bias RMSE MAE

(a) n = 200 Correct Correct 1/π -cov −0.09 −3.7 2.48 1.69
Incorrect 1/π -cov 1.66 37.6 4.70 2.84

Incorrect Correct 1/π -cov 56.5 3.1 1804 1.76
Incorrect 1/π -cov −4236 −3.4 1.3×105 7.79

(b) n = 1000 Correct Correct 1/π -cov 0.00 −0.1 1.17 0.78
Incorrect 1/π -cov 0.59 31.3 1.97 1.26

Incorrect Correct 1/π -cov −50.4 −3.2 1593 0.83
Incorrect 1/π -cov −7527 −3.3 2.3×105 5.75
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model is correctly specified. Some DR estimators have
been known to survey statisticians since the late 1970s.
In survey contexts, these methods are not thought of
as doubly robust but simply as robust, because the
propensities are a known feature of the sample de-
sign. When propensities are unknown and must be es-
timated, care should be taken to select an estimator
that is not overly sensitive to misspecification of the
propensity model.

No single example can effectively represent all
missing-data problems that researchers will see in
practice. We constructed our simulation to vaguely re-
semble a quasi-experiment to measure the effect of
dieting on body mass index (BMI) in a large sam-
ple of high-school students. The study has a pre-post
design. Covariates xi measured at baseline include
demographic variables, BMI, self-perceived weight
and physical fitness, social acceptance and personal-
ity measures. The treatment ti is dieting (0 = yes, 1 =
no) and the outcome yi is BMI one year later. The goal
is to estimate an average causal effect of dieting among
those who actually dieted. For that purpose, it suffices
to treat the dieters as nonrespondents, set their BMI
values to missing, and apply a missing-data method
to estimate what the mean BMI for this group would
have been had they not dieted. A simple linear regres-
sion of yi on xi among the nondieters yielded an R2

of 0.81, just as in our simulated data, and boxplots of
the linear predictors from a logistic propensity model
looked similar to those of Figure 3(e). The large degree
of overlap in the distributions of estimated propensities
for the two groups makes a causal analysis seem feasi-
ble. The estimated propensities for some nondieters are
very small. Keeping these nondieters in the analysis is
highly desirable, because their covariate values closely
resemble those of dieters; they provide excellent proxy
information for predicting the missing values. Yet we
found no obvious way to use these cases in an inverse-
propensity weighted estimate, because they exerted too
much influence.

Our simulation represents a situation where selection
bias is moderate, good predictors of yi are available,
both models are approximately but not exactly true,
and some estimated propensities are nearly zero. In sit-
uations like these, a DR procedure that does not rely
on inverse-propensity weighting may perform reason-
ably well, but there is no guarantee that it will outper-
form a procedure based solely on a y-model. A model
that predicts yi reasonably well can enhance the per-
formance of an approximate π -model. But in our sim-
ulations, we found no way to use the fitted propensities

from the approximate π -model to reduce the bias from
the approximate y-model. In every case, the bias cor-
rection applied to μ̂OLS tended to move the estimate in
the wrong direction.

Some might argue that inference about E(yi) in
the full population should not be attempted in a sit-
uation like the one shown in Figure 3(e), where the
estimated propensities for a few nonrespondents fall
outside the range of those seen among the respon-
dents. In our opinion, requiring the empirical support
of P(π̂i | ti = 1) to completely cover that of P(π̂i |
ti = 0) is too stringent, especially given the sensitiv-
ity of these ranges to minor changes in the π -model.
In all 1000 samples of n = 200 and n = 1000, the
distributions of the estimated propensities overlapped
sufficiently to compute a stratified estimate with five
quintile-based groups. Moreover, although some of the
estimated propensities were very small, none of the
true propensities were actually zero, so the conditions
required for DR estimation were not violated. Small
propensities frequently occur when missing data are
not missing by design, and data analysts need guidance
on how to deal with them. One who would argue for the
routine use of any kind of inverse-propensity weighted
estimator ignores the obvious fact that these estimators
cannot be used routinely.

Other evaluations of DR methods under dual mis-
specification have yielded mixed results, because the
nature of the problems and degree of misspecification
have varied. Davidian, Tsiatis and Leon (2005) pre-
sented a DR procedure analogous to μ̂BC-OLS for a
pre–post analysis of a randomized clinical trial with
dropout. Schafer and Kang (2005) evaluated their pro-
cedure and found that it performed slightly better than a
parametric method based on multiple imputation (Ru-
bin, 1987). In that analysis, each of the two treatment
groups had its own y-model with R2’s of about 0.5.
Each group also had its own π -model, and the smallest
fitted propensities were 0.14 and 0.07. It thus appears
that the use of AIPW estimating equations can produce
modest gains over a parametric method when the pre-
dictive power of the y-model is not too strong and the
estimated propensities do not get close to zero.

The only other simulations that we know of that
compare the performance of DR and non-DR meth-
ods under dual misspecification are those of Bang and
Robins (2005). Their first example pertains to the es-
timation of a population mean μ. They compare the
performance of three methods—the unnormalized IPW
estimate n−1 ∑

i ti π̂
−1
i yi , the ordinary regression es-

timate n−1 ∑
i x

T
i β̂ , and the propensity-covariate esti-

mate (12) that augments the y-model with 1/π̂i—when
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the π - and y-models are correct and incorrect. In that
example, the predictive ability of the correct y-model
among the respondents is very strong (R2 = 0.94), but
the incorrect version is worthless (R2 = 0.001); thus
it maximally punishes the simple regression method
when the y-model is misspecified. This approximates
a situation where an analyst wants to impute missing
values but has no idea how to use the covariates, so he
simply ignores them and replaces all the missing val-
ues with ȳ

(1)
i . It may also represent a situation where

all of the confounders are hidden from the analyst for
purposes of y-modeling (though not, strangely, for pur-
poses of π -modeling). Another noteworthy feature of
that example is that all of the covariates in the propen-
sity model have been dichotomized and the selection
mechanism is weak; when n is large, all of the esti-
mated propensities fall nicely between 0.25 and 0.5.
Bang and Robins (2005) present three additional ex-
amples to demonstrate the performance of DR esti-
mates in more elaborate problems. In each case, all of
the predictors in their π -models were dichotomized,
which helps to keep the estimated propensities away
from zero. Despite these features, none of their ex-
amples supports the claim that a DR method based
on two incorrect models is clearly and simultaneously
better than an IPW procedure based on an incorrect
π -model and a simple imputation procedure based on
an incorrect y-model. Only in the fourth example did
the DR method outperform both of its competitors un-
der dual misspecification, and even there the advantage
was slight. Thus the results of Bang and Robins (2005)
support our contention that two wrong models are not
necessarily better than one.
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