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Mixture Modeling
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Abstract. In the past ten years there has been a dramatic increase of in-
terest in the Bayesian analysis of finite mixture models. This is primarily
because of the emergence of Markov chain Monte Carlo (MCMC) methods.
While MCMC provides a convenient way to draw inference from compli-
cated statistical models, there are many, perhaps underappreciated, problems
associated with the MCMC analysis of mixtures. The problems are mainly
caused by the nonidentifiability of the components under symmetric priors,
which leads to so-callethbel switching in the MCMC output. This means

that ergodic averages of component specific quantities will be identical and
thus useless for inference. We review the solutions to the label switching
problem, such as artificial identifiability constraints, relabelling algorithms
and label invariant loss functions. We also review various MCMC sampling
schemes that have been suggested for mixture models and discuss posterior
sensitivity to prior specification.

Key wordsand phrases. Bayesian statistics, mixture modeling, MCMC, la-
bel switching, identifiability, sensitivity analysis.

1. INTRODUCTION of the applications of mixture models see Titterington,
In their intrinsic form, mixture models provide a Smith and Makov (1985), and for a recent overview see

flexible way to model heterogeneous data. That is, if McLachlan and Peel (2000).
data are thought to belong to oneio€lasses (or com- As a result of the early work of Newcomb (1886)
ponents), but whose individual class memberships are2nd Pearson (1894) mixture models were established
unavailable, then mixture models provide a natural @S @ useful statistical tool. In addition, methodologi-
framework for statistical modeling. Moreover, due to cal advances in computational methods for frequentist
the large class of functions that can be approximatedmixture models, including the maximum likelihood ap-
by a mixture model, they are attractive for describ- proach of Baum, Petrie, Soules and Weiss (1970) and
ing nonstandard distributions. For a comprehensive listmore generally the expectation—-maximization (EM) al-
gorithm (Dempster, Laird and Rubin, 1977), added
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Robert (1994, data augmentation Gibbs sampler ap-formulation. We assume that data= (x1, ..., x,) are
plied to mixtures), Bayesian mixture models could be i.i.d. with distribution
applied routinely when the number of components is ,
assumed known. Bayesian analysis via mixture models(®) Xilzi=J. &)~ fxiié))
with an unknown number of components is now pos- for j = 1,...,k, and the latent variablel,} decon-
sible using the methods of Escobar and West (1995,yolve the distribution of the data, with(z; = j|8) =
Dirichlet process mixtures), Mengersen and Robert ; (with ¢; andé to be defined in the next section).
(1996, distributional distances), Richardson and GreenHowever, if the i.i.d. assumption is relaxed, for exam-
(1997, reversible jump MCMC) and Stephens (2000a, ple to Markovian dependence, we return the so-called
birth-and-death MCMC). Due to the above devel- higden Markov model (HMM); see Baum and Petrie
opments, implementation of Bayesian mixtures has (1966) and Robert, Rydén and Titterington (2000).
become increasingly popular in many academic disci- Therefore label switching is not restricted to “stan-
plines, such as biological sequence analysis (Boys andyard” mixture models (e.g., Richardson and Green,
Henderson, 2003), econometrics (Fruhwirth-Schnatter,1997), but to any model with conditional structure such
2001; Hurn, Justel and Robert, 2003), machine learn-55 (1),
ing (Beal, Ghahramani and Rasmussen, 2002) and epi- The second interpretation is through a semiparamet-
demiology (Green and Richardson, 2002). _ ric construction. As noted above, due to the ability of
One of the main challenges of a Bayesian analysis miyiyre models to approximate nonstandard distribu-
using mixtures is the nonidentifiability of the compo- tions, they can be seen as alternatives to nonparamet-

nents. That is, if exchgngeable priors are placed Uponic models. The missing data approach is appropriate
the parameters of a mixture model, then the result-  j, orms of clustering and semiparametricity in areas
ing posterior distribution will be invariant to permu- such as density estimation.

tations in the labelling of the parameters. As a result,
the marginal posterior distributions for the parameters 1.2 lllustrative Example: The Crab Data

will be identical for each mixture component. There- To illustrate some of the issues discussed in Sec-

fore, r:juring MCMC s;n;]ulation, t.heds_amkr))le'r encodur;]- tion 1, we consider the famous crab data set analyzed
ters the symmetries of the posterior distribution and t €y Pearson (1894). The data are shown in Figure 1

interpretation of the labels switches. It is then mean- and comprise measurements of the ratio of forehead
ingless to dr_aw infere_nce directly from_MCMC.(_)utput to body length of 1000 crabs, and were the focus of
using ergodic averaging. Label switching significantly one of the first major analyses of data by a mixture

increases the effort required to produce a satisfactorymodel_ The measurements were provided to Pearson by

E:X\?:r'agnigagji I(\)/{ éﬁcd:;?ﬁ t;g: :nz tF;mr(S:;%l:leSIrtr?u(s)IW' F. R. Weldon, who speculated that there were two
9 P new subspecies present. Following Pearson (1894), we

be addressed. While convergence in MCMC simula- :
S . 9 - ; use a two component normal mixture model to analyze
tion is a complex issue, we regararenimum require-

ment of convergence for a mixture posterior to be such
that we have explored all possible labellings of the
parameters. We justify this choice in our examples in -,
Section 3. For a discussion of convergence issues, se!
Robert and Casella (2004).

A difficulty in the Bayesian analysis of mixtures, ; #- g
when the number of components is unknown, is the
sensitivity of the posterior distribution for the number
of components to changes in the prior distribution for '
the parameters. Aitkin (2001) noted apparent difficul- %
ties in Bayesian analyses of mixture models and we
discuss these concerns in this paper.

1.1 Interpretation of Mixture Models e

In general, there are two ways in which mixture Fic. 1. Histogram of thecrab datawith a kernel density estimate
models can be interpreted. First is the missing data(dashed) overlaid.
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FIG. 2. (a)Marginal posterior density estimates and (b) classification probabilities for the crab data. Ve fitted a two component mixture
model to the data, and the output is the last 88,000samples from a reversible jump sampler which were permuted for effect.

these data. Our priors for the parameters are describedvas first presented by Postman, Huchra and Geller
in Section 2 and are exchangeable with respect to the(1986) and consists of the velocities (in1km/s) of
labelling of the components. distant galaxies diverging from our own, taken from six
In Figure 2 we observe the marginal posterior den- well separated conic sections of the Corona Borealis:
sity estimates for the means [Figure 2(a)] and the clas-they can be observed in Figure 3. The data were orig-
sification probabilities [Figure 2(b)]. The classification inally of size 83, but we leave one observation out,
probability, for this example, is the probability that jn accordance with the analyses of Roeder (1990),
a data point is in component/class 1, based on ourRjchardson and Green (1997) and Stephens (1997a).
MCMC output. The symmetries in the posterior distri- gjnce Richardson and Green (1997) found high poste-
bution are immediately seen, with the posterior means i, sypport for between five and seven components,
being the same for each component, as well as the clasy o fit the random beta model (see Section 2.2 for

sification probabilities all being CIOS? tor.Z!_ _ further details) of Richardson and Green (1997) with
There appears, however, to be significant informa- a fixed number of six components to the data. We

juon in the output. This is because thgre are two mOdeSran a Gibbs sampler (the fixed dimensional updates in
in the posterior for the means, which represent the

two possible populations in the data. Label switching
masks this information and we need a way to deal
with it.

nx

nzs

1.3 Solutions to the Label Switching Problem

For Bayesian mixtures the invariance of the likeli-
hood to permutations in the labelling is not a problem E o | it
that is as easily solved as in the frequentist approach.® * 1
In the case of the latter, simple inequality constraints £ ki
[artificial identifiability constraints (ICs)] on the para- f
meter space can be used to break the symmetry in the !
likelihood (see McLachlan and Peel, 2000). For exam- L R
ple, if the component parameters ateandb2, a possi- - - . : —
ble constraint i®1 < 6. In the Bayesian context these '
constraints do not always perform adequately.

To demonstrate the above, consider the well-known Fic. 3. Histogram of the Galaxy data. e have overlaid the his-
Galaxy data (see, e.g., Stephens, 1997a). The data séegramwith a kernel density estimate (dashed).
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FiG. 4. Marginal posterior density estimates of the sampled means of the galaxy data set. The means were permuted to obey the constraint
u1 < --- < ug. Wefitted a six component normal mixture to the data. The output is the last 20,000iterations from the Gibbs sampler.

Richardson and Green, 1997) for 20,000 iterations postwhich is equivalent to penalized maximum likelihood
burnin. (see Ciuperca, Ridolfi and Idier, 2003, e.g.). As aresult,
In Figure 4 we can observe the marginal posterior the label switching problem is only of concern during
density estimates for the means under the identifiability simulation. However, one of the main attractions of us-
constraintuy < --- < ue, Whereu ; denotes the mean  ing a Bayesian approach is the ability to reflect the un-
parameter of theith normal component. We can see certainties related to our inference. Clearly MAP esti-
that there is evidence of multimodality in components mation does not allow this. This aspect is of particular
two and five, and it appears that the symmetry in the j;ynortance in mixture analysis, due to the likely gen-
posterior has not been removed. _ _ uine multimodality (modes which cannot be explained

This problem is typical of MCMC mixture analysis , nermuting the labels of the parameters) of the pos-
and cons_equently th_ere_have been many |q_egs propose%rior distribution (in our experience this occurs quite
to deal with label switching. Along with artificial iden- often). As a result, we do not believe that MAP esti-
gﬁgﬂ%l%%gtéaeicgé gggggﬂi (;ng?;i?r’]rr?sqtgo?e)r-and mate§ provide a géneral solution to the label switching

P galg P problem, because of the inability of the estimate to ac-

form a k-means type clustering of the MCMC sam- q . | . fthe d
ples. Additionally, Celeux, Hurn and Robert (2000) commodate competing explanations of the data.

and Hurn, Justel and Robert (2003) udebe in- 1.4 Outline
variant loss functions—a decision theoretic procedure. S . .
Related to ICs is theandom permutation sampler of The article is organized as follows. In Section 2
Fruhwirth-Schnatter (2001), which was designed both We introduce some notation and a particular mix-
to improve the mixing of an MCMC sampler and to be ture model that we will be studying. In Section 3 we
a convenient way to apply identifiability constraints. In review various MCMC sampling strategies for mix-
this article we provide a review of these methods. tures. When the number of components is fixed, it
One simple solution to the label switching problem was established by Celeux, Hurn and Robert (2000)
is to adopt themaximum a posteriori (MAP) estimator, that the Gibbs sampler is not always appropriate
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for sampling from a mixture posterior. This is be- 2.1 Random Beta Model
cause of the inability of the Gibbs sampler to tra- .
verse the support of highly multimodal distributions. Awellfknown mixture model that we use for our ex-
We emphasize that we can simulate from a mixture amples is the random be_ta model of Richardson and
posterior using Metropolis—Hastings updates without Green (1997). The model is as follows: data. . ., x,
completion (simulation of the missing class labels) are i.i.d. with distribution

and that tempering MCMC (Neal, 1996) may be used. k
We also consider reparameterizations, as discussed by x;i|0,k~ Z TN (g, Ajfl),
Celeux, Hurn and Robert (2000), and variable dimen- j=1

sion samplers. Next, we examine the existing solutions 1 o .
to the label switching problem. We begin in Section 4 Where (i, A7) denotes the normal distribution with

with identifiability constraints, then relabelling algo- Meanu and precisior.. The priors, which are the same
rithms (Section 5) and finally label invariant loss func- for each component=1,...,k, are taken to be

tions (Section 6). In Section 7 we discuss some of the Wi~ NE Y

potential problems with prior specification in Bayesian / ’ ’
mixture models with an unknown number of compo- rilB~ Ga(a, B),
nents. In Section 8 we conclude with our views on

applying the methods reviewed as well as a future re- B~ Galg. ),
search area in Bayesian mixture modeling. T ~ D),
2. NOTATION AND MIXTURE MODELS where D () is the symmetric Dirichlet distribution

with parametes and Ga(«, 8) is the gamma distrib-
ution, shapex, scales. If k is unknown, we assume
k~ U, kmad» WhereUqs, . imaa 1S the uniform dis-
tribution on the integers,1. ., kmax With kmax known.

The purpose of the hierarchical structure on the vari-
X ances is to reduce the effect of the prior on the pos-
p(il0, ) = 7 f(xis b)), terior; improper priors are generally unavailable for

=1 mixtures (see Gruet, Philippe and Robert, 1999, for

an example of improper priors in the mixture context).
A problem with the above prior, whehis unknown,

Throughout this article we use the following nota-
tion. We let p(-) represent a generic probability den-
sity. Denote data = (x1, ..., x,) which is assumed
to be independently and identically distributed (i.i.d.)
with mixture distribution

,,,,,

where f is some parametric component density/mass
function, k is possibly unknown and finitep = (¢1,

..., ¢x) are component specific parametets:= (i1, arises due to the LindIey_—BartIett paradox (Lin(_jley,
..., m) are the mixture proportions or weights and 1957; Bartlett, 1957). Jennison (1997) noted that, in the
0=n,...,60) = ((m1, P1), ..., (7%, ¥x)). Denote the  limit asx — 0 andp — oo, the posterior distribution
parameter spacg € ® C R? with 81 x &f = ©F, for k favors models with fewer components. We illus-
where 851 = {(m1, ..., m_1) 71, .., W1 > O N trate this phenomenon in Section 7.

14+ 1 < 1) Quantities in which we often are interested are the

Define apermutation o of the labels 1...,k of a classification probabilities, defined as
parameter vectat as

0(0) = (Os(1)s---»050))s . 7 f(Xis ;)
®) = Co. - bow). pi=jixi = [ <L) p.
whereo € Sy, the set of alk! permutations of 1 . . , k. © > 7 f(xis ép)
The nonidentifiability in the posterior arises as Then if we were interested in a single “best’ cluster-
n k . . .
. ing, we might take the groups which are formed by the
p(xlo (), k) = 1_[1 2;”0(1>f(xi’ o (i) maximal classification probabilities.
1=1,=
is identical for allo € Sk. Hence pr(0) = p(0(0)) 3. MCMC SAMPLERS FOR MIXTURE MODELS
Vo € S, then so is the posterior distributiop(6|x).
As a result, if there are&k components in a mix- As we saw in Section 1.2, label switching creates a

ture model and there is one mode under a given la-problem at the inferential stage of analysis. However,
belling, there ar&! symmetric modes in the posterior it does provide a useful convergence diagnostic at the
distribution. simulation stage. That is, we know a priori that the
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mixture posterior hag! symmetric modes. Thus fail- many regions of the posterior support that are not being
ure to visit them reveals that an MCMC sampler has explored by the sampler.
not converged. Many different sampling schemes have We have shown that the Gibbs sampler cannot al-
been proposed for mixture models. We first review the ways visit the k! symmetric modes of a posterior
most popular samplers that are available for simulat- mixture distribution easily. We note that “[flrom a
ing from standard mixtures with a known number of statistical viewpoint, exploration of the! modal re-
components. gions is redundant” (Celeux, Hurn and Robert, 2000).
3.1 Gibbs Sampler Indeed, if we wish to explore all of the! symmetric
modes, we could randomly permute the output from
Following Diebolt and Robert (1994), perhaps the the sampler; that is, simply add a Metropolis—Hastings
most popular methods to simulate from a mixture move that proposes a random permutation of the la-
posterior distribution uses data augmentation and thepe|s, which is accepted with probability 1 (as used
Gibbs sampler, that is, by simulating the unobsemed  py Frijhwirth-Schnatter, 2001). Clearly, this course of
However, the highly multimodal nature of a mixture action is only appropriate if the posterior distribu-
distribution often makes the Gibbs sampler inappropri- tion is not genuinely multimodal (which would not be
ate for this task. To illustrate such a case, we simu-known a priori to simulation). This is because, if a

lated 100 data points from; ~ 1/4{ (~3,0.55) +  Gibbs sampler is unable to move around the support
N (0,0.55) + N (3,0.55) + ¥ (6,0.55)} and then  of 4 multimodal distribution and there exists genuine
used the random beta model, with= 4. We ran the  ytimodality, then the sampler will not mix well (or

sampler for 150,000 iterations post burn-in, the results
of which are presented in Figure 5(a). _ _ _ _
The most striking feature of Figure 5(a) is that the 3.2 Metropolis—Hastings with Tempering Updates

_sample_r appears to be performing well, in the sense that Since the Gibbs sampler cannot visit all of the modes
it has picked out the means from the data. The apparenty¢ 5 miviure target, we need to consider alternative

“ﬁOOd”hperforTagce of ttt)wle SamP'?r is offsfethby the fact methods. Cappé, Robert and Rydén (2001) made the
that it has only been able to visit one of thesym- following statement:

metric modes in the posterior distribution. It may be

at all) between the modes.

the case that if we ran the sampler for more iterations, We will not use completion to run our
we would visit another symmetric mode. However, it (MCMC) algorithm. That is to say, the la-
is clear that the Gibbs sampler is unable to freely move tent variables{z,} is not to be simulated
around the space of this distribution. Such behavior is by the algorithm... We believe that this
highly undesirable since it is possible that there are choice is bound to accelerate convergence
1) i}
ad a [ e T vimcdciad gy
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Fic. 5. Trace plot of the sampled means for the simulated data of Section 3.1.We fitted a four component normal mixture to the data. The
output is (a) the last 150,000iterations from the Gibbs sampler and (b) the last 150,000iterations from the tempering sampler (every fifth).
Theinitial labelling is pq (black), wo (orange), 13 (blue) and g4 (yellow).
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of the algorithm by the drastic reduction in Currently in state 6.
the dimenSiona"ty Of the Space. To propose a new state in the chain 6’

We consider this approach by discarding the latent Draw 0 from 0 using 7}.
variables and updating the parameters using Metropo-  braw 8, from 0; using 7.
lis—Hastings moves. Celeux, Hurn and Robert (2000) :
reported that random walk proposal mechanisms are
too local, in the sense that the sampler cannot move
freely around thé! symmetric modes. They used tem-
pering MCMC, which was developed by Neal (1996).
We now introduce this method and apply it to the sim- ) ]
ulated data set of the previous section. We note that =~ D2+ ¢ from 02 using It
more advanced methods exist, for example, popula-
tion or evolutionary Monte Carlo (EMC; Liang and
Wong, 2001). We do not review these methods here,
other than to note that population based MCMC works
by embedding the target distribution of interest into a
sequence of related distributions and sampling from Lo PO pulBn) puoi(Bi)  p(6)
P*() < [T p; (), Where po(-) is the original tar- P00 it (Oms) pmlOm) P10
get distribution: for a review, see Liu (2001) and for
an extension to the transdimensional case, see Jasra,
Stephens and Holmes (2005).

Tempering MCMC uses what is essentially a
Metropolis—Hastings kernel to sample from the pos- oY, j=1,....m, where 1> £1> --- > & > O

terior distribution, in which case it is often beneficial (the?'s act as a temperature parameter). The objective
to reparameterize the mixture proportions in the ran- 5 quring the firsin simulations to flatten out the target,

dom beta model. This is because Metropolis—HastingsaHo\,\,ing us to walk freely on the space. Then, for the
moves may not perform well on a constrained space nextm; — 1 steps we return to a state that receives high
such as the simplex of mixing proportions. We choose posterior support under the target. To have sufficiently
the reparameterization; = v;/ ¥ /_; v; With v; >0 high acceptance probability the intermediate steps (i.e.,
vV j. We modify the prior forr asv; ~ (8, 1), with the¢’s) should not have a large difference. We can add
vjllv Vj#1, whereAl B meansA is independent  further simulations fronp,, (-) to encourage movement
of B. As a result, our reparameterized model is equiv- between the modal regions.

alent to the original model.

Draw ém from ém,l using Tm.

Draw @, from 8, using T},_1.

Draw 92 from 93 using T‘g.

where T], Tj is a transition kermel that
satisfies detailed balance with respect
to pj, j=1,...,m. Then the new state is

accepted with probability

FiG. 6. Transition dynamics for tempering MCMC.

To apply the method for mixtures we suppqssg-)
is the posterior distribution. We then lgt;(-)

3.2.2 Tempering for the random beta model. To ap-

3.2.1 Tempering MCMC. Suppose we have a tar- ply tempering MCMC for the reparameterized random
get distributionpo(9) which has many isolated modes. Peta model, we make some modifications to the algo-
Now suppose we have a sequencenofelated distri- rit.hm. First we add a Metropolis—Hastir_lg_s §tep, so that
butions p1(@), ..., pm(0). The final distributionp,, is with prob_abllltyw_ we perforrr_1 a determlnls_tlc cycle of
(potentially) quite different fronpo, but is thought to Metropolls—Hastlngs stees, |m|?lement,ed in the follow-
be easier to sample from. The objective is to use theseNd Manner. Draw a new’ = (uy, ..., jy) via an ad--
distributions to assist in the movement around the sup-a/tve normal rand(/)m walk. This move is accepted with
port of the target. probability 1A p(u'|---)/p(p|---), where

To propose a new state in the chéipwe use anup—  (2) p(pl--) o< pX|p, A, v) p(p)
down scheme described with pseudocode in Figure 6an(d | ... denotes conditioning on all other variables.
(note thata A b means mifu, b}). The figure tells us  For 2’ = (3/,...,4}) and v’ = (v},...,v}) we use

that we may need to draw from the intermediate distri- reflective proposals, that is, normal random walks
butionsp; via a Markov chain kernel. We note that this bounced off a barrier at zero.

kernel itself may be a cycle of Metropolis—Hastings  The second modification is to use tempering to
kernels; this is particularly useful # is of high di- simulate from the full conditionals, that is, to sam-
mension. ple from p(u|---), p(X|---) and p(v|---). We note
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that this is a valid MCMC sampler since any ker-  In Figure 5(b) we can observe the output. From this
nel (which is a cycle) that is invariant with respect figure we can see the correct label switching behav-
to the (full) conditional distributions for alp_; = ior, the sampler visiting the majority [in fact4! — 2)]
01,...,60;-1,0j41,...,6c) will have invariant distri- of the symmetric modes in the posterior distribution
bution p(-) (Tierney, 1994). (mixing over colors). We note that for full conver-

Our choice may seem odd, since the full conditionals gence we would need to ensure that the sampler visits
may not be as multimodal as the full posterior. How- all 4! modes, but the behavior of the sampler is more
ever, if we consider (2) we can see that this is of mix- than satisfactory.
ture form and is likely to have many modes.

Another reason we do this is because in other simu-
lations (on a hidden Markov model), we obtained huge Following Richardson and Green (1997) the stan-
rejection rates when sampling from the full posterior. dard way to simulate from a mixture with an unknown
It may be the case that a reduction in the dimensional-number of components is reversible jump MCMC
ity of the parameters may facilitate higher acceptance (Green, 1995; for an up-to-date review, see Green,
rates. Our approach may lead to longer computing time 2003). Reversible jump is simply an adaptation of the
than a single tempering move @fiu, A, v|8,X), butit  Metropolis—Hastings method, where the measure the-
may also require fewer iterations to converge due to oretic construction is necessary because of the lack of
higher acceptance rates. common dominating measure when jumping between

The intermediate steps are performed using the samejistributions of differing dimension. Stephens (2000a)
random walk proposal as above. Also, the levels are and Cappé, Robert and Rydén (2003) have considered
taken to be the same for eaCh fu” Cond|t|0nal The Continuous t|me Samplersl For Continuous t|me sam-
Metropolis—Hastings steps allow us to explore a modal plers the standard accept—reject step of a reversible
region and the tempering allows us to move betweenjymp sampler is replaced by new states that are al-
modes. For all of our examples we se& % ways accepted, but that occur via either a marked point

Other proposals and reparameterizations that weprocess, or more generally a Markov jump process with
have found to work well are as follows. For the anpropriate stationary distribution.
precisions, a multiplicative random walk vvjth lognor- ' 1n a comprehensive comparison between reversible
mal proposals has been used. For the weights, a repgjymp and continuous time samplers, Cappé, Robert and
rameterization onto the logit space, updating via an Ryden (2003) demonstrated that there was little dif-
additive normal random walk, can prove to be an ef- ference between the two. Theoretically, they showed
fective strategy. Additionally, if the sampler exhibits ha¢ 5 sequence of reversible jump samplers converges

slow movement around the parameter space, we ofteny, 5 continuous time sampler (in Skorohod topology).
use heavy-tailed (e.g., Cauchy) proposals to Improve |, terms of performance, they showed that the contin-

mixing. uous time sampler was less efficient in that the CPU
3.3 Simulated Data Example time, on average, was longer. The main differences ap-
) .. pear to be that, first, the continuous time sampler can
We now return to the simulated data at the beginning st ynjikely regions in the support of the posterior,
of the section, using the tempering sampler to draw y, ¢ yielding a sort of springboard between different
from the posterior. We ran the MCMC sampler for suf- 42| regions (Cappé, Robert and Rydén, 2003), and
ficiently long post burn-in (until the sampled parame- ¢4 that for the continuous time sampler there is a
ters geemed to stap|l|z_e), with appropriate thinning to “free” Rao—Blackwellization to reduce the variance of
take into account rejec_tlons of our MOVES. The numberthe Monte Carlo (MC) estimates of integrals. We have
.Of step; for the tempering was 55, startl_nglaiz 2and found that, in practice, these latter differences do not
increasing by 2 at each level. The choice of steps Wasy e 4 significant impact on the performance of the

tuned in prior simulations to achieve reasonable acce|o-Sampler (when compared to reversible jump) or the in-
tance rates, which were (in the orderA, v) for the ference resulting from it

Metropolis—Hastings move®.15, 0.44, 0.23) and for
the tempering move®.007, 0.03,0.016). The temper- 3.4.1 Completion. Another aspect of interest is that
ing acceptance rates appear to be quite low, but sinceof completion for variable dimension samplers. In our
they are used for global moves we are satisfied with theexperience, for relatively small data sets (e.g., the
performance of our algorithm. Galaxy data), the sampler which simulates the missing

3.4 Variable Dimension Samplers
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data comprehensively outperforms a sampler without DP is exploited as follows. In any sample of para-
completion. This is in terms of CPU time, mixing and meters (01, ...,6,) (corresponding to the: possi-
convergence speed. For large data sets (e-9.5000), ble components), there is positive probability of two
we found that the sampler without completion con- Or more points coinciding, thus reducing the compo-
verged faster (we would generally expect this due to hents tok (< n). Typically the full conditionals can
the reduction in size of the state space), but at a cost of°€ sampled from using Gibbs or possibly Metropolis—
longer CPU time. Hastings updates. West (1997) noted that DPMs are
As noted by Richardson and Green (1997) and P€rhaps less general than the mixtures focused on in

Stephens (2000a), mixing within is often improved this article, st_ating t_hat _the approach is “mor(_a geared
by using variable dimension samplers. This is becausetO\.NarOIS density espmatlon and related _obje_ctlves than
mixture deconvolution or parameter estimation.”

the sampler now has the ability to move around the
modes of a distribution (conditional df) via a model 3.6 Comments

of Iowe_r or higher dimension, tha_t s, byjumping out of We have considered samplers for mixtures. We have
the k mixture model space, moving around in a model yomonstrated that the Gibbs sampler is not always ap-
of different dimension and then returning to a different 4 riate for sampling from a mixture posterior, though
region in thek space, thus escaping valleys in the pos- for some cases such as the Galaxy data example (Sec-
terior probability distribution that a fixed dimensional tjon 1), the samples were more than adequate. We saw
sampler is unable to scale. Indeed for the crab data exthat tempering updates allowed full exploration of the
ample in Section 1 we used a reversible jump sampler, mixture posterior.

since the fixed dimension sampler was unable to visit To use tempering MCMC (as we have used it) we
a genuine mode in the posterior. Therefore, variable need to be able to calculate the marginal likelihood.
dimension samplers provide an alternative method toClearly, for standard mixtures this is straightforward.
sample from a mixture posterior with a known number However, if the latent variables have special structure
of components. This is at the cost of extra program- (€.9., Markovian), this calculation may be difficult. We
ming effort and inefficiency due to the fact that the have found that for HMMs, marginal update schemes
sampler will not necessarily stay in the model of inter- (Which require the “forward” step of the forward-

est for the entire run. backward algorithm of Baum et al., 1970) can be com-
o _ _ _ putationally slow and sometimes lead to large auto-
3.4.2 Multivariate mixtures. Simulation from mul-  correlations and rejection rates in Metropolis—Hastings

tivariate mixtures with an unknown number of com- moves (as found by Boys and Henderson, 2003).
ponents is also an issue of importance. Stephens There are other approaches for simulating from
(2000a) used a continuous time sampler to draw a mixture posterior, including perfect samplers: see
from a bivariate mixture posterior. More generally, Casella, Mengersen, Robert and Titterington (2002).
Dellaportas and Papageorgiou (2004) constructed a reMarin, Mengersen and Robert (2005) provide a review.
versible jump sampler for multivariate mixtures of Also work on exact simulation for change-point prob-
normals, with split/merge moves operating on the lems via the forward—backward method can be found
space of eigenvalues and eigenvectors of the co-in Fearnhead (2004).

variance matrix. Dellaportas and Papageorgiou (2004) We now review the various ways to deal with la-
demonstrated their method on two-, three- and five- bel switching, beginning with artificial identifiabil-

dimensional data, and reported reasonable mixing'ly constraints. To use the methods that we review,
properties for their algorithm. we recommend conditioning dnas argued by Robert

(1997). Therefore, we always consider label switching
3.5 Dirichlet Process Mixtures for mixtures with a fixed number of components. We
also assume that we have a sampler that can visit'the

An additional way to construct a mixture with symmetric modes of the posterior.

an unknown number of components is the Dirichlet

process mixture (DPM); see, for example, Escobar 4 ARTIFICIAL IDENTIFIABILITY CONSTRAINTS
and West (1995). In this approach the prior distrib-
ution for the parameters of the mixture is treated as
unknown, sayG, and a Dirichlet process (DP) prior We define anidentifiability constraint as a condi-
is placed upon it. The discreteness Gf under the  tion on the parameter spa&®, such that only one

4.1 The Method
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permutation can satisfy it. An example of such a con- 4.2 Comments on the Method
straint ispuy < - -+ < ug in the univariate random beta
model. This identifiability constraint iartificial, as it
does not arise from any genuine knowledge or belief
about the model, but is rather an apparent inferential
convenience.

We refer to ICs in the way they were initially used (as

in Diebolt and Robert, 1994, or Dellaportas, Stephens, A
Smith and Guttman, 1996). In other words, at every it- fect on the MCMC sampler, such as the implications of

eration of the sampler, we permute the samples so theB}run_cating the support of the posterior in terms of sim-
satisfy the constraint. When applying ICs, it is best to L;llatlon (ZSRmEm':) n;gogy ieleux, 1997, ?r)[d dCetI)eux,
search for identifiability constraints that lead to den- iurn and Robert, )- rlowever, as stated above,
sity estimates of the parameters that are as unimodaf'"¢® |(_jent|f|ablllty co_nstralnts can be imposed "?‘“er
as possible (as stated by Richardson and Green, 1997)s'|mtjla.t|ond. v;/(?bc?n smglt;;[e frpm the unlc(c:)nztralned
Indications of inappropriate identifiability constraints pols err1|or Istribu |org)lan nen |mpofse and N aﬁre-
include exaggerated skewness and multimodality in theSUlt: ¢ elre_ls no problem in terms of an adverse efiect
density estimates. on simulation.

The motivation behind imposing an IC is the follow- The use of excha_ngeable_ priors is n-ormally an at-
ing. Since the likelihood and prior are invariant to the [€MPt to be weakly informative (e.g., Richardson and

labelling of the parameters, if we impose an identifia- Green, 1997). However, ?f the identifiability constraint
bility constraint on the parameter space, we break theUSed does not correctly isolate one of klesymmet-

symmetry in the posterior and the labelling problem ric modes, we would hesitate to call such a specifica-
should be solved. We would therefore focus on one o

Identifiability constraints have come under much
scrutiny in the literature. Celeux (1997) and Celeux,
Hurn and Robert (2000) and Stephens (1997a, 1997b,
2000b) all voiced their concerns about imposing an
identifiability constraint.

Much of the initial attention was confined to the ef-

¢ tion weakly informative. This is because the prior will

the k! symmetric modes and output from the MCMC become highly influential on our inference, as demon-
sampler can then be interpreted. strated by Celeux, Hurn and Robert (2000). We note

An identifiability constraint need not be imposed that they called this “_disturping.“ We contend that it is
before any simulation takes place. Stephens (1997a)°Nly t0 beexpected, since different constraints corre-
proved that inference conditional on an identifiability SPond to different models. o
constraint can be performed when the constraint is im- ©On€ problem with identifiability constraints is the
posed after the MCMC run (see Proposition 3.1 and choice of con_stralnt. Frihwirth-Schnatter (2001) sug-
Corollary 3.2 of Stephens, 1997a). Such procedures arédested that “if the components of the state specific
equivalent tochanging the prior distribution. That is, ~ Parameters have some physical meaning, then an ex-
since the marginal posterior distributions are the samePert in the field will have some idea in which way
for each label and the likelihood is invariant to permu- the groups or states differ and might be able to offer

tations, we define a new prigr, () such that such an identifiability constraint.” This seems reason-
able. However, we stress that if such expert opinion is

pn(0) =k!p@)lLeec), available, an effort to produce subjective priors should

where( is the constraint], is the indicator function ~ be made. This may mean that there is no label switch-
andp(#) is the unconstrained prior. ing at all, although label switching can still occur under

An alternative approach to identifiability constraints subjective priors.
was provided by Frihwirth-Schnatter (2001). A more general difficulty of using ICs is in multi-
Fruhwirth-Schnatter used a “random permutation” variate problems. Finding suitable identifiability con-
sampler (RPS). That s, at every iteration of an MCMC straints in such situations is almost impossible.
sampler, a Metropolis—Hastings move is used to pro- Moreover, it can be difficult to anticipate the overall
pose a new permutation of the labels. This ensureseffect of such an action. We saw at the beginning of
the sampler visits alt! symmetric modes. Frihwirth-  this paper that identifiability constraints do not always
Schnatter then applied exploratory data analysis onwork, so we consider this example in more detalil.
the MCMC output from the RPS by applying ICs. We
search for constraints that give the clearest picture of
all of the parameters (i.e., much the same as the recom- We now use the random beta model of Richardson
mendations of Richardson and Green, 1997, discussednd Green (1997) to illustrate that identifiability con-
above). straints can often induce informative priors that do not

4.3 Example: Galaxy Data Revisited |
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Intialise algorithm with permutations oi,...,0nN. TABLE 1

Repeat until a fixed point is reached. Estimated means

1. Choose & to minimise 31" Lo(a, o1(6”)). Parameter Constraint KL
2. Fort=1,...,N choose 0 to minimise L(a,c,(8™)). 1 807 971
. . 16.46 1901
FIG.7. A [ hm. H2

IG general relabelling algorithm s 19.90 1988

14 2221 2271

necessarily reflect the objective of their exchangeable  #5 25.62 2286

versions. To do this, we return to the output from the e 3484 3292
Galaxy data in Section 1.3. NOTE. The constraint column is the estimated means under the

We computed the estimated means, conditional onidentifiability constrainf.j < --- < ug. The KL column is the es-
the identifiability constraint; < -- - < ug, through er- timated means under the relabelling algorithm in Figure 8.
godic averaging and compared them with the means es-
timated by the relabelling algorithm in Figure 7 (which of classification probabilities, that ig;; is the prob-
we discuss in the next section; we believe the estimatesability that observation is assigned to clasg. Let
reflect one of the 6symmetric modes of the poste- P(6) denote the true matrix of classification probabil-
rior). The results can be seen in Table 1. For most of ities, wherep;;(0) = 7 f (x;; ¢,)/Zf‘:1 o f (xi; dp).
the means we can see that the new prior induced byStephens used the Kullback—Liebler (KL) divergence
the identifiability constraint produces very different re- to measure the loss of reportif@when the true prob-
sults to the “correct” clustering of the MCMC samples; abilities areP (). The algorithm is given in Figure 8.
hence, the constraint is more influential than was in- We refer to this algorithm as the KL algorithm.
tended. To apply a relabelling algorithm, we must chooese
(well dispersed) starting points, since the algorithm
5. RELABELLING ALGORITHMS is only guaranteed to converge to a local minimum.
We then select the permutations and quantities that give
the optimal solution. If storage requirements are too
Relabelling algorithms were developed by Stephens substantial, then an online version can be implemented.
(1997a, 1997b, 2000b) and Celeux (1998). The idea isAdditionally, step 2 of Figure 7 can be performed ef-

5.1 The Method

as follows: Suppose we define a loss functionA x ficiently (for mediumk) using the transportation algo-
® — [0, 0o0) such that rithm; see Stephens (2000b) for details.
L(a,8) = min{Lo(a, 0 (8))}, 5.2 Comments on the Method
o €Sk

_ _ _ The form of a relabelling algorithm is exactly that of
v_vher(i » is the action space. Then the optimal ac- ak-means type clustering algorithm: Stephens took ad-
tiona™Is vantage of the special nature of the problem at hand. In

. . our view, the method is aautomatic way to apply (or
©) a =arg rgm/@ L(a,0)p@®1x)d0. induce) an identifiability constraint. That is, under an

Since the integral in (3) cannot be computed ex- inferential objective the permutations of the labelling

actly, we use an MC estimate. We suppose that we
draw N samples from the posterior distribution (denote
thesed ™, t+ =1, ..., N) and then apply the algorithm  Repeat until a fixed point is reached.

Intialise algorithm with permutations oy,..., ON.

in Figure 7 to remove label switching. 1. Choose Q to minimise
The idea behind the algorithm is the following. Since N n k pis {40
the likelihood is invariant to permutations in the la- > Zpif{"t("(%}log{“”“;;“}
t=1 gml jml R

belling, we seek to minimize the loss of performing

an actiona associated witl# by selecting the permu- 2 Fort=1,..., N choose o; to minimise

tation that minimizes this loss and then minimizing the n " pii (60}

posterior expected loss. ;;pfﬂ' {0 )}log{m“qffm}'
Stephens (2000b) derived an algorithm for cluster-

ing inference based on reporting anx k matrix, Q, FiG. 8. Sephens'sKL algorithmfor clustering inference.
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are induced or discovered so that all of the samples areestimates of the relabelled marginal posteriors and the
labelled in the same way. We can then draw inferenceclassification probabilities can be seen in Figure 9.

on any quantity by using ergodic averaging on the per-  Application of Stephens’ KL algorithm has induced
muted samples. the identifiability constrainfuy < w2 (note that this

We feel that the fact that the method is simply a way was for this example and is not a general mathemati-
to apply an identifiability constraint (i.e., that the statis- cal result). This allows us to perform inference that is
tical model is changed) is underappreciated in the liter- supported by Figure 9(b), which shows that the classi-
ature; it is not a fully decision theoretic method. That fication probabilities are far more discriminated under
is, under a fully decision theoretic method, for every the relabelled samples.
quantity of interest, we derive a loss function for esti-  We note that if we wanted to estimate the means say,
mation, which is not the case for relabelling algorithms it would be most sensible to take the estimate over the
(indeed, it would not be sensible since we may have permuted MCMC samples. This is because, if we ap-
different quantities that were estimated conditional on plied another algorithm with a different loss function,
different identifiability constraints). we might not obtain the same constraint (in this exam-

A method related to relabelling algorithms was given ple it is unlikely another constraint would transpire).
by Marin, Mengersen and Robert (2005), who found However, Stephens (2000b) reported that it is generally
the MAP estimate of the parameters based on all of thethe case, when there is no genuine multimodality, that
MCMC samples. Then, to permute the MCMC sam- different relabelling algorithms often produce similar
ples, they found the permutation that minimizes the permutations.
canonical scalar product between the MAP estimator Another potential problem with ICs (and hence re-
and the sample. This method is simple to use, but has dabelling algorithms), when the data in the compo-
one major drawback when the parameter space featuresents are poorly separated, is the following. Gruet,
many genuine modes. In this case the MAP estimatePhilippe and Robert (1999) found that one of the com-
will ignore minor modes and may lead to inappropriate ponents overwhelms the others, which become negligi-
identifiability constraints being used. ble. We explore this in the following example.

We now demonstrate that relabelling algorithms ap-
ply or induce an identifiability constraint in the follow-
ing example. For our next example we consider the plant data of
Rao (1948). The data consist of the heights (in centime-
ters) of 454 plants of two different types. Rao (1948)

We used Stephens’s KL algorithm to deal with the used a two component normal mixture model to an-
label switching of the crab data example. The density alyze the data and the data were presented in a fre-

5.4 Example: Rao’s Plant Data

5.3 Example: Crab Data Revisited
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FIG. 9. (a)Marginal posterior density estimates [ (unbroken), o (dashed)] and (b) classification probabilities for the crab data. We

used Stephens's KL algorithm (Figure 8) to deal with the label switching. For (b) the orange dots are the classification probabilities under
the unconstrained prior.
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34 bel switching. We used tempering MCMC to sample
from the posterior distribution. The trace plots of the
T parameters for 10,000 iterations post burn-in are given
in Figure 11. From Figure 11(a) we can observe that
i there is significant label switching, since the plots for
] both components are similar.
\ We then used the KL algorithm to undo label switch-
3 ing. While the object of inference is not clustering,
we can observe in Figure 11(b) that the algorithm has
- worked well. This is because the algorithm appears to
- have isolated one of the two symmetric modes in the
3 - o posterior distribution.
B 18 # We can see from Table 2 that (for the relabelled
s b samples) component 1 dominates component 2 (since
FiG. 10. Histogramof plant data. e overlaid the histogramwith m = 0.804). However, we feel that this it a defect
akernel density estimate (dashed). of using a relabelling algorithm (and hence an IC). This
is because the relabelled MCMC output appears to be

quency table, so they are essentially interval censored COTeCt (no bias of the constraint), as demonstrated by
To remove this effect, we added_o 5,05 random the fact t_hat the relabelled components are so differ-
variable (wherelly, ) is the continuous uniform dis- €Nt thatis, that the plot on the left in Figure 11(b) has
tribution on[a, b]) to each data point (which we inter- lower variance than the plot on the right. Although the
preted as the midpoint of each class interval). inference from the mixture model (based upon the re-

The physical motivation for a mixture is clear, but labelled samples) appears to be incorrect (e.g., Rao es-
let us observe the data given in Figure 10. We can seelimated the mixture proportion as 0.566, but we note
that if the data truly comprise a two component mix- that our data may not give identical results to the orig-
ture, it is difficult to see evidence of this from the his- inal analysis because we have perturbed them), this
togram (note that the sampling density/histogram needdoes not matter from the perspective of dealing with la-
not be bimodal to be a two component mixture). Thus bel switching. The relabelling algorithm has performed
we suggest that the data in the components are poorlywell and exposed the view of the data that one compo-
separated. nent provides sufficient explanation of the data. In such

To analyze these data, we use the random beta modetases, it may be more appropriate to determine subjec-
with k = 2 and use the KL algorithm to deal with la- tive priors or different component densities.
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FiG. 11. Tempering MCMC trace plots for plant data: (a) the means as returned by our algorithm for 10,000iterations; (b) the relabelled
means.
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Porameter estimates d_TABLEZ | fo the plant cata based Robert (1999). Additionally there may be situations

r er Imates (ergodic averages) tor tne plant aata .

on the unconstrained prior and the permuted samples where we do not know a priori tha_t the components
are poorly separated, for example, if we were analyz-

Par ameter Raw output KL ing high-dimensional data.
w1 13824 13747
12 13819 13897 6. LABEL INVARIANT LOSS FUNCTIONS
A 3773 4690 6.1 The Method
Ayt 3.66 3075 _ _
p 0.519 Q804 Define a loss functiod. : A x ® — [0, co) such that
L(a,0)=L(a,0(0)) Vo € S.
5.5 Justification of Relabelling Algorithms Using such a loss function solves the labelling problem

e immediately. The way in which the method is applied
Stephens (1997a) gave possible justifications for us-(as in Celeux, Hurn and Robert, 2000, and Hurn, Justel

ing relabelling algorithms. The first justification was and Robert, 2003) is the following. Compute the pos-
“revisionist Bayes.” As stated in Section 4.1, applying terior expected loss

an identifiability constraint is equivalent to changing

the prior distribution. Therefore, when we use a rela- E[L(a, 0)|X] :f L(a, 8)p(0]x)do
belling algorithm we are essentially changing the sta- ) ©

tistical model. How might we justify such an approach? 1N

Stephens suggested that we are returning to the mod- A — ZL(a, 0(”).
eling stage and forcing identifiability on the compo- N3

nents of the mixture. Many Bayesians may find this Normally (4) cannot be minimized analytically, and
explanation distinctly unsatisfactory, but we agree that gg stochastic optimization methods (e.g., simulated an-
itis a credible justification, because if we seek to draw npegjing) are implemented.

meaningful inference from the parameters of a mix-  An example of a particular loss function used by

ture model, we need to be able to interpret them. If we Hyrn, Justel and Robert (2003) for clustering infer-
use the extra information from the data (and hence thegpce is

MCMC sampler), we can do so. 1

The second justification was “mode hunter.” This is

. . . . L(a,z) = Tooeo (1 =T,y
simply the view that we seek to find the permutations (@2) Z Z e Z”)( (@i a’))
of the labelling which minimize the loss of computing
the quantity of interest, and that we can calculate no +Tgi=ap (1 = Tg=z )}
other quantity. o whereg; is the allocation that we give for thi¢h data

Under the revisionist Bayes justification one actually hoint This loss function is based on a pairwise compar-
believes in the permutations applied and is convinced;gon of the allocation of data points. If the true pair of
that the model is representative of the real world prob- 4514 points is in the same class and our decision is that
lem. This is not the case under the mode hunter view. j; is not, then we lose one. Conversely, if we choose the
5.6 Discussion correct allocation we lose zero. To compute the poste-
rior expected loss, we have

i=1j=i+1

In this section we have shown that relabelling al-

gorithms impose an IC. The exact nature of the con- E[L(a, 2)|Xx]

straint depends on both the loss function chosen and n-1 n

the MCMC samples themselves. G =) > {pGi=zM0Q-ILu=a))
We have stated that relabelling algorithms should be i=1j=i+1 '

used with care when the data in the components are 4T (zi £ 2;1%))
similar. Note that inference from the parameters in this (ai=aj)P(Zi 7 Zj[X) .

case is not meaningless. There are many instances iiWe then estimate (5) from our MCMC output (it is in-
the literature where analysis of data when the com- variant to the labelling) and minimize with respectito
ponents are poorly separated has occurred, for exam+or examples of other loss functions, see Celeux, Hurn
ple, Rao (1948) and more recently Gruet, Philippe and and Robert (2000) and Hurn, Justel and Robert (2003).
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6.2 Comments on the Method o ~ TABLE3
Sensitivity of the posterior distribution for k for the Galaxy data

From the Bayesian point of view the method of la-

bel invariant loss functions is more satisfactory than Range of k with

identifiability constraints. That is, we draw inference « p(k|x) > 0.05 p(k|x) > 0.001 max;, p(k|x)

conditional only on the data. The method is fully deci- —;

sion theoretic: for every quantity of interest we must &2 3-9 3-15 6

construct a loss function, and perform the expecta- 7z 5-13 3-24 8

tion and then the minimization procedure highlighted % 8-16 4-30 10

above. This approach acknowledges both that the mar- 16 11-18 530 14

ginal posteriors for the labels are the same and that ’52 892 5 30 19

A . oo £ — -

there is significant information in the MCMC output. X}

It is therefore a fully Bayesian procedure. 7 21-30 6-30 30
The main difficulty with this method is the com- % 23-30 2-30 30

putational cost. Performing a simulated annealing NOTE: Each row is based on a reversible jump sampler run for

aIg_onthm for man_y loss functions will Often be compu- 500,000 iterations with a 100,000 iteration burn-in. The priors were
tationally expensive and may not be feasible for some settobey = 2,5 = 1,£ = M, g = 0.2, h = 100¢ /o R? andkmax =

functions. 30, whereR and M denote the range and midpoint of the observed
A second drawback is the fact that the method is re- data.

stricted to a class of loss functions that may or may not

make sense for the decision problem at hand. That is,informative for the number of components. Jennison

the method requires that the loss functions be invariant(1997) noted that placing a prior ancan help to re-

to the labelling of the parameters and that it is compu- duce this effect (as used by Stephens, 2000a) and pre-

tationally feasible to minimize the posterior expected sumably this is one of the reasons why Richardson

loss. Whether loss functions can be constructed withinand Green (1997) placed a prior gn In our opinion

this class depends on the statistical objectives. Lindley’'s paradox demonstrates that there is generally
no natural way to represent “prior ignorance” in this hi-
7. ROLE OF THE PRIOR IN BAYESIAN erarchical modeling context. That is, it will often be the
MIXTURE MODELING case that many reasonable prior specifications (for the

parameters) lead to differing inferences with respect to
the number of components. This latter point was made
by Aitkin (2001).

One of the difficulties in Bayesian modeling is spec-
ifying a prior distribution when there is little infor-
mation to be used. This is often the case in Bayesian
analyses via mixture models with an unknown number 7.2 Further Discussion

of components and can lead to some additional (i.e.,  ajtkin (2001) compiled a set of Bayesian analyses of
not label switching) inferential difficulties. We now  ihe Galaxy data, ranging from the approach of Richard-
demonstrate one such problem for the random betagon and Green (1997) to Escobar and West (1995).
model. Aitken noted that although each method has a sensi-
7.1 Example: Galaxy Data Revisited I ble (weakly informative) prior specification, the pos-
terior distributions for the number of components are

We reanalyzed the Galaxy data using the randommarkedly different. Indeed Aitkin (2001) noted:
beta model withk unknown. For seven different set-

tings of ¥ (the normal prior precision on the com-
ponent mean parameter), we ran a reversible jump
sampler (similar to Richardson and Green, 1997, ex-
cept that we used a split/merge move that is much the
same as described by Cappé, Robert and Rydén, 2003, .
Appendix C) for 500,000 iterations, taking the burn-in completely unclear about “what the data

to be 100,000 iterations. The results are given in Ta- say” from a Bayesian pomt_ of view about
ble 3. the number of components in the mixture.

The complexity of the prior structures need-
ed for Bayesian analysis, the obscurity of
their interaction with the likelihood, and the
widely different conclusions they lead to
over different specifications, leave the user

In Table 3 we can observe Lindley’s paradox. Aswe  This is a traditional frequentist criticism of Bayesian
seemingly place less prior information on the compo- inferential methods, but does illustrate the need for ap-
nent means (i.e., as — 0), the prior becomes more propriate consideration of all elements of a Bayesian
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model. Of course, these concerns are only really of the tempering sampler to enable the correct movement
interest when performing clustering or discrimination around the target space. In our experience, EMC works
analysis. In the case of the latter, Stephens (2000a)extremely well and we have never found an example
noted that priors should be set so that components arevhere a properly tuned algorithm does not traverse the
as different as possible so as to avoid overfitting (too state space correctly.
many components). When the objective of inferenceis We feel that the Gibbs sampler run with comple-
prediction (e.g., computing density estimates), model tion is often not worth programming (unless it can be
averaging procedures may be used, because the influquickly implemented, in BUGS, e.g.), since the chance
ence of the prior on the number of components is of Of it failing to converge is too high.
less concern. To choose a method to deal with label switching,
We believe that meaningful data analysis can be We have used the following criteria in our applied
performed using Bayesian mixture models, but an ap-Work- _In situations for which we are only interested
preciation of the effect of the prior on the number of N @ single inference from our mixture model (e.g.,
components is needed. Our general practice is to Seplustgzrlng th_e data_), we often use a Iabel_lnvarlant loss
priors according to the information available (e.g., data 'Unction. This choice is made because it often needs
dependent as in Richardson and Green, 1997) and therﬁ?ss programming effort than a re"”.‘be”'”g algorithm.
to perform a sensitivity analysis to measure the influ- onversely, if we are concerned with many label de-
ence of the prior specification on the number of com- pendent quantities, we prefer the relabelling approach

. . . because it avoids performing a large number of simu-
ponents, especially using simulated data. Once we ar : . .
) L . ated annealing algorithms. In our experience, ICs (not
certain we understand the implications of the prior on

i . . hrough relabelling algorithms) are only of in situa-
the posterior, we proceed with a data analysis, accept-t ough relabelling algorithms) are only of use in situa

. : ) ) 3 . tions where it is obvious how to undo the label switch-
ing that different priors will lead to different posteriors.

. ) ) : - ing [e.g., Figure 5(b)].
Constructing priors for Bayesian mixture models is In this article we have detailed the progress of

an area which still requires further research. We recom'Bayesian mixture modeling: So what challenges need
mend the discussion of Richardson and Green (1997), e aqdressed in the future? One area of current re-

and Stephens (2000a) as possible starting points. search in bioinformatics is gene clustering (see, e.g.,
Yeung, Fraley, Murua, Raftery and Ruzzo, 2001),
8. SUMMARY AND RECOMMENDATIONS which can be performed using mixture models. A draw-

In this article we have reviewed MCMC samplers for back of using a Bayesian mixture model is the difficulty

mixtures, posed solutions to the label switching prob- ©f Simulating from a high-dimensional, variable-
lem and discussed the sensitivity of posterior inference dimensional target measure, which is characteristic of
for the number of mixture components to prior specifi- such prpble.ms_(an' exam'ple of a small data get IS 2000
cations. data points in S|x_d|men3|ons). Current reversible jump
To construct an MCMC sampler for fixed dimen- a_nd continuous time samplers are unable to move e_ffl—
sional, univariate mixtures, we generally use the ciently around the sample space and new simulation

) : . .. Mmethods are required to apply Bayesian methodol-
foIIov_vmg strategy. W(_e begin by cod_lng a Metropplls ogy in such contexts; see Jasra, Stephens and Holmes
Hastings algorithm without completing the data (if we (2005) for a potential approach
can compute the marginal likelihood). We then seek to P bp '
find the proposal densities and parameters that provide ACKNOWLEDGMENTS
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