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Markov Chain Monte Carlo Methods and
the Label Switching Problem in Bayesian
Mixture Modeling
A. Jasra, C. C. Holmes and D. A. Stephens

Abstract. In the past ten years there has been a dramatic increase of in-
terest in the Bayesian analysis of finite mixture models. This is primarily
because of the emergence of Markov chain Monte Carlo (MCMC) methods.
While MCMC provides a convenient way to draw inference from compli-
cated statistical models, there are many, perhaps underappreciated, problems
associated with the MCMC analysis of mixtures. The problems are mainly
caused by the nonidentifiability of the components under symmetric priors,
which leads to so-calledlabel switching in the MCMC output. This means
that ergodic averages of component specific quantities will be identical and
thus useless for inference. We review the solutions to the label switching
problem, such as artificial identifiability constraints, relabelling algorithms
and label invariant loss functions. We also review various MCMC sampling
schemes that have been suggested for mixture models and discuss posterior
sensitivity to prior specification.

Key words and phrases: Bayesian statistics, mixture modeling, MCMC, la-
bel switching, identifiability, sensitivity analysis.

1. INTRODUCTION

In their intrinsic form, mixture models provide a
flexible way to model heterogeneous data. That is, if
data are thought to belong to one ofk classes (or com-
ponents), but whose individual class memberships are
unavailable, then mixture models provide a natural
framework for statistical modeling. Moreover, due to
the large class of functions that can be approximated
by a mixture model, they are attractive for describ-
ing nonstandard distributions. For a comprehensive list
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of the applications of mixture models see Titterington,
Smith and Makov (1985), and for a recent overview see
McLachlan and Peel (2000).

As a result of the early work of Newcomb (1886)
and Pearson (1894) mixture models were established
as a useful statistical tool. In addition, methodologi-
cal advances in computational methods for frequentist
mixture models, including the maximum likelihood ap-
proach of Baum, Petrie, Soules and Weiss (1970) and
more generally the expectation–maximization (EM) al-
gorithm (Dempster, Laird and Rubin, 1977), added
to their popularity. However, difficulties often arise in
the application of mixture models. For example, in
the context of frequentist mixtures with location–scale
component distributions, the likelihood can become
unbounded (see Aitkin, 2001, for further details).

From the Bayesian perspective, before Markov chain
Monte Carlo (MCMC) methods (Hastings, 1970;
Green, 1995; for a general introduction, see Robert
and Casella, 2004, or Liu, 2001), mixture models were
restricted to a few specialized cases (e.g., Bernardo
and Giròn, 1988). Following the work of Diebolt and
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Robert (1994, data augmentation Gibbs sampler ap-
plied to mixtures), Bayesian mixture models could be
applied routinely when the number of components is
assumed known. Bayesian analysis via mixture models
with an unknown number of components is now pos-
sible using the methods of Escobar and West (1995,
Dirichlet process mixtures), Mengersen and Robert
(1996, distributional distances), Richardson and Green
(1997, reversible jump MCMC) and Stephens (2000a,
birth-and-death MCMC). Due to the above devel-
opments, implementation of Bayesian mixtures has
become increasingly popular in many academic disci-
plines, such as biological sequence analysis (Boys and
Henderson, 2003), econometrics (Frühwirth-Schnatter,
2001; Hurn, Justel and Robert, 2003), machine learn-
ing (Beal, Ghahramani and Rasmussen, 2002) and epi-
demiology (Green and Richardson, 2002).

One of the main challenges of a Bayesian analysis
using mixtures is the nonidentifiability of the compo-
nents. That is, if exchangeable priors are placed upon
the parameters of a mixture model, then the result-
ing posterior distribution will be invariant to permu-
tations in the labelling of the parameters. As a result,
the marginal posterior distributions for the parameters
will be identical for each mixture component. There-
fore, during MCMC simulation, the sampler encoun-
ters the symmetries of the posterior distribution and the
interpretation of the labels switches. It is then mean-
ingless to draw inference directly from MCMC output
using ergodic averaging. Label switching significantly
increases the effort required to produce a satisfactory
Bayesian analysis of the data, but is a prerequisite of
convergence of an MCMC sampler and therefore must
be addressed. While convergence in MCMC simula-
tion is a complex issue, we regard aminimum require-
ment of convergence for a mixture posterior to be such
that we have explored all possible labellings of the
parameters. We justify this choice in our examples in
Section 3. For a discussion of convergence issues, see
Robert and Casella (2004).

A difficulty in the Bayesian analysis of mixtures,
when the number of components is unknown, is the
sensitivity of the posterior distribution for the number
of components to changes in the prior distribution for
the parameters. Aitkin (2001) noted apparent difficul-
ties in Bayesian analyses of mixture models and we
discuss these concerns in this paper.

1.1 Interpretation of Mixture Models

In general, there are two ways in which mixture
models can be interpreted. First is the missing data

formulation. We assume that datax = (x1, . . . , xn) are
i.i.d. with distribution

xi |zi = j, φj ∼ f (xi;φj )(1)

for j = 1, . . . , k, and the latent variables{zn} decon-
volve the distribution of the data, withp(zi = j |θ) =
πj (with φj andθ to be defined in the next section).
However, if the i.i.d. assumption is relaxed, for exam-
ple to Markovian dependence, we return the so-called
hidden Markov model (HMM); see Baum and Petrie
(1966) and Robert, Rydén and Titterington (2000).
Therefore label switching is not restricted to “stan-
dard” mixture models (e.g., Richardson and Green,
1997), but to any model with conditional structure such
as (1).

The second interpretation is through a semiparamet-
ric construction. As noted above, due to the ability of
mixture models to approximate nonstandard distribu-
tions, they can be seen as alternatives to nonparamet-
ric models. The missing data approach is appropriate
in terms of clustering and semiparametricity in areas
such as density estimation.

1.2 Illustrative Example: The Crab Data

To illustrate some of the issues discussed in Sec-
tion 1, we consider the famous crab data set analyzed
by Pearson (1894). The data are shown in Figure 1
and comprise measurements of the ratio of forehead
to body length of 1000 crabs, and were the focus of
one of the first major analyses of data by a mixture
model. The measurements were provided to Pearson by
W. F. R. Weldon, who speculated that there were two
new subspecies present. Following Pearson (1894), we
use a two component normal mixture model to analyze

FIG. 1. Histogram of the crab data with a kernel density estimate
(dashed ) overlaid.
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FIG. 2. (a)Marginal posterior density estimates and (b) classification probabilities for the crab data. We fitted a two component mixture
model to the data, and the output is the last 88,000samples from a reversible jump sampler which were permuted for effect.

these data. Our priors for the parameters are described
in Section 2 and are exchangeable with respect to the
labelling of the components.

In Figure 2 we observe the marginal posterior den-
sity estimates for the means [Figure 2(a)] and the clas-
sification probabilities [Figure 2(b)]. The classification
probability, for this example, is the probability that
a data point is in component/class 1, based on our
MCMC output. The symmetries in the posterior distri-
bution are immediately seen, with the posterior means
being the same for each component, as well as the clas-
sification probabilities all being close to 1/2.

There appears, however, to be significant informa-
tion in the output. This is because there are two modes
in the posterior for the means, which represent the
two possible populations in the data. Label switching
masks this information and we need a way to deal
with it.

1.3 Solutions to the Label Switching Problem

For Bayesian mixtures the invariance of the likeli-
hood to permutations in the labelling is not a problem
that is as easily solved as in the frequentist approach.
In the case of the latter, simple inequality constraints
[artificial identifiability constraints (ICs)] on the para-
meter space can be used to break the symmetry in the
likelihood (see McLachlan and Peel, 2000). For exam-
ple, if the component parameters areθ1 andθ2, a possi-
ble constraint isθ1 < θ2. In the Bayesian context these
constraints do not always perform adequately.

To demonstrate the above, consider the well-known
Galaxy data (see, e.g., Stephens, 1997a). The data set

was first presented by Postman, Huchra and Geller
(1986) and consists of the velocities (in 103 km/s) of
distant galaxies diverging from our own, taken from six
well separated conic sections of the Corona Borealis:
they can be observed in Figure 3. The data were orig-
inally of size 83, but we leave one observation out,
in accordance with the analyses of Roeder (1990),
Richardson and Green (1997) and Stephens (1997a).
Since Richardson and Green (1997) found high poste-
rior support for between five and seven components,
we fit the random beta model (see Section 2.2 for
further details) of Richardson and Green (1997) with
a fixed number of six components to the data. We
ran a Gibbs sampler (the fixed dimensional updates in

FIG. 3. Histogram of the Galaxy data. We have overlaid the his-
togram with a kernel density estimate (dashed ).
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FIG. 4. Marginal posterior density estimates of the sampled means of the galaxy data set. The means were permuted to obey the constraint
µ1 < · · · < µ6. We fitted a six component normal mixture to the data. The output is the last 20,000iterations from the Gibbs sampler.

Richardson and Green, 1997) for 20,000 iterations post
burn in.

In Figure 4 we can observe the marginal posterior
density estimates for the means under the identifiability
constraintµ1 < · · · < µ6, whereµj denotes the mean
parameter of thej th normal component. We can see
that there is evidence of multimodality in components
two and five, and it appears that the symmetry in the
posterior has not been removed.

This problem is typical of MCMC mixture analysis
and consequently there have been many ideas proposed
to deal with label switching. Along with artificial iden-
tifiability constraints, Stephens (1997a, 2000b) and
Celeux (1998) developedrelabelling algorithms to per-
form a k-means type clustering of the MCMC sam-
ples. Additionally, Celeux, Hurn and Robert (2000)
and Hurn, Justel and Robert (2003) usedlabel in-
variant loss functions—a decision theoretic procedure.
Related to ICs is therandom permutation sampler of
Frühwirth-Schnatter (2001), which was designed both
to improve the mixing of an MCMC sampler and to be
a convenient way to apply identifiability constraints. In
this article we provide a review of these methods.

One simple solution to the label switching problem
is to adopt themaximum a posteriori (MAP) estimator,

which is equivalent to penalized maximum likelihood
(see Ciuperca, Ridolfi and Idier, 2003, e.g.). As a result,
the label switching problem is only of concern during
simulation. However, one of the main attractions of us-
ing a Bayesian approach is the ability to reflect the un-
certainties related to our inference. Clearly MAP esti-
mation does not allow this. This aspect is of particular
importance in mixture analysis, due to the likely gen-
uine multimodality (modes which cannot be explained
by permuting the labels of the parameters) of the pos-
terior distribution (in our experience this occurs quite
often). As a result, we do not believe that MAP esti-
mates provide a general solution to the label switching
problem, because of the inability of the estimate to ac-
commodate competing explanations of the data.

1.4 Outline

The article is organized as follows. In Section 2
we introduce some notation and a particular mix-
ture model that we will be studying. In Section 3 we
review various MCMC sampling strategies for mix-
tures. When the number of components is fixed, it
was established by Celeux, Hurn and Robert (2000)
that the Gibbs sampler is not always appropriate



54 A. JASRA, C. C. HOLMES AND D. A. STEPHENS

for sampling from a mixture posterior. This is be-
cause of the inability of the Gibbs sampler to tra-
verse the support of highly multimodal distributions.
We emphasize that we can simulate from a mixture
posterior using Metropolis–Hastings updates without
completion (simulation of the missing class labels)
and that tempering MCMC (Neal, 1996) may be used.
We also consider reparameterizations, as discussed by
Celeux, Hurn and Robert (2000), and variable dimen-
sion samplers. Next, we examine the existing solutions
to the label switching problem. We begin in Section 4
with identifiability constraints, then relabelling algo-
rithms (Section 5) and finally label invariant loss func-
tions (Section 6). In Section 7 we discuss some of the
potential problems with prior specification in Bayesian
mixture models with an unknown number of compo-
nents. In Section 8 we conclude with our views on
applying the methods reviewed as well as a future re-
search area in Bayesian mixture modeling.

2. NOTATION AND MIXTURE MODELS

Throughout this article we use the following nota-
tion. We letp(·) represent a generic probability den-
sity. Denote datax = (x1, . . . , xn) which is assumed
to be independently and identically distributed (i.i.d.)
with mixture distribution

p(xi |θ, k) =
k∑

j=1

πjf (xi;φj ),

wheref is some parametric component density/mass
function, k is possibly unknown and finite,φ = (φ1,

. . . , φk) are component specific parameters,π = (π1,

. . . , πk) are the mixture proportions or weights and
θ = (θ1, . . . , θk) = ((π1, φ1), . . . , (πk,φk)). Denote the
parameter spaceφ ∈ � ⊆ R

p with Sk−1 × �k = �k ,
where Sk−1 = {(π1, . . . , πk−1) :π1, . . . , πk−1 ≥ 0 ∩
π1 + · · · + πk−1 ≤ 1}.

Define apermutation σ of the labels 1, . . . , k of a
parameter vectorθ as

σ(θ) = (
θσ(1), . . . , θσ(k)

)
,

whereσ ∈ Sk , the set of allk! permutations of 1, . . . , k.
The nonidentifiability in the posterior arises as

p
(
x|σ(θ), k

) =
n∏

i=1

{
k∑

j=1

πσ(j)f
(
xi;φσ(j)

)}

is identical for allσ ∈ Sk . Hence ifp(θ) ≡ p(σ(θ))

∀σ ∈ Sk , then so is the posterior distribution,p(θ |x).
As a result, if there arek components in a mix-
ture model and there is one mode under a given la-
belling, there arek! symmetric modes in the posterior
distribution.

2.1 Random Beta Model

A well-known mixture model that we use for our ex-
amples is the random beta model of Richardson and
Green (1997). The model is as follows: datax1, . . . , xn

are i.i.d. with distribution

xi |θ , k ∼
k∑

j=1

πjN (µj , λ
−1
j ),

whereN (µ,λ−1) denotes the normal distribution with
meanµ and precisionλ. The priors, which are the same
for each componentj = 1, . . . , k, are taken to be

µj ∼ N (ξ, κ−1),

λj |β ∼ Ga(α,β),

β ∼ Ga(g,h),

π ∼ D(δ),

where D(δ) is the symmetric Dirichlet distribution
with parameterδ andGa(α,β) is the gamma distrib-
ution, shapeα, scaleβ. If k is unknown, we assume
k ∼ U{1,...,kmax}, whereU{1,...,kmax} is the uniform dis-
tribution on the integers 1, . . . , kmax with kmax known.

The purpose of the hierarchical structure on the vari-
ances is to reduce the effect of the prior on the pos-
terior; improper priors are generally unavailable for
mixtures (see Gruet, Philippe and Robert, 1999, for
an example of improper priors in the mixture context).
A problem with the above prior, whenk is unknown,
arises due to the Lindley–Bartlett paradox (Lindley,
1957; Bartlett, 1957). Jennison (1997) noted that, in the
limit as κ → 0 andβ → ∞, the posterior distribution
for k favors models with fewer components. We illus-
trate this phenomenon in Section 7.

Quantities in which we often are interested are the
classification probabilities, defined as

p(zi = j |x, k) =
∫
�

πjf (xi;φj )∑k
l=1 πlf (xi;φl)

p(θ |x) dθ .

Then if we were interested in a single “best” cluster-
ing, we might take the groups which are formed by the
maximal classification probabilities.

3. MCMC SAMPLERS FOR MIXTURE MODELS

As we saw in Section 1.2, label switching creates a
problem at the inferential stage of analysis. However,
it does provide a useful convergence diagnostic at the
simulation stage. That is, we know a priori that the
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mixture posterior hask! symmetric modes. Thus fail-
ure to visit them reveals that an MCMC sampler has
not converged. Many different sampling schemes have
been proposed for mixture models. We first review the
most popular samplers that are available for simulat-
ing from standard mixtures with a known number of
components.

3.1 Gibbs Sampler

Following Diebolt and Robert (1994), perhaps the
most popular methods to simulate from a mixture
posterior distribution uses data augmentation and the
Gibbs sampler, that is, by simulating the unobservedz.
However, the highly multimodal nature of a mixture
distribution often makes the Gibbs sampler inappropri-
ate for this task. To illustrate such a case, we simu-
lated 100 data points fromxi ∼ 1/4{N (−3,0.552) +
N (0,0.552) + N (3,0.552) + N (6,0.552)} and then
used the random beta model, withk = 4. We ran the
sampler for 150,000 iterations post burn-in, the results
of which are presented in Figure 5(a).

The most striking feature of Figure 5(a) is that the
sampler appears to be performing well, in the sense that
it has picked out the means from the data. The apparent
“good” performance of the sampler is offset by the fact
that it has only been able to visit one of the 4! sym-
metric modes in the posterior distribution. It may be
the case that if we ran the sampler for more iterations,
we would visit another symmetric mode. However, it
is clear that the Gibbs sampler is unable to freely move
around the space of this distribution. Such behavior is
highly undesirable since it is possible that there are

many regions of the posterior support that are not being
explored by the sampler.

We have shown that the Gibbs sampler cannot al-
ways visit the k! symmetric modes of a posterior
mixture distribution easily. We note that “[f]rom a
statistical viewpoint, exploration of thek! modal re-
gions is redundant” (Celeux, Hurn and Robert, 2000).
Indeed, if we wish to explore all of thek! symmetric
modes, we could randomly permute the output from
the sampler; that is, simply add a Metropolis–Hastings
move that proposes a random permutation of the la-
bels, which is accepted with probability 1 (as used
by Frühwirth-Schnatter, 2001). Clearly, this course of
action is only appropriate if the posterior distribu-
tion is not genuinely multimodal (which would not be
known a priori to simulation). This is because, if a
Gibbs sampler is unable to move around the support
of a multimodal distribution and there exists genuine
multimodality, then the sampler will not mix well (or
at all) between the modes.

3.2 Metropolis–Hastings with Tempering Updates

Since the Gibbs sampler cannot visit all of the modes
of a mixture target, we need to consider alternative
methods. Cappé, Robert and Rydén (2001) made the
following statement:

We will not use completion to run our
(MCMC) algorithm. That is to say, the la-
tent variables{zn} is not to be simulated
by the algorithm. . . . We believe that this
choice is bound to accelerate convergence

FIG. 5. Trace plot of the sampled means for the simulated data of Section 3.1.We fitted a four component normal mixture to the data. The
output is (a) the last 150,000iterations from the Gibbs sampler and (b) the last 150,000iterations from the tempering sampler (every fifth).
The initial labelling is µ1 (black), µ2 (orange), µ3 (blue) and µ4 ( yellow).
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of the algorithm by the drastic reduction in
the dimensionality of the space.

We consider this approach by discarding the latent
variables and updating the parameters using Metropo-
lis–Hastings moves. Celeux, Hurn and Robert (2000)
reported that random walk proposal mechanisms are
too local, in the sense that the sampler cannot move
freely around thek! symmetric modes. They used tem-
pering MCMC, which was developed by Neal (1996).
We now introduce this method and apply it to the sim-
ulated data set of the previous section. We note that
more advanced methods exist, for example, popula-
tion or evolutionary Monte Carlo (EMC; Liang and
Wong, 2001). We do not review these methods here,
other than to note that population based MCMC works
by embedding the target distribution of interest into a
sequence of related distributions and sampling from
p∗(·) ∝ ∏m

j=0 pj (·), wherep0(·) is the original tar-
get distribution: for a review, see Liu (2001) and for
an extension to the transdimensional case, see Jasra,
Stephens and Holmes (2005).

Tempering MCMC uses what is essentially a
Metropolis–Hastings kernel to sample from the pos-
terior distribution, in which case it is often beneficial
to reparameterize the mixture proportions in the ran-
dom beta model. This is because Metropolis–Hastings
moves may not perform well on a constrained space
such as the simplex of mixing proportions. We choose
the reparameterizationπj = vj/

∑k
l=1 vl with vj > 0

∀ j . We modify the prior forπ asvj ∼ G(δ,1), with
vj |= vl ∀ j 
= l, whereA |= B meansA is independent
of B. As a result, our reparameterized model is equiv-
alent to the original model.

3.2.1 Tempering MCMC. Suppose we have a tar-
get distributionp0(θ) which has many isolated modes.
Now suppose we have a sequence ofm related distri-
butionsp1(θ), . . . , pm(θ). The final distributionpm is
(potentially) quite different fromp0, but is thought to
be easier to sample from. The objective is to use these
distributions to assist in the movement around the sup-
port of the target.

To propose a new state in the chainθ ′, we use an up–
down scheme described with pseudocode in Figure 6
(note thata ∧ b means min{a, b}). The figure tells us
that we may need to draw from the intermediate distri-
butionspj via a Markov chain kernel. We note that this
kernel itself may be a cycle of Metropolis–Hastings
kernels; this is particularly useful ifθ is of high di-
mension.

FIG. 6. Transition dynamics for tempering MCMC.

To apply the method for mixtures we supposep0(·)
is the posterior distribution. We then letpj (·) ∝
p0(·)1/ζj , j = 1, . . . ,m, where 1> ζ1 > · · · > ζm > 0
(theζ ’s act as a temperature parameter). The objective
is during the firstm simulations to flatten out the target,
allowing us to walk freely on the space. Then, for the
nextm − 1 steps we return to a state that receives high
posterior support under the target. To have sufficiently
high acceptance probability the intermediate steps (i.e.,
theζ ’s) should not have a large difference. We can add
further simulations frompm(·) to encourage movement
between the modal regions.

3.2.2 Tempering for the random beta model. To ap-
ply tempering MCMC for the reparameterized random
beta model, we make some modifications to the algo-
rithm. First we add a Metropolis–Hastings step, so that
with probabilityω we perform a deterministic cycle of
Metropolis–Hastings steps, implemented in the follow-
ing manner. Draw a newµ′ = (µ′

1, . . . ,µ
′
k) via an ad-

ditive normal random walk. This move is accepted with
probability 1∧ p(µ′| · · ·)/p(µ| · · ·), where

p(µ| · · ·) ∝ p(x|µ,λ,v)p(µ)(2)

and | · · · denotes conditioning on all other variables.
For λ′ = (λ′

1, . . . , λ
′
k) and v′ = (v′

1, . . . , v
′
k) we use

reflective proposals, that is, normal random walks
bounced off a barrier at zero.

The second modification is to use tempering to
simulate from the full conditionals, that is, to sam-
ple from p(µ| · · ·), p(λ| · · ·) and p(v| · · ·). We note
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that this is a valid MCMC sampler since any ker-
nel (which is a cycle) that is invariant with respect
to the (full) conditional distributions for allθ−j =
(θ1, . . . , θj−1, θj+1, . . . , θk) will have invariant distri-
butionp(·) (Tierney, 1994).

Our choice may seem odd, since the full conditionals
may not be as multimodal as the full posterior. How-
ever, if we consider (2) we can see that this is of mix-
ture form and is likely to have many modes.

Another reason we do this is because in other simu-
lations (on a hidden Markov model), we obtained huge
rejection rates when sampling from the full posterior.
It may be the case that a reduction in the dimensional-
ity of the parameters may facilitate higher acceptance
rates. Our approach may lead to longer computing time
than a single tempering move onp(µ,λ,v|β,x), but it
may also require fewer iterations to converge due to
higher acceptance rates.

The intermediate steps are performed using the same
random walk proposal as above. Also, the levels are
taken to be the same for each full conditional. The
Metropolis–Hastings steps allow us to explore a modal
region and the tempering allows us to move between
modes. For all of our examples we setω = 1

2.
Other proposals and reparameterizations that we

have found to work well are as follows. For the
precisions, a multiplicative random walk with lognor-
mal proposals has been used. For the weights, a repa-
rameterization onto the logit space, updating via an
additive normal random walk, can prove to be an ef-
fective strategy. Additionally, if the sampler exhibits
slow movement around the parameter space, we often
use heavy-tailed (e.g., Cauchy) proposals to improve
mixing.

3.3 Simulated Data Example

We now return to the simulated data at the beginning
of the section, using the tempering sampler to draw
from the posterior. We ran the MCMC sampler for suf-
ficiently long post burn-in (until the sampled parame-
ters seemed to stabilize), with appropriate thinning to
take into account rejections of our moves. The number
of steps for the tempering was 55, starting atζ1 = 2 and
increasing by 2 at each level. The choice of steps was
tuned in prior simulations to achieve reasonable accep-
tance rates, which were (in the orderµ,λ,v) for the
Metropolis–Hastings moves(0.15,0.44,0.23) and for
the tempering moves(0.007,0.03,0.016). The temper-
ing acceptance rates appear to be quite low, but since
they are used for global moves we are satisfied with the
performance of our algorithm.

In Figure 5(b) we can observe the output. From this
figure we can see the correct label switching behav-
ior, the sampler visiting the majority [in fact,(4! − 2)]
of the symmetric modes in the posterior distribution
(mixing over colors). We note that for full conver-
gence we would need to ensure that the sampler visits
all 4! modes, but the behavior of the sampler is more
than satisfactory.

3.4 Variable Dimension Samplers

Following Richardson and Green (1997) the stan-
dard way to simulate from a mixture with an unknown
number of components is reversible jump MCMC
(Green, 1995; for an up-to-date review, see Green,
2003). Reversible jump is simply an adaptation of the
Metropolis–Hastings method, where the measure the-
oretic construction is necessary because of the lack of
common dominating measure when jumping between
distributions of differing dimension. Stephens (2000a)
and Cappé, Robert and Rydén (2003) have considered
continuous time samplers. For continuous time sam-
plers the standard accept–reject step of a reversible
jump sampler is replaced by new states that are al-
ways accepted, but that occur via either a marked point
process, or more generally a Markov jump process with
appropriate stationary distribution.

In a comprehensive comparison between reversible
jump and continuous time samplers, Cappé, Robert and
Rydén (2003) demonstrated that there was little dif-
ference between the two. Theoretically, they showed
that a sequence of reversible jump samplers converges
to a continuous time sampler (in Skorohod topology).
In terms of performance, they showed that the contin-
uous time sampler was less efficient in that the CPU
time, on average, was longer. The main differences ap-
pear to be that, first, the continuous time sampler can
visit unlikely regions in the support of the posterior,
thus yielding a sort of springboard between different
modal regions (Cappé, Robert and Rydén, 2003), and
second, that for the continuous time sampler there is a
“free” Rao–Blackwellization to reduce the variance of
the Monte Carlo (MC) estimates of integrals. We have
found that, in practice, these latter differences do not
have a significant impact on the performance of the
sampler (when compared to reversible jump) or the in-
ference resulting from it.

3.4.1 Completion. Another aspect of interest is that
of completion for variable dimension samplers. In our
experience, for relatively small data sets (e.g., the
Galaxy data), the sampler which simulates the missing
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data comprehensively outperforms a sampler without
completion. This is in terms of CPU time, mixing and
convergence speed. For large data sets (e.g.,n = 5000),
we found that the sampler without completion con-
verged faster (we would generally expect this due to
the reduction in size of the state space), but at a cost of
longer CPU time.

As noted by Richardson and Green (1997) and
Stephens (2000a), mixing withink is often improved
by using variable dimension samplers. This is because
the sampler now has the ability to move around the
modes of a distribution (conditional onk) via a model
of lower or higher dimension, that is, by jumping out of
thek mixture model space, moving around in a model
of different dimension and then returning to a different
region in thek space, thus escaping valleys in the pos-
terior probability distribution that a fixed dimensional
sampler is unable to scale. Indeed for the crab data ex-
ample in Section 1 we used a reversible jump sampler,
since the fixed dimension sampler was unable to visit
a genuine mode in the posterior. Therefore, variable
dimension samplers provide an alternative method to
sample from a mixture posterior with a known number
of components. This is at the cost of extra program-
ming effort and inefficiency due to the fact that the
sampler will not necessarily stay in the model of inter-
est for the entire run.

3.4.2 Multivariate mixtures. Simulation from mul-
tivariate mixtures with an unknown number of com-
ponents is also an issue of importance. Stephens
(2000a) used a continuous time sampler to draw
from a bivariate mixture posterior. More generally,
Dellaportas and Papageorgiou (2004) constructed a re-
versible jump sampler for multivariate mixtures of
normals, with split/merge moves operating on the
space of eigenvalues and eigenvectors of the co-
variance matrix. Dellaportas and Papageorgiou (2004)
demonstrated their method on two-, three- and five-
dimensional data, and reported reasonable mixing
properties for their algorithm.

3.5 Dirichlet Process Mixtures

An additional way to construct a mixture with
an unknown number of components is the Dirichlet
process mixture (DPM); see, for example, Escobar
and West (1995). In this approach the prior distrib-
ution for the parameters of the mixture is treated as
unknown, sayG, and a Dirichlet process (DP) prior
is placed upon it. The discreteness ofG under the

DP is exploited as follows. In any sample of para-
meters (θ1, . . . , θn) (corresponding to then possi-
ble components), there is positive probability of two
or more points coinciding, thus reducing the compo-
nents tok (≤ n). Typically the full conditionals can
be sampled from using Gibbs or possibly Metropolis–
Hastings updates. West (1997) noted that DPMs are
perhaps less general than the mixtures focused on in
this article, stating that the approach is “more geared
towards density estimation and related objectives than
mixture deconvolution or parameter estimation.”

3.6 Comments

We have considered samplers for mixtures. We have
demonstrated that the Gibbs sampler is not always ap-
propriate for sampling from a mixture posterior, though
for some cases such as the Galaxy data example (Sec-
tion 1), the samples were more than adequate. We saw
that tempering updates allowed full exploration of the
mixture posterior.

To use tempering MCMC (as we have used it) we
need to be able to calculate the marginal likelihood.
Clearly, for standard mixtures this is straightforward.
However, if the latent variables have special structure
(e.g., Markovian), this calculation may be difficult. We
have found that for HMMs, marginal update schemes
(which require the “forward” step of the forward–
backward algorithm of Baum et al., 1970) can be com-
putationally slow and sometimes lead to large auto-
correlations and rejection rates in Metropolis–Hastings
moves (as found by Boys and Henderson, 2003).

There are other approaches for simulating from
a mixture posterior, including perfect samplers: see
Casella, Mengersen, Robert and Titterington (2002).
Marin, Mengersen and Robert (2005) provide a review.
Also work on exact simulation for change-point prob-
lems via the forward–backward method can be found
in Fearnhead (2004).

We now review the various ways to deal with la-
bel switching, beginning with artificial identifiabil-
ity constraints. To use the methods that we review,
we recommend conditioning onk as argued by Robert
(1997). Therefore, we always consider label switching
for mixtures with a fixed number of components. We
also assume that we have a sampler that can visit thek!
symmetric modes of the posterior.

4. ARTIFICIAL IDENTIFIABILITY CONSTRAINTS

4.1 The Method

We define anidentifiability constraint as a condi-
tion on the parameter space�, such that only one
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permutation can satisfy it. An example of such a con-
straint isµ1 < · · · < µk in the univariate random beta
model. This identifiability constraint isartificial, as it
does not arise from any genuine knowledge or belief
about the model, but is rather an apparent inferential
convenience.

We refer to ICs in the way they were initially used (as
in Diebolt and Robert, 1994, or Dellaportas, Stephens,
Smith and Guttman, 1996). In other words, at every it-
eration of the sampler, we permute the samples so they
satisfy the constraint. When applying ICs, it is best to
search for identifiability constraints that lead to den-
sity estimates of the parameters that are as unimodal
as possible (as stated by Richardson and Green, 1997).
Indications of inappropriate identifiability constraints
include exaggerated skewness and multimodality in the
density estimates.

The motivation behind imposing an IC is the follow-
ing. Since the likelihood and prior are invariant to the
labelling of the parameters, if we impose an identifia-
bility constraint on the parameter space, we break the
symmetry in the posterior and the labelling problem
should be solved. We would therefore focus on one of
the k! symmetric modes and output from the MCMC
sampler can then be interpreted.

An identifiability constraint need not be imposed
before any simulation takes place. Stephens (1997a)
proved that inference conditional on an identifiability
constraint can be performed when the constraint is im-
posed after the MCMC run (see Proposition 3.1 and
Corollary 3.2 of Stephens, 1997a). Such procedures are
equivalent tochanging the prior distribution. That is,
since the marginal posterior distributions are the same
for each label and the likelihood is invariant to permu-
tations, we define a new priorpn(θ) such that

pn(θ) = k!p(θ)I(θ∈C),

whereC is the constraint,I(·) is the indicator function
andp(θ) is the unconstrained prior.

An alternative approach to identifiability constraints
was provided by Frühwirth-Schnatter (2001).
Frühwirth-Schnatter used a “random permutation”
sampler (RPS). That is, at every iteration of an MCMC
sampler, a Metropolis–Hastings move is used to pro-
pose a new permutation of the labels. This ensures
the sampler visits allk! symmetric modes. Frühwirth-
Schnatter then applied exploratory data analysis on
the MCMC output from the RPS by applying ICs. We
search for constraints that give the clearest picture of
all of the parameters (i.e., much the same as the recom-
mendations of Richardson and Green, 1997, discussed
above).

4.2 Comments on the Method

Identifiability constraints have come under much
scrutiny in the literature. Celeux (1997) and Celeux,
Hurn and Robert (2000) and Stephens (1997a, 1997b,
2000b) all voiced their concerns about imposing an
identifiability constraint.

Much of the initial attention was confined to the ef-
fect on the MCMC sampler, such as the implications of
truncating the support of the posterior in terms of sim-
ulation (as mentioned by Celeux, 1997, and Celeux,
Hurn and Robert, 2000). However, as stated above,
since identifiability constraints can be imposed after
simulation, we can simulate from the unconstrained
posterior distribution and then impose an IC. As a re-
sult, there is no problem in terms of an adverse effect
on simulation.

The use of exchangeable priors is normally an at-
tempt to be weakly informative (e.g., Richardson and
Green, 1997). However, if the identifiability constraint
used does not correctly isolate one of thek! symmet-
ric modes, we would hesitate to call such a specifica-
tion weakly informative. This is because the prior will
become highly influential on our inference, as demon-
strated by Celeux, Hurn and Robert (2000). We note
that they called this “disturbing.” We contend that it is
only to beexpected, since different constraints corre-
spond to different models.

One problem with identifiability constraints is the
choice of constraint. Frühwirth-Schnatter (2001) sug-
gested that “if the components of the state specific
parameters have some physical meaning, then an ex-
pert in the field will have some idea in which way
the groups or states differ and might be able to offer
such an identifiability constraint.” This seems reason-
able. However, we stress that if such expert opinion is
available, an effort to produce subjective priors should
be made. This may mean that there is no label switch-
ing at all, although label switching can still occur under
subjective priors.

A more general difficulty of using ICs is in multi-
variate problems. Finding suitable identifiability con-
straints in such situations is almost impossible.
Moreover, it can be difficult to anticipate the overall
effect of such an action. We saw at the beginning of
this paper that identifiability constraints do not always
work, so we consider this example in more detail.

4.3 Example: Galaxy Data Revisited I

We now use the random beta model of Richardson
and Green (1997) to illustrate that identifiability con-
straints can often induce informative priors that do not
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FIG. 7. A general relabelling algorithm.

necessarily reflect the objective of their exchangeable
versions. To do this, we return to the output from the
Galaxy data in Section 1.3.

We computed the estimated means, conditional on
the identifiability constraintµ1 < · · · < µ6, through er-
godic averaging and compared them with the means es-
timated by the relabelling algorithm in Figure 7 (which
we discuss in the next section; we believe the estimates
reflect one of the 6! symmetric modes of the poste-
rior). The results can be seen in Table 1. For most of
the means we can see that the new prior induced by
the identifiability constraint produces very different re-
sults to the “correct” clustering of the MCMC samples;
hence, the constraint is more influential than was in-
tended.

5. RELABELLING ALGORITHMS

5.1 The Method

Relabelling algorithms were developed by Stephens
(1997a, 1997b, 2000b) and Celeux (1998). The idea is
as follows: Suppose we define a loss functionL :A ×
� → [0,∞) such that

L(a, θ) = min
σ∈Sk

{
L0

(
a,σ (θ)

)}
,

where A is the action space. Then the optimal ac-
tion a∗ is

a∗ = argmin
a

∫
�

L(a, θ)p(θ |x) dθ .(3)

Since the integral in (3) cannot be computed ex-
actly, we use an MC estimate. We suppose that we
drawN samples from the posterior distribution (denote
theseθ (t), t = 1, . . . ,N ) and then apply the algorithm
in Figure 7 to remove label switching.

The idea behind the algorithm is the following. Since
the likelihood is invariant to permutations in the la-
belling, we seek to minimize the loss of performing
an actiona associated withθ by selecting the permu-
tation that minimizes this loss and then minimizing the
posterior expected loss.

Stephens (2000b) derived an algorithm for cluster-
ing inference based on reporting ann × k matrix, Q,

TABLE 1
Estimated means

Parameter Constraint KL

µ1 8.07 9.71
µ2 16.46 19.01
µ3 19.90 19.88
µ4 22.21 22.71
µ5 25.62 22.86
µ6 34.84 32.92

NOTE. The constraint column is the estimated means under the
identifiability constraintµ1 < · · · < µ6. The KL column is the es-
timated means under the relabelling algorithm in Figure 8.

of classification probabilities, that is,qij is the prob-
ability that observationi is assigned to classj . Let
P(θ) denote the true matrix of classification probabil-
ities, wherepij (θ) = πjf (xi;φj )/

∑k
l=1 πlf (xi;φl).

Stephens used the Kullback–Liebler (KL) divergence
to measure the loss of reportingQ when the true prob-
abilities areP(θ). The algorithm is given in Figure 8.
We refer to this algorithm as the KL algorithm.

To apply a relabelling algorithm, we must choosem

(well dispersed) starting points, since the algorithm
is only guaranteed to converge to a local minimum.
We then select the permutations and quantities that give
the optimal solution. If storage requirements are too
substantial, then an online version can be implemented.
Additionally, step 2 of Figure 7 can be performed ef-
ficiently (for mediumk) using the transportation algo-
rithm; see Stephens (2000b) for details.

5.2 Comments on the Method

The form of a relabelling algorithm is exactly that of
ak-means type clustering algorithm: Stephens took ad-
vantage of the special nature of the problem at hand. In
our view, the method is anautomatic way to apply (or
induce) an identifiability constraint. That is, under an
inferential objective the permutations of the labelling

FIG. 8. Stephens’s KL algorithm for clustering inference.
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are induced or discovered so that all of the samples are
labelled in the same way. We can then draw inference
on any quantity by using ergodic averaging on the per-
muted samples.

We feel that the fact that the method is simply a way
to apply an identifiability constraint (i.e., that the statis-
tical model is changed) is underappreciated in the liter-
ature; it is not a fully decision theoretic method. That
is, under a fully decision theoretic method, for every
quantity of interest, we derive a loss function for esti-
mation, which is not the case for relabelling algorithms
(indeed, it would not be sensible since we may have
different quantities that were estimated conditional on
different identifiability constraints).

A method related to relabelling algorithms was given
by Marin, Mengersen and Robert (2005), who found
the MAP estimate of the parameters based on all of the
MCMC samples. Then, to permute the MCMC sam-
ples, they found the permutation that minimizes the
canonical scalar product between the MAP estimator
and the sample. This method is simple to use, but has a
one major drawback when the parameter space features
many genuine modes. In this case the MAP estimate
will ignore minor modes and may lead to inappropriate
identifiability constraints being used.

We now demonstrate that relabelling algorithms ap-
ply or induce an identifiability constraint in the follow-
ing example.

5.3 Example: Crab Data Revisited

We used Stephens’s KL algorithm to deal with the
label switching of the crab data example. The density

estimates of the relabelled marginal posteriors and the
classification probabilities can be seen in Figure 9.

Application of Stephens’ KL algorithm has induced
the identifiability constraintµ1 < µ2 (note that this
was for this example and is not a general mathemati-
cal result). This allows us to perform inference that is
supported by Figure 9(b), which shows that the classi-
fication probabilities are far more discriminated under
the relabelled samples.

We note that if we wanted to estimate the means say,
it would be most sensible to take the estimate over the
permuted MCMC samples. This is because, if we ap-
plied another algorithm with a different loss function,
we might not obtain the same constraint (in this exam-
ple it is unlikely another constraint would transpire).
However, Stephens (2000b) reported that it is generally
the case, when there is no genuine multimodality, that
different relabelling algorithms often produce similar
permutations.

Another potential problem with ICs (and hence re-
labelling algorithms), when the data in the compo-
nents are poorly separated, is the following. Gruet,
Philippe and Robert (1999) found that one of the com-
ponents overwhelms the others, which become negligi-
ble. We explore this in the following example.

5.4 Example: Rao’s Plant Data

For our next example we consider the plant data of
Rao (1948). The data consist of the heights (in centime-
ters) of 454 plants of two different types. Rao (1948)
used a two component normal mixture model to an-
alyze the data and the data were presented in a fre-

FIG. 9. (a)Marginal posterior density estimates [µ1 (unbroken), µ2 (dashed )] and (b) classification probabilities for the crab data. We
used Stephens’s KL algorithm (Figure 8) to deal with the label switching. For (b) the orange dots are the classification probabilities under
the unconstrained prior.
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FIG. 10. Histogram of plant data. We overlaid the histogram with
a kernel density estimate (dashed ).

quency table, so they are essentially interval censored.
To remove this effect, we added aU[−0.5,0.5] random
variable (whereU[a,b] is the continuous uniform dis-
tribution on[a, b]) to each data point (which we inter-
preted as the midpoint of each class interval).

The physical motivation for a mixture is clear, but
let us observe the data given in Figure 10. We can see
that if the data truly comprise a two component mix-
ture, it is difficult to see evidence of this from the his-
togram (note that the sampling density/histogram need
not be bimodal to be a two component mixture). Thus
we suggest that the data in the components are poorly
separated.

To analyze these data, we use the random beta model
with k = 2 and use the KL algorithm to deal with la-

bel switching. We used tempering MCMC to sample
from the posterior distribution. The trace plots of the
parameters for 10,000 iterations post burn-in are given
in Figure 11. From Figure 11(a) we can observe that
there is significant label switching, since the plots for
both components are similar.

We then used the KL algorithm to undo label switch-
ing. While the object of inference is not clustering,
we can observe in Figure 11(b) that the algorithm has
worked well. This is because the algorithm appears to
have isolated one of the two symmetric modes in the
posterior distribution.

We can see from Table 2 that (for the relabelled
samples) component 1 dominates component 2 (since
π = 0.804). However, we feel that this isnot a defect
of using a relabelling algorithm (and hence an IC). This
is because the relabelled MCMC output appears to be
correct (no bias of the constraint), as demonstrated by
the fact that the relabelled components are so differ-
ent, that is, that the plot on the left in Figure 11(b) has
lower variance than the plot on the right. Although the
inference from the mixture model (based upon the re-
labelled samples) appears to be incorrect (e.g., Rao es-
timated the mixture proportion as 0.566, but we note
that our data may not give identical results to the orig-
inal analysis because we have perturbed them), this
does not matter from the perspective of dealing with la-
bel switching. The relabelling algorithm has performed
well and exposed the view of the data that one compo-
nent provides sufficient explanation of the data. In such
cases, it may be more appropriate to determine subjec-
tive priors or different component densities.

FIG. 11. Tempering MCMC trace plots for plant data: (a) the means as returned by our algorithm for 10,000iterations; (b) the relabelled
means.
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TABLE 2
Parameter estimates (ergodic averages) for the plant data based

on the unconstrained prior and the permuted samples

Parameter Raw output KL

µ1 13.824 13.747
µ2 13.819 13.897
λ−1

1 3.773 4.690
λ−1

2 3.66 3.075
π 0.519 0.804

5.5 Justification of Relabelling Algorithms

Stephens (1997a) gave possible justifications for us-
ing relabelling algorithms. The first justification was
“revisionist Bayes.” As stated in Section 4.1, applying
an identifiability constraint is equivalent to changing
the prior distribution. Therefore, when we use a rela-
belling algorithm we are essentially changing the sta-
tistical model. How might we justify such an approach?
Stephens suggested that we are returning to the mod-
eling stage and forcing identifiability on the compo-
nents of the mixture. Many Bayesians may find this
explanation distinctly unsatisfactory, but we agree that
it is a credible justification, because if we seek to draw
meaningful inference from the parameters of a mix-
ture model, we need to be able to interpret them. If we
use the extra information from the data (and hence the
MCMC sampler), we can do so.

The second justification was “mode hunter.” This is
simply the view that we seek to find the permutations
of the labelling which minimize the loss of computing
the quantity of interest, and that we can calculate no
other quantity.

Under the revisionist Bayes justification one actually
believes in the permutations applied and is convinced
that the model is representative of the real world prob-
lem. This is not the case under the mode hunter view.

5.6 Discussion

In this section we have shown that relabelling al-
gorithms impose an IC. The exact nature of the con-
straint depends on both the loss function chosen and
the MCMC samples themselves.

We have stated that relabelling algorithms should be
used with care when the data in the components are
similar. Note that inference from the parameters in this
case is not meaningless. There are many instances in
the literature where analysis of data when the com-
ponents are poorly separated has occurred, for exam-
ple, Rao (1948) and more recently Gruet, Philippe and

Robert (1999). Additionally there may be situations
where we do not know a priori that the components
are poorly separated, for example, if we were analyz-
ing high-dimensional data.

6. LABEL INVARIANT LOSS FUNCTIONS

6.1 The Method

Define a loss functionL :A×� → [0,∞) such that

L(a, θ) = L
(
a,σ (θ)

) ∀σ ∈ Sk.

Using such a loss function solves the labelling problem
immediately. The way in which the method is applied
(as in Celeux, Hurn and Robert, 2000, and Hurn, Justel
and Robert, 2003) is the following. Compute the pos-
terior expected loss

E[L(a, θ)|x] =
∫
�

L(a, θ)p(θ |x) dθ

(4)

≈ 1

N

N∑
i=1

L
(
a, θ (t)).

Normally (4) cannot be minimized analytically, and
so stochastic optimization methods (e.g., simulated an-
nealing) are implemented.

An example of a particular loss function used by
Hurn, Justel and Robert (2003) for clustering infer-
ence is

L(a, z) =
n−1∑
i=1

n∑
j=i+1

{
I(zi=zj )

(
1− I(ai=aj )

)

+ I(ai=aj )

(
1− I(zi=zj )

)}
,

whereai is the allocation that we give for theith data
point. This loss function is based on a pairwise compar-
ison of the allocation of data points. If the true pair of
data points is in the same class and our decision is that
it is not, then we lose one. Conversely, if we choose the
correct allocation we lose zero. To compute the poste-
rior expected loss, we have

E[L(a, z)|x]

=
n−1∑
i=1

n∑
j=i+1

{
p(zi = zj |x)

(
1− I(ai=aj )

)
(5)

+ I(ai=aj )p(zi 
= zj |x)
}
.

We then estimate (5) from our MCMC output (it is in-
variant to the labelling) and minimize with respect toa.
For examples of other loss functions, see Celeux, Hurn
and Robert (2000) and Hurn, Justel and Robert (2003).
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6.2 Comments on the Method

From the Bayesian point of view the method of la-
bel invariant loss functions is more satisfactory than
identifiability constraints. That is, we draw inference
conditional only on the data. The method is fully deci-
sion theoretic: for every quantity of interest we must
construct a loss function, and perform the expecta-
tion and then the minimization procedure highlighted
above. This approach acknowledges both that the mar-
ginal posteriors for the labels are the same and that
there is significant information in the MCMC output.
It is therefore a fully Bayesian procedure.

The main difficulty with this method is the com-
putational cost. Performing a simulated annealing
algorithm for many loss functions will often be compu-
tationally expensive and may not be feasible for some
functions.

A second drawback is the fact that the method is re-
stricted to a class of loss functions that may or may not
make sense for the decision problem at hand. That is,
the method requires that the loss functions be invariant
to the labelling of the parameters and that it is compu-
tationally feasible to minimize the posterior expected
loss. Whether loss functions can be constructed within
this class depends on the statistical objectives.

7. ROLE OF THE PRIOR IN BAYESIAN
MIXTURE MODELING

One of the difficulties in Bayesian modeling is spec-
ifying a prior distribution when there is little infor-
mation to be used. This is often the case in Bayesian
analyses via mixture models with an unknown number
of components and can lead to some additional (i.e.,
not label switching) inferential difficulties. We now
demonstrate one such problem for the random beta
model.

7.1 Example: Galaxy Data Revisited II

We reanalyzed the Galaxy data using the random
beta model withk unknown. For seven different set-
tings of κ (the normal prior precision on the com-
ponent mean parameter), we ran a reversible jump
sampler (similar to Richardson and Green, 1997, ex-
cept that we used a split/merge move that is much the
same as described by Cappé, Robert and Rydén, 2003,
Appendix C) for 500,000 iterations, taking the burn-in
to be 100,000 iterations. The results are given in Ta-
ble 3.

In Table 3 we can observe Lindley’s paradox. As we
seemingly place less prior information on the compo-
nent means (i.e., asκ → 0), the prior becomes more

TABLE 3
Sensitivity of the posterior distribution for k for the Galaxy data

Range of k with

κ p(k|x) ≥ 0.05 p(k|x) ≥ 0.001 maxk p(k|x)

1
R2 3–9 3–15 6
4

R2 5–13 3–24 8
9

R2 8–16 4–30 10
16
R2 11–18 5–30 14
25
R2 8–22 5–30 19
64
R2 21–30 6–30 30
100
R2 23–30 2–30 30

NOTE: Each row is based on a reversible jump sampler run for
500,000 iterations with a 100,000 iteration burn-in. The priors were
set to beα = 2, δ = 1, ξ = M , g = 0.2,h = 100g/αR2 andkmax=
30, whereR andM denote the range and midpoint of the observed
data.

informative for the number of components. Jennison
(1997) noted that placing a prior onκ can help to re-
duce this effect (as used by Stephens, 2000a) and pre-
sumably this is one of the reasons why Richardson
and Green (1997) placed a prior onβ. In our opinion
Lindley’s paradox demonstrates that there is generally
no natural way to represent “prior ignorance” in this hi-
erarchical modeling context. That is, it will often be the
case that many reasonable prior specifications (for the
parameters) lead to differing inferences with respect to
the number of components. This latter point was made
by Aitkin (2001).

7.2 Further Discussion

Aitkin (2001) compiled a set of Bayesian analyses of
the Galaxy data, ranging from the approach of Richard-
son and Green (1997) to Escobar and West (1995).
Aitken noted that although each method has a sensi-
ble (weakly informative) prior specification, the pos-
terior distributions for the number of components are
markedly different. Indeed Aitkin (2001) noted:

The complexity of the prior structures need-
ed for Bayesian analysis, the obscurity of
their interaction with the likelihood, and the
widely different conclusions they lead to
over different specifications, leave the user
completely unclear about “what the data
say” from a Bayesian point of view about
the number of components in the mixture.

This is a traditional frequentist criticism of Bayesian
inferential methods, but does illustrate the need for ap-
propriate consideration of all elements of a Bayesian
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model. Of course, these concerns are only really of
interest when performing clustering or discrimination
analysis. In the case of the latter, Stephens (2000a)
noted that priors should be set so that components are
as different as possible so as to avoid overfitting (too
many components). When the objective of inference is
prediction (e.g., computing density estimates), model
averaging procedures may be used, because the influ-
ence of the prior on the number of components is of
less concern.

We believe that meaningful data analysis can be
performed using Bayesian mixture models, but an ap-
preciation of the effect of the prior on the number of
components is needed. Our general practice is to set
priors according to the information available (e.g., data
dependent as in Richardson and Green, 1997) and then
to perform a sensitivity analysis to measure the influ-
ence of the prior specification on the number of com-
ponents, especially using simulated data. Once we are
certain we understand the implications of the prior on
the posterior, we proceed with a data analysis, accept-
ing that different priors will lead to different posteriors.

Constructing priors for Bayesian mixture models is
an area which still requires further research. We recom-
mend the discussion of Richardson and Green (1997)
and Stephens (2000a) as possible starting points.

8. SUMMARY AND RECOMMENDATIONS

In this article we have reviewed MCMC samplers for
mixtures, posed solutions to the label switching prob-
lem and discussed the sensitivity of posterior inference
for the number of mixture components to prior specifi-
cations.

To construct an MCMC sampler for fixed dimen-
sional, univariate mixtures, we generally use the
following strategy. We begin by coding a Metropolis–
Hastings algorithm without completing the data (if we
can compute the marginal likelihood). We then seek to
find the proposal densities and parameters that provide
reasonable mixing (i.e., autocorrelations in the chain
not too large). If the sampler is unable to move around
the symmetric modes of the target, we consider a cou-
ple of ideas.

First, if we are unsure as to the number of compo-
nents in the mixture, we add reversible jump steps,
which normally provides adequate mixing. Second,
we try to use either tempering or evolutionary Monte
Carlo. We have found that tempering is often effec-
tive, but in some difficult situations (highly separated
modes in the posterior) we were often unable to tune

the tempering sampler to enable the correct movement
around the target space. In our experience, EMC works
extremely well and we have never found an example
where a properly tuned algorithm does not traverse the
state space correctly.

We feel that the Gibbs sampler run with comple-
tion is often not worth programming (unless it can be
quickly implemented, in BUGS, e.g.), since the chance
of it failing to converge is too high.

To choose a method to deal with label switching,
we have used the following criteria in our applied
work. In situations for which we are only interested
in a single inference from our mixture model (e.g.,
clustering the data), we often use a label invariant loss
function. This choice is made because it often needs
less programming effort than a relabelling algorithm.
Conversely, if we are concerned with many label de-
pendent quantities, we prefer the relabelling approach
because it avoids performing a large number of simu-
lated annealing algorithms. In our experience, ICs (not
through relabelling algorithms) are only of use in situa-
tions where it is obvious how to undo the label switch-
ing [e.g., Figure 5(b)].

In this article we have detailed the progress of
Bayesian mixture modeling: So what challenges need
to be addressed in the future? One area of current re-
search in bioinformatics is gene clustering (see, e.g.,
Yeung, Fraley, Murua, Raftery and Ruzzo, 2001),
which can be performed using mixture models. A draw-
back of using a Bayesian mixture model is the difficulty
of simulating from a high-dimensional, variable-
dimensional target measure, which is characteristic of
such problems (an example of a small data set is 2000
data points in six dimensions). Current reversible jump
and continuous time samplers are unable to move effi-
ciently around the sample space and new simulation
methods are required to apply Bayesian methodol-
ogy in such contexts; see Jasra, Stephens and Holmes
(2005) for a potential approach.
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