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Nonparametric Regression with
Correlated Errors
Jean Opsomer, Yuedong Wang and Yuhong Yang

Abstract. Nonparametric regression techniques are often sensitive to
the presence of correlation in the errors. The practical consequences of
this sensitivity are explained, including the breakdown of several popu-
lar data-driven smoothing parameter selection methods. We review the
existing literature in kernel regression, smoothing splines and wavelet
regression under correlation, both for short-range and long-range depen-
dence. Extensions to random design, higher dimensional models and
adaptive estimation are discussed.
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1. INTRODUCTION

Nonparametric regression is a rapidly growing
and exciting branch of statistics, both because
of recent theoretical developments and more
widespread use of fast and inexpensive comput-
ers. In nonparametric regression problems, the
researcher is most often interested in estimat-
ing the mean function E�Y�X� = f�X� from a
set of observations �X1�Y1�� � � � � �Xn�Yn�, where
the Xi can be either univariate or multivariate.
Many competing methods are currently available,
including kernel-based methods, regression splines,
smoothing splines and wavelet and Fourier series
expansions. The bulk of the literature in these
areas has focused on the case in which an unknown
mean function is “masked” by a certain amount of
white noise, and the goal of the regression is to
“remove” the white noise and uncover the function.
More recently, a number of authors have begun to
look at the situation where the noise is no longer
white and instead contains a certain amount of
“structure” in the form of correlation. The focus of
this article is to look at the problem of estimating
the mean function f�·� in the presence of correla-
tion, not that of estimating the correlation function
itself. In this context, our goals are (1) to explain

Jean Opsomer is Associate Professor, Department
of Statistics, Iowa State University, Snedecor Hall,
Ames, Iowa 50011 �e-mail: jopsomer@iastate.edu�.
Yuedong Wang is Associate Professor, University
of California, Santa Barbara and Yuhong Yang is
Associate Professor, Iowa State University.

some of the difficulties associated with the presence
of correlation in nonparametric regression, (2) to
provide an overview of the nonparameteric regres-
sion literature that deals with the correlated errors
case and (3) to discuss some new developments in
this area. Much of the literature in nonparametric
regression relies on asymptotic arguments to clarify
the probabilistic behavior of the proposed meth-
ods. The same approach will be used here, but we
attempt to provide intuition into the results as well.
In this article, we will be looking at the following

statistical model:

Yi = f�Xi� + εi�(1)

where f�·� is an unknown, smooth function, and
the error vector � = �ε1� � � � � εn� has variance–
covariance matrix Var��� = σ2C.
Researchers in different areas of nonparametric

regression have addressed different versions of this
problem. For instance, the Xi are either assumed
to be random, or fixed within some domain (to
avoid confusion, we will write lower case xi when
the covariates are fixed, and upper case Xi when
these are random variables). The specification of
the correlation can also vary significantly: the cor-
relation matrix C is considered completely known
in some of these areas, known up to a finite num-
ber of parameters, or only assumed to be stationary
but otherwise left completely unspecified in other
areas. Another issue concerns whether the errors
are assumed to be short-range dependent, where
the correlation decreases rapidly as the distance
between two observations increases, or long-range
dependent (short-range/long-range dependency will
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be defined more exactly in Section 3.1). When
discussing the various methods proposed in the
smoothing literature, we will point out the major
differences in assumptions between these areas.
Section 2 explains the practical difficulties asso-

ciated with estimating f�·� under model (1). In
Section 3, we review the existing literature on this
topic in several areas of nonparametric regression.
Section 4 describes some extensions of existing
results as well as new developments. This last
section is more technical than the previous ones,
and nonspecialists might want to skip it on first
reading.

2. PROBLEMS WITH CORRELATION

A number of problems, some quite fundamental,
occur when nonparametric regression is attempted
in the presence of correlated errors. Indeed, in the
most general setting where no parametric shape is
assumed for the mean nor the correlation function,
the model is essentially unidentifiable, so that it is
theoretically impossible to estimate either function
separately. In most practical applications, however,
the researcher has some idea what represents a rea-
sonable type of fit to the data at hand, and he will
use that expectation to decide what is an “accept-
able” or “unacceptable” function estimate.
For all nonparametric regression techniques, the

shape and smoothness of the estimated function
depends to a large extent on the specific value cho-
sen for a “smoothing parameter,” defined differently
for each technique. In order to avoid having to
select a value for the smoothing parameter by trial
and error, several types of data-driven selection
methods have been developed to assist researchers
in this task. However, the presence of correlation
between the errors, if ignored, causes the commonly
used automatic tuning parameter selection meth-
ods, such as cross-validation or plug-in, to break
down.
This breakdown of automated methods, as well

as a possible solution to it, are illustrated by a sim-
ple simulated example in Figure 1. For 200 equally
spaced observations and a low-order polynomial
mean function �f�x� = 1−6x+36x2−53x3+22x5	,
four progressively more correlated sets of errors
were generated from the same vector of independent
noise, and added to the mean function. The errors
are normally distributed with variance σ2 = 0�5
and correlation following an AR(1) process (autocor-
relation of order 1), corr�εi� εj� = exp�−α�xi − xj��.
Figure 1 shows four local linear regression fits for
these datasets. For each dataset, two bandwidth
selection methods were used: cross-validation (CV)

Table 1
Summary of bandwidth selection for simulated data in Figure 1∗

Correlation level Autocorrelation CV CDPI

Independent 0 0.15 0.13
α = 400 0.14 0.10 0.12
α = 200 0.37 0.02 0.12
α = 100 0.61 0.01 0.11

∗Autocorrelation refers to the correlation between adjacent obser-
vations.

and a correlation-corrected method called (CDPI),
further discussed in Section 4.1. Table 1 summa-
rizes the bandwidths selected for the four datasets
under both methods.
Table 1 and Figure 1 clearly show that as the

correlation increases, the bandwidth selected by
cross-validation becomes smaller and smaller, and
the fits become progessively more undersmoothed.
The bandwidths selected by CDPI, a method that
accounts for the presence of correlation, are much
more stable and result in virtually the same fit for
all four cases.
This type of undersmoothing behavior in the

presence of correlated errors has been observed
with most commonly used automated bandwidth
selection methods. At its most conceptual level, it
is caused by the fact that the bandwidth selection
method “perceives” all the structure in the data
to be due to the mean function, and attempts to
incorporate that information into its estimate of the
trend. When the data are uncorrelated, this “per-
ception” is valid, but it breaks down in the presence
of correlation. Unlike in this simulated example,
in practice it is very often not known what por-
tions of the behavior of the observations should be
attributed to signal or to noise for a given dataset.
The choice of bandwith selection approach should
therefore be dictated by an understanding of the
nature of the data.
The previous example showed that correlation

can cause the data-driven bandwidth selection
methods to break down. Selecting the bandwidth
“visually” or by trial and error can also be mislead-
ing, however. Indeed, even if data are independent,
a wrong choice of the smoothing parameter can
induce spurious serial correlation in the residuals.
Conversely, a wrong choice of the smoothing param-
eter can lead to an estimated correlation that does
not reflect the true correlation in the random error.
Two simple simulations using smoothing splines
illustrate these facts (see Figure 2). In the first sim-
ulation, 100 observations are generated from the
model Yi = sin�2πi/100�+εi, i = 1� � � � �100, where
εi’s are independent and identically distributed nor-
mal random variables with mean zero and standard
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Fig. 1. Simulated data with four levels of AR(1) correlation, fitted with local linear regression; �−� represents fit obtained with bandwidth
selected by cross-validation, (– ·� fit obtained with bandwidth selected by CPDI.

deviation 1. The S-Plus function smooth.spline is
used to fit the data with smoothing parameter set
at 0.01 [Figure 2(a)]. In the second simulation, 100
observations are generated according to model (1)
with mean zero and errors following a first-order
autoregressive process [AR(1)] with autocorrelation
0.5 and standard deviation 1. The S-Plus func-
tion smooth.spline is again used to fit the data
with smoothing parameter selected by the general-
ized cross-validation (GCV) method [Figure 2(c)].
The estimated autocorrelation function (ACF) for
the first plot looks autoregressive [Figure 2(b)],
while that for the second plot appears independent
[Figure 2(d)]. In both cases, this conclusion about
the error structure is erroneous and the mean
function is incorrectly estimated.
As mentioned above, the researcher will often

have some idea on what represents an appropriate
cut-off between the short-term behavior induced
by the correlation and the long-term behavior of
primary interest. Establishing that cut-off for a
specific dataset can be done by trying out different
values for the smoothing parameter and picking the
one that results in an appropriate fit. In fact, the
presence of correlation in the residuals can some-
times be used to assist in the visual selection of an
appropriate bandwidth, when the data are indepen-
dent. Consider the examples from Figure 2 again.
In 2(a) and 2(b), the positive serial correlation was

induced by the oversmoothed fit. A smaller band-
width will result in a better fit to the data, and
remove the correlation in the residuals. Figure 3(a)
and 3(b) show the fit produced by the GCV-selected
bandwidth and the corresponding autocorrelation
function of the residuals. Because the data are truly
independent here, the GCV smoothing parameter
selection method works correctly.
In 2(c) and 2(d), this situation is reversed. If

the “pattern” found by GCV in Figure 2(c) is not
an acceptable fit (depending on the application), a
larger smoothing parameter value has to be set by
hand, or by using one of the smoothing parameter
selection methods that account for correlation, as
will be presented below. Figure 3(c) and 3(d) dis-
play the fit and the autocorrelation function for the
smoothing parameter value selected by the extended
GML method (see Section 4.2) with an assumed
AR(1) error process. The residuals from this new fit
are now correlated. If the researcher prefers this
new fit, he should assume that the model errors
were also correlated. It should be noted that in
such situations, standard residual diagnostic tests
for nonparametric goodness-of-fit, such as those in
Hart (1997), will fail. If the error structure is cor-
rectly modeled, statistical inference is still possible,
however. For instance, Figure 3(c) shows a 95%
Bayesian confidence interval [see Wang (1998b)],
indicating that the slight upward trend is most
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Fig. 2. Simulation 1 �independent data): (a) spline fit using smoothing parameter value of 0�01� (b) autocorrelation function of residuals.
Simulation 2 �autoregressive): (c) spline fit using GCV smoothing parameter selection� (d) autocorrelation function of residuals.

Fig. 3. Simulation 1 again �independent data): (a) Spline fit �using GVC�� (b) Autocorrelation function of residuals. Simulation 2
�autoregressive): (c) Spline fit �and 95% Bayesian confidence interval, using extended GML�� (d) Autocorrelation function of residuals.
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likely not significant, the correct conclusion in this
case.

3. RESULTS TO DATE

3.1 Kernel-based Methods

In this section, we consider kernel regression esti-
mation of the mean function for data assumed to
follow model (1), with

E�εi� = 0� Var�εi� = σ2�

Corr�εi� εj� = ρn�Xi − Xj�
(2)

and σ2 unknown and ρn�·� an unknown, station-
ary correlation function. The dependence of ρ on n
is indicated by the subscript, because consistency
properties of the estimators will depend on the
behavior of the correlation function as n increases.
In this section, we only consider univariate fixed
xi = xi in a bounded interval �a� b	, and for sim-
plicity, we let �a� b	 = �0�1	. The researchers who
have studied the properties of kernel-based estima-
tors of the function f�·� have focused on the time
series case, in which the design points are fixed and
equally spaced xi ≡ i/n, so that

Yi = f

(
i

n

)
+ εi�

Corr�εi� εj� = ρn

(
i

n
− j

n

)
�

We consider the simplest situation, in which the cor-
relation function is taken to be ρn�t/n� = ρ�t� for all
n, but otherwise ρ�·� is left unspecified. Note that
this implies that the correlation between two fixed
locations decreases as n → ∞, because a fixed value
for t = �i − j� corresponds to a decreasing distance
between observations.
We also assume that the errors are short-range

dependent. The error process is said to be short-
range dependent if for some c > 0 and γ > 1, the
spectral density H�ω� = σ2

2π
�∞

k=−∞ ρ�k�e−iω of the
errors satisfies

H�ω� ∼ cω−�1−γ� as ω → 0

(see, e.g., Cox, 1984). In that case, ρ�j� is of order
�j�−γ (see, e.g., Adenstedt, 1974). When the correla-
tion decreases at order �j�−γ for some dependency
index 0 < γ ≤ 1, the errors are said to have a
long-range dependence. Long-range dependence
substantially increases the difficulty in estimating
the mean function and will be discussed separately
in Section 3.3.
The function f�·� can be fitted by kernel regres-

sion or local polynomial regression. Following the
literature in this area, we discuss estimation by

kernel regression, and for simplicity, we consider
the Priestley–Chao kernel estimator (Priestley and
Chao, 1972). The estimator of f�·� at a point x ∈
�0�1	 is defined as

f̂�x� = sTx�hY = 1
nh

n∑
i=1

K

(
xi − x

h

)
Yi

for some kernel functionK and bandwidth h, where
T denotes transpose, Y = �Y1� � � � �Yn�T and

sx�h = 1
nh

(
K

(
x1 − x

h

)
� � � � �K

(
xn − x

h

))T

�

The mean squared error of f̂�x� is
MSE�f̂�x��h�

= E
(
sTx�hY − f�x�)2(3)

= (
sTx�hE�Y� − f�x�)2 + σ2sTx�hCsx�h�

where C is the unknown correlation matrix of Y.
Before we can study the asymptotic behavior of

f̂�x�, a number of assumptions on the statistical
model and the components of the estimator are
needed.

(AS.I) The kernel K is compactly supported,
bounded and continuous. We assume that

∫
K�u�

du = 1,
∫
uK�u� du = 0 and

∫
u2K�u� du �= 0.

(AS.II) The 2nd derivative function, f′′�·�, of f�·�
is bounded and continuous.

(AS.III) As n → ∞, h → 0 and nh → ∞.

The first term of the MSE in (3) represents
the squared bias of f̂�x�, and does not depend
on the dependency structure of the errors. Under
the assumptions (AS.I)–(AS.III), the bias can be
asymptotically approximated by

sTx�hE�Y� − f�x� = h2µ2�K�
2

f′′�x� + o�h2��
with µr�G� = ∫

urG�u� du for any function G�·�.
The effect of the correlation structure on the vari-
ance part of the MSE is potentially severe, how-
ever. If

(R.I) limn→∞
�n

k=1 �ρ�k�� < ∞, so that R =�∞
k=1 ρ�k� exists;
(R.II) limn→∞

1
n

�n
k=1 k�ρ�k�� = 0,

the variance component of the MSE can be approx-
imated asymptotically by

σ2sTx�hCsx�h = 1
nh

µ0�K2�σ2�1+ 2R� + o

(
1
nh

)
�

(Altman, 1990). The assumptions (R.I) and (R.II),
common in time series analysis, ensure that obser-
vations sufficiently far apart are essentially uncor-
related. When the observations are uncorrelated,
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R = 0 so that this result reduces to the one usu-
ally reported for kernel regression with independent
errors. Note also that 1

2πσ
2�1 + 2R� = H�0�, the

spectral density at ω = 0. This fact will be useful in
developing bandwidth selection methods that incor-
porate the effect of the correlation (see Section 4.1).
Let AMSE denote the asymptotic approximation

to the MSE in (3),

AMSE�f̂�x��h�=h4µ2�K�2
4

f′′�x�2

+ 1
nh

µ0�K2�σ2�1+ 2R��
(4)

which is minimized for

hopt =
(
µ0�K2�σ2�1+ 2R�
nµ2�K�2f′′�x�2

)1/5

�

the asymptotically optimal bandwidth for estimat-
ing f�x�. The effect of the correlation sum R on this
optimal bandwidth is easily seen. Note first that the
optimal rate for the bandwidth, hopt ∝ n−1/5, is the
same as that for the independent errors case. The
exact value of hopt depends of R, however. If R > 0,
implying that the error correlation is positive, then
the variance of f̂�x� will be larger than in the cor-
responding uncorrelated case. The AMSE is there-
fore minimized by a value for the bandwidth h that
is larger than in the uncorrelated case. Conversely,
if R < 0, the AMSE-optimal bandwidth is smaller
than in the uncorrelated case, but in practice, posi-
tive correlation is much more often encountered.
Positive correlation has the additional perverse

effect of making automated bandwidth selection
methods pick smaller bandwidths, as illustrated
in Figure 1. This behavior is explained in Altman
(1990) and Hart (1991) for cross-validation and
briefly reviewed here. As a global measure of
goodness-of-fit for f̂�·�, we consider the mean aver-
age squared error (MASE),

MASE�h� = 1
n

n∑
i=1

E
(
f̂

(
i

n

)
− f

(
i

n

))2

�(5)

which is equal to (3) averaged over the observed
locations. Let f̂�−i� denote the kernel regression esti-
mate computed on the dataset with the ith obser-
vation removed. The cross-validation criterion for
choosing the bandwidth is

CV�h� = 1
n

n∑
i=1

(
f̂�−i�

(
i

n

)
−Yi

)2

�(6)

so that

E�CV�h�� ≈ MASE�h� + σ2

− 2
n

n∑
i=1

Cov
(
f̂�−i�

(
i

n

)
� εi

)
�

The latter covariance term is in addition to the cor-
relation effect already included in the MASE. It
can be shown that asymptotically, Cov�f̂�i�� i

n
�� εi� ≈

Tc/nh for some constant Tc. For severe correlation,
this additional term dominates CV�h� and leads to
a fit that nearly interpolates the data, as shown
in Figure 1. This results holds not only for cross-
validation but also for related measures of fit such
as generalized cross-validation (GCV) and Mallows’
criterion (Chiu, 1989).
One approach to solve this problem is to model the

correlation parametrically, and several such meth-
ods were proposed independently by Chiu (1989),
Altman (1990) and Hart (1991). While their spe-
cific implementations varied, each author chose to
estimate the correlation function parametrically
and to use this estimate to adjust the bandwidth
selection criterion. The estimation of the correla-
tion function is of course complicated by the fact
that the errors in (1) are unobserved. Chiu (1989)
attempts to bypass that problem by estimating the
correlation function in the frequency domain while
down-weighting the low frequency periodogram
components. Hart (1991) attempts to remove most
of the trend by differencing, and then also estimates
the correlation function in the frequency domain.
In contrast to the previous authors, Altman (1990)
proposes performing an initial “pilot” regression to
estimate the mean function and calculate residu-
als, and then fits a low-order autoregressive process
to these residuals. Hart (1994) describes a fur-
ther refinement to this parametrically modelled
correlation approach. He introduces time series
cross-validation as a new goodness-of-fit crite-
rion that can be jointly minimized over the set of
parameters for the correlation function (a pth-order
autoregressive process in this case) and the band-
width parameter. These approaches appear to work
well in practice. Even when the parametric part of
the model is misspecified, they provide a signifi-
cant improvement over the fits computed under the
assumption of independent errors, as the simula-
tion experiments in Altman (1990) and Hart (1991)
show.
However, when performing nonparametric regres-

sion, it is sometimes desirable to completely avoid
such parametric assumptions. Several methods
have been proposed that pursue completely non-
parametric approaches. Chu and Marron (1991)
propose two new cross-validation based criteria
that estimate the MASE-optimal bandwidth with-
out specifying the correlation function. In modified
cross-validation (MCV), the kernel regression val-
ues f̂�−i� in (6) are computed by leaving out the
2l+ 1 observations i− l, i− l+ 1� � � � � i+ l− 1, i+ l
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surrounding the ith observation. Because the cor-
relation is assumed to be short-range, proper choice
of l will greatly decrease the effect of the terms
Cov�f̂�−i�� i

n
�� εi� in the CV criterion. In partitioned

cross-validation (PCV), the observations are par-
titioned into g subgroups by taking every gth
observations. Within each subgroup, the observa-
tions are further apart and hence are assumed less
correlated. Cross-validation is performed for each
subgroup, and the bandwidth estimate for all the
observations is a simple function of the average of
the subgroup optimal bandwidths. The drawback of
both MCV and PCV is that the values of l and g
need to be selected with some care.
Herrmann, Gasser and Kneip (1992) also pro-

pose a fully nonparametric method for estimating
the MASE-optimal bandwidth, but replace the CV-
based criteria by a plug-in approach. This type of
bandwidth selection has been shown to have a num-
ber of theoretical and practical advantages over CV
(Härdle, Hall and Marron, 1988, 1992). Plug-in
bandwidth selection is performed by estimating the
unknown quantities in the AMSE (4), replacing
them by estimators (hence the name “plug-in”) and
minimizing the resulting estimated AMSE with
respect to the bandwidth h. The estimation of the
bias component B�x�h�2 is completely analogous to
that in the uncorrelated case. The variance compo-
nent σ�1 + 2R� is estimated by a summation over
second-order differences of lagged residuals.
More recently, Hall, Lahiri and Polzehl (1995)

extended the results of Chu and Marron (1991)
in a number of useful directions. Their theoreti-
cal results apply to kernel regression as well as
local linear regression. They also explicitly consider
the long-range dependence case, where assump-
tions (R.I) and (R.II) are no longer required. They
discuss bandwidth selection through MCV and
compare it with a bootstrap-based approach which
estimates the MASE in (5) directly through resam-
pling of “blocks” of residuals from a pilot smooth.
As was the case for Chu and Marron (1991), both
approaches are fully nonparametric but require the
choice of other tuning parameters.
In Section 4.1, we will introduce a new type of

fully nonparametric plug-in method that is applica-
ble to both one- and two-dimensional covariates Xi

following either a fixed or a random design.

3.2 Polynomial Splines

In this section, we consider model (1) with fixed
design points xi in χ = �0�1	, and as usually done
in the smoothing spline literature, we assume that
f is a function with certain smoothness properties.

More precisely, assume f belongs to the Sobolev
space

Wm
2 =

{
f� f�v� absolutely continuous,

v = 0� � � � �m− 1�
∫ 1

0
�f�m��x��2 dx < ∞

}
�

(7)

For a given variance–covariance matrix C, the
smoothing spline estimate f̂ is the minimizer of the
following penalized weighted least-square objective
function

min
f∈Wm

2

{
1
n
�Y − f�TC−1�Y − f�

+ λ
∫ 1

0
�f�m��x��2 dx

}
�

(8)

where f = �f�x1�� � � � � f�xn��T, and λ is the smooth-
ing parameter controlling the trade-off between the
goodness-of-fit measured by weighted least-squares
and the roughness of the estimate measured by∫ 1
0 �f�m��x��2 dx.
Unlike in the previous section, smoothing spline

research to date always assumes that the C is
parametrically specified. The sample size n is kept
fixed when studying the statistical properties of
the smoothing splines estimator f̂ under corre-
lated errors, so that only finite-sample properties
have been studied. Hence, the effect of short-range
or long-range dependence of the errors on the
asymptotic behavior of the estimator has not been
explicitly considered and remains an open research
question. We discuss the main finite-sample prop-
erties of f̂ under correlation in this section and in
Section 4.2.
Let

φν�x� = xν−1/�ν − 1�!� ν = 1� � � � �m�

R�x� z� =
∫ 1

0
�x− u�m−1

+ �z− u�m−1
+ du/��m− 1�!�2�

where �x�+ = x for x ≥ 0 and �x�+ = 0 other-
wise. Denote Tn×m = �φν�xi��n m

i=1ν=1 and �n×n =
�R�xi� xj��n n

i=1j=1. Let T = �Q1 Q2��RT 0T�T be the
QR decomposition of T.
Kimeldorf and Wahba (1971) showed that the

solution to (8) is

f̂�x� =
m∑
ν=1

dνφν�x� +
n∑

i=1
ciR�xi� x��

where c = �c1� � � � � cn�T and d = �d1� � � � � dm�T are
solutions to

��+ nλC�c+ Td=Y�
TTc=0�

(9)
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At the design points, f̂ = �f̂�x1�� � � � � f̂�xn��T = AY,
where

A = I− nλCQ2
(
QT

2 ��+ nλC�Q2
)−1QT

2

is the “hat” matrix. This “hat” matrix is often used
to define degrees of freedom and to construct con-
fidence intervals (Wahba, 1990). Note that A may
be asymmetric, in contrast to the independent error
case.
So far the smoothing parameter λ has been fixed.

Good choices of λ are crucial to the performance of
spline estimates (Wahba, 1990). Much research has
been devoted to developing data-driven methods
for selecting λ when observations are independent.
Several methods have been proposed and among
them the CV (cross-validation), GCV (general-
ized cross-validation), GML (generalized maximum
likelihood) and UBR (unbiased risk) methods are
popular choices (Wahba, 1990). The CV and GCV
methods are well known for their optimal proper-
ties (Wahba, 1990). The GML is very stable and
efficient for small-to-moderate sample sizes. When
the dispersion parameter is known, for example, for
binary and Poisson data, the UBR method works
better. All these methods tend to underestimate
smoothing parameters when data are correlated,
for the reasons discussed in Section 2. In kernel
regression, the correlation was often assumed to be
short-range but otherwise unspecified, and band-
width selection adjustments were proposed based
on that assumption. In the smoothing spline lit-
erature, several authors have considered specific
parametric assumptions on the correlation function.
Diggle and Hutchinson (1989) assumed the ran-

dom errors are generated by an autoregressive pro-
cess. In the following we discuss their method in a
more general setting where we assume C is deter-
mined by a set of parameters �. Denote � = �λ���.
Define a = tr A as the effective degrees of freedom
taken up in estimating f. Replacing the function
f by its smoothing spline estimate f̂, Diggle and
Hutchinson (1989) proposed to estimate all param-
eters using the penalized profile likelihood (we use
the negative log likelihood here)

min
�� σ2

{�Y − f̂�TC−1�Y − f̂�/σ2

+ ln �C�/2+ n ln σ2 +φ�n�a�}�(10)

where φ is a penalty function that is increasing in
a. It is easy to see that σ̂2 = �Y − f̂�TC−1�Y − f̂�/n�
reducing (10) to

min
�

{
n ln�Y − f̂�TC−1�Y − f̂�

+ ln �C�/2+φ�n�a�}�

Two forms of penalty have been compared in
Diggle and Hutchinson (1989),

φ�n�a� = −2n ln�1− a/n��
φ�n�a� = a ln n�

that are analogs of AIC (Akaike information
criterion) and BIC (Bayesian information crite-
rion). When observations are independent, the
first penalty gives a method approximating the
GCV solution and the second penalty gives a new
method which does not reduce to any existing meth-
ods. Simulation results in Diggle and Hutchinson
(1989) suggest that the second penalty function
works better than the first. However, Diggle and
Hutchinson (1989) commented that using the sec-
ond penalty gives results which are significantly
inferior to those obtained by GCV when C is known
(including independent data as the special case
C = I). More research is necessary to find proper-
ties of this method. Diggle and Hutchinson (1989)
have developed an efficient O�n� smoothing param-
eter selection algorithm in the special case of AR(1)
error structures.
For independent observations, Wahba (1978)

showed that a polynomial spline of degree 2m − 1
can be obtained by signal extraction. Denote W�x�
as a zero-mean Wiener process. Suppose that f is
generated by the stochastic differential equation

dmf�x�/dxm = �nλ�−1/2σ dW�x�/dx(11)

with initial conditions

z0=
(
f�0�� f�1��0�� � � � � f�m−1��0�)T

∼N�0� aIm��
(12)

Let f̂�x�a� = E�f�x��Y� a� represent the signal
extraction estimate of f. Then lima→∞ f̂�x�a�
equals the smoothing spline estimate.
Kohn, Ansley and Wong (1992) used this sig-

nal extraction approach to derive a method for
spline smoothing with autoregressive moving aver-
age errors. Assuming that observations are equally
spaced �xi = i/n�, Kohn, Ansley and Wong (1992)
considered model (1) with signal f generated by the
stochastic model (11) and (12) and the errors εi gen-
erated by a discrete time stationary ARMA�p�q�
model

εi=φ1εi−1 + · · · +φpεi−p + ei

+ψ1ei−1 + · · · + ψqei−q�
(13)

where ei
iid∼ N�0� σ2� and are independent of the

Wiener process W�x� in (11).
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Denote zi = �f�xi�� f�1��xi�� � � � � f�m−1��xi��T. The
stochastic model (11) and (12) can be written in a
state space form as

zi = Fizi−1 + ui� i = 1� � � � � n�

where Fi is an upper triangular m × m matrix
having ones on the diagonal and �j� k�th element
�xi − xi−1�k−j/�k − j�! for k > j. The perturbation
ui ∼ N�0� σ2Ui/nλ�, where Ui is a m × m matrix
with �j� k�th element being �xi − xi−1�2m−i−k+1/
��2m− i− j+ 1�!�m− k�!�m− j�!	.
For the ARMA�p�q� model (13), let m′ =

max�p�q+ 1� and

G =


φ1 �
��� �

φm′−1 � Im′−1
– – – –

φm′ � 0T

 �

Consider the following state space model:

wi = Gwi−1 + vi� i = 1� � � � � n�(14)

wherewi is am′ vector, and vi = �ei� ψ1ei� � � � � ψm′−1
ei�T. Substituting repeatedly from the bottom row of
the system, it is easy to see that the first element
in wi is identical to the ARMA model defined in
(13). Therefore the ARMA �p�q� model can be rep-
resented in a state space form (14).
Combining the two state space representations for

the signal and the random error, the original model
(1) can be represented by the following state space
model:

Yi = hTxi�

xi = Hixi−1 + ai�
where

xi =
(
zi
wi

)
� ai =

(
ui

vi

)
� Hi =

(
Fi 0
0 G

)
�

Here h is a m + m′ vector with 1 in the first
and the �m + 1�st positions and zeros elsewhere.
Due to this state space representation, filtering
and smoothing algorithms can be used to calcu-
late the estimate of the function. Kohn, Ansley
and Wong (1992) also derived algorithms to cal-
culate GML and GCV estimates of all parameters
� = �λ�φ1� � � � � φp�ψ1� � � � � ψq� and σ2.

3.3 Long-range Dependence

In Section 2, we have seen that even under
an AR(1) correlation structure, a simple type of
short-range dependence, familiar nonparametric
procedures intended for uncorrelated errors behave
rather poorly. Several methods have been proposed

in Sections 3.1 and 3.2 to handle the dependences.
When the correlation ρ�t� = Corr�εi� εi+t� decreases
more slowly in t, regression estimation becomes
even harder. In this section, we review the theoret-
ical results on the effects of long-range dependent
stationary Gaussian errors.
Estimation under long-range dependence has

attracted more and more attention in recent years.
In many scientific research fields, such as astron-
omy, physics, geoscience, hydrology and signal pro-
cessing, the observational errors sometimes reveal
long-range dependence. Künsch, Beran and Hampel
(1993) wrote, “Perhaps most unbelievable to many
is the observation that high-quality measurement
series from astronomy, physics, chemistry, gener-
ally regarded as prototypes of ‘i.i.d.’ observations,
are not independent but long-range correlated.”
Minimax risks have been widely considered for

evaluating performance of an estimator of a func-
tion assumed to be in a target class. Let � be a
nonparametric (infinite-dimensional) class of func-
tions on �0�1	d, where d is the number of predictors,
and as before, let C denote the covariance matrix of
the errors. Let �u−v� = �∫ �u−v�2 dx�1/2 be the L2
distance between two functions u and v. The min-
imax risk for estimating the regression function f
under the squared L2 loss is

R�� �C�n� = min
f̂

max
f∈�

E�f− f̂�2�

where f̂ denotes any estimator based on �Xi�Yi�ni=1
and the expectation is taken with respect to the
true regression function f. The minimax risk mea-
sures how well one can estimate f uniformly over
the function class � . Due to the difficulty in evalu-
ating R�� �C�n� in general, its convergence rate to
zero as a function of the sample size n is often con-
sidered. An estimator with risk converging at the
minimax risk rate uniformly over � is said to be
minimax-rate optimal.
For short-range dependence, it has been shown

that the minimax risk rate remains unchanged
compared to the case with independent errors (see,
e.g., Bierens, 1983; Collomb and Härdle, 1986;
Johnstone and Silverman, 1997; Wang, 1996; Yang,
1997). However, fundamental differences show up
when the errors become long-range dependent. For
that case, a number of results have been obtained
for parametric estimation of f (i.e., f is assumed
to have a known parametric form) and also for the
estimation of dependence parameters. For a review
of the results, see Beran (1992, 1994). We focus
here on nonparametric estimation of f.
For long-range dependent errors, results on mini-

max rates of convergence are obtained for univari-
ate regression with equally spaced (fixed) design in
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Hall and Hart (1990), Wang (1996), and Johnstone
and Silverman (1997). The model being considered
is again model (1), with xi = i/n, Corr�εi� εj� ∼
c�i − j�−γ for some 0 < γ < 1, and f is assumed to
be smooth with the αth derivative bounded for some
α ≥ 1 (the results of Wang (1996) and Johnstone
and Silverman (1997) are in more general forms).
The minimax rate of convergence under squared L2
loss for estimating f is shown to be of order

n−2αγ/�2α+γ��(15)

In contrast, the rate of convergence under indepen-
dent or short-range dependent errors is n−2α/�2α+1�.
This shows the damaging effect of long-range depen-
dence on the convergence rate.
Suppose now that Xi, i ≥ 1 are random variables,

specified to be i.i.d. independent of the εi’s. We con-
sider the case where the dependence between the
errors depends only on the orders of observations
(the correlation has nothing to do with the values of
the Xi’s). Given � , the distribution of Xi, 1 ≤ i ≤ n,
and a general dependence among the errors (not
necessarily stationary), Yang (1997) shows that the
minimax risk rate for estimating f is determined by
the maximum of two rates: the rate of convergence
for the class � under i.i.d. errors and the rate of
convergence for the estimation of the mean value
of the regression function, µ = Ef�X�, under the
dependence model. The first rate is determined by
the largeness of the target class � and the second
rate is determined by severity of the dependence
among the errors. As a consequence, the minimax
rate may well remain unchanged if the dependence
is not severe enough relative to the largeness of the
target function class. A similar result was obtained
independently by Efromovich (1999) in a univariate
regression setting. It is also shown in Yang (1997)
that dependence among the errors, as long as its
form is known, generally does not hurt prediction of
the next response.
When Yang’s result is applied to the class

of regression functions with the αth derivative
bounded, one has the minimax rate of convergence

n−min�2α/�2α+1�� γ��(16)

For a given long-range dependence index γ, the rate
of convergence gets damaged only when α is rel-
atively large, that is, α > γ/�2�1 − γ��. Note that
the rate of convergence in (16) is always faster com-
pared to the rate given in (15).

3.4 Wavelet Estimation

In this subsection, we review wavelet methods for
regression on �0�1	 under dependence focusing on
the long-range dependence case.

Orthogonal series expansion is a commonly used
method for function estimation. Compared with
trigonometrics or Legendre polynomials, orthogonal
wavelet bases have been shown to have desirable
local properties that lead to optimal performance in
statistical estimation for a rich collection of func-
tion classes. In the wavelet expansion of a function,
the coefficients are organized in different levels
called multiresolutions. The coefficients are esti-
mated based on orthogonal wavelet transformation.
Then one needs to decide which estimated coeffi-
cients are above the noise level and thus need to
be kept in the wavelet expansion. This is usually
done using a thresholding rule based on statistical
considerations. Nason (1996) reported that meth-
ods intended for uncorrelated errors do not work
well for correlated data. Johnstone and Silverman
(1997) point out that for independent errors, one
can use the same threshold for all the coefficients
while for dependent errors, the variances of the
empirical wavelet coefficients depend on the level
but are the same within each level. Accordingly,
level-dependent thresholdings are proposed. Their
procedure is briefly described as follows.
Consider the regression model (1) with n = 2J

for some integer J. Let � be a periodic discrete
wavelet transform operator [for examples of wavelet
bases and fast O�n� algorithms; see, e.g., Donoho
and Johnstone, 1998]. Let wj�k = �� Y�j� k, j =
0� � � � � j − 1, k = 1� � � � �2j be the wavelet trans-
form of the data Y = �Y1� � � � �Yn�T. Let Z = � ε be
the wavelet transform of the errors. Let λj be the
threshold to be applied to the estimated coefficients
at level j. Then define �̂ = �θ̂j� k�, j = 0� � � � � J − 1,
k = 1� � � � �2j by

θ̂j� k = η�wj�k� σ̂jλj��
where η is a threshold function and σ̂j is an esti-
mate of the standard deviation of wj�k. The final
estimator of the regression function is

f̂ = � T�̂�

where � T is the inverse transform of � . Earlier
work of Donoho and Johnstone (see, e.g., 1998) sug-
gest soft (S) or hard (H) thresholding as follows:

ηS�wj�k� σ̂jλj� = sgn�wj�k���wj�k� − σ̂jλj�+
ηH�wj�k� σ̂jλj� = wj�kI��wj�k�≥σ̂jλj��

A suggested choice of σ̂j is

σ̂2
j = MAD�wj�k� k = 1� � � � �2j�/0�6745�

where MAD means the median absolute devia-
tion and the constant 0.6745 is derived to work for
the Gaussian errors. To choose the λj’s, Johnstone
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and Silverman (1997) suggest a method based
on Stein unbiased risk estimation (SURE) as
described below. For a given m-dimensional vector
v = �v1� � � � � vm� (m will be taken to be 2j at level
j) and σ̂ , define a function

Û�t� = σ̂m+
m∑
k=1

{
�v2k ∧ t2� − 2σ̂2I��vk�≤t�

}
�

Then define

t̂�v� = arg0≤t≤σ̂
√

2 logmmin�Û�t���

By comparing s2m = m−1=m
k=1 v

2
K−1 with a threshold

βm, let

t̃�v� =
{√

2 logm� s2m ≤ βm,
t̂�v�� s2m > βm.

Now choose the level-dependent threshold by

λj =
{
0� j ≤ L,
t̃�wj/σ̂j�� L+ 1 ≤ j ≤ J− 1,

where L is an integer specified by a user as
the primary resolution level, below which signal
clearly dominates over noise. From Johnstone and
Silverman (1997), the regression estimator f̂ pro-
duced by the above procedure converges at the
minimax rate of convergence simultaneously over a
rich collection of classes of smooth functions (Besov)
without causing the need to know the long-range
dependence index nor how smooth the regression
function is. The adaptation is therefore over both
the regression function classes and over the depen-
dence parameter as well (see next subsection for
a review of adaptive estimation for nonparametric
regression).

3.5 Adaptive Estimation

Many nonparametric procedures have tuning
parameters, for example, the bandwidth h for
local polynomial and the smoothing parameter λ
for the smoothing spline, as considered earlier.
The optimal choices of such tuning parameters in
general depend on certain characteristics of the
unknown regression function and therefore are
unknown to us. Various methods (e.g., AIC, BIC,
cross-validation and other related model selection
criteria) have been proposed to give a choice of a
tuning parameter automatically based on the data
so that the final estimator performs as well as (or
nearly as well as) the estimator based on the opti-
mal choice. This is the task of adaptive estimation.
In this subsection, we briefly review the ideas of
adaptive estimation in the context of nonparamet-
ric regression. This will provide a background for
some of the results in the next section.

Basically there are two types of results on adap-
tive estimation, namely adaptive estimation with
respect to a collection of estimation procedures
(procedure-wise adaptation) and adaptive estima-
tion with respect to a collection of target classes
(target-oriented adaptation). For the first case, one
is given a collection of procedures and the goal of
adaptation is to have a final procedure performing
close to the best one in the collection. For example,
the collection might be a kernel procedure with all
valid choices of the bandwidth h. Another collec-
tion may be a list of wavelet estimators based on
different choices of wavelet bases. In general, one
may have completely different estimation proce-
dures in the collection for greater flexibility. This is
desirable in applications where it is rather unclear
beforehand which procedures are appropriate. For
instance, for the case of high-dimensional regres-
sion estimation, one faces the so-called curse of
dimensionality in the sense that the traditional
function estimation methods (such as histogram
and series expansion) would have exponentially
many parameters in d to be estimated. This can-
not be done accurately based on a moderate sample
size. For this situation, a solution is to try different
parsimonious models. Because one does not know
which parsimonious characterization works best
for the underlying unknown regression function,
adaptation capability is desired.
For the second type of adaptation, one is given a

collection of target function classes; that is, the true
unknown function is assumed to be in one of the
classes (without one’s knowing which one it is). A
goal of adaptation is to have an estimator with the
capability to perform optimally simultaneously for
the target classes; that is, the estimator automati-
cally converges optimally at the minimax rate of the
class that contains the true function.
The two types of adaptations are closely related.

If each procedure in a collection is designed opti-
mally for a specific function class in a collection,
then the procedurewise adaptation implies the
target-oriented adaptation. In this sense the pro-
cedurewise adaptation is more general than the
target-oriented adaptation. In applications, one
may encounter a mixture of both types of adap-
tation at the same time. On one hand, you have
several plausible procedures that you wish to try,
and on the other hand, you may have a few plau-
sible characteristics (e.g., monotonicity, additivity)
of the regression function you want to explore.
For this situation, you may derive optimal (or at
least reasonably good) estimators for each char-
acteristic respectively, and then add them to the
original collection of procedures. Then adaptation
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with respect to the collection of procedures is the
desired property.
A large number of results have been obtained on

adaptive estimation with independent errors (see
Yang, 2000, for references). More recently, for non-
parametric regression with i.i.d. Gaussian errors,
Yang (2000) shows that under very mild conditions,
for any collection of uniformly bounded function
classes, minimax-rate adaptive estimators exist.
More generally, for any given collection of regres-
sion procedures, a single adaptive procedure can
be constructed by combining them. The new proce-
dure pays only a small price for adaptation; that
is, the risk of the combined procedure is bounded
above by the risk of each procedure plus a small
penalty term that is asymptotically negligible for
nonparametric estimation.
For nonparametric regression with dependence,

adaptation with respect to both the unknown char-
acteristics of the regression function and with
respect to the unknown dependence is of interest.
A success in this direction is the wavelet estimator
based on Stein unbiased risk estimation proposed
by Johnstone and Silverman (1997), as discussed in
Section 3.4.

4. NEW DEVELOPMENTS

In the remainder of the article, we describe sev-
eral new development areas related to smoothing
in the presence of correlation. As mentioned at the
beginning of the article, this discussion will be at a
somewhat higher technical level than the previous
material.

4.1 Kernel Regression Extensions

Opsomer (1997) introduces recent research that
extends existing methodological results for kernel-
based regression estimators under short-range
dependence in several directions. The approach is
fully nonparametric, uses local linear regression
and implements a plug-in bandwidth estimator. The
range of applications is extended to include random
design, univariate and bivariate observations, and
additive models. We will review some of the main
findings here. Full details and proofs are available
in Opsomer (1995). The method discussed below
was used in Figure 1 to correct for the presence of
correlation in the simulated example.
We again assume that the data are generated

by model (1), where Xi are random and can be
either scalars or bivariate vectors. Hence, the
�X1�Y1�� � � � � �Xn�Yn� are a set of random vectors
in �d+1, with d = 1 or 2. The model errors εi are
assumed to have the moment properties (2). In this

general setting, we refer to model (1) as the general
(G) model. We also consider two special cases: a
model with univariate Xi as in Section 3.1, referred
to as

simple model (S1) � Yi = f�xi� + εi�

and the bivariate model, in which f�·� is assumed
to be additive, that is,

additive model (A2) �
Yi = µ+ f1�X1i� + f2�X2i� + εi�

We define the expected correlation funtion

cn�x� = nE�ρn�Xi − x���(17)

and let X = �X1� � � � �Xn	T represent the n × d
matrix of covariates. Also, when d = 2, let
X�k	 = �Xk1� � � � �Xkn�T represent the kth col-
umn of X, k = 1�2. Let χ = �0�1	d represent the
support of Xi and g its density function, with gk the
marginal density corresponding to Xki for k = 1�2.
As in Section 3.1, let K represent a univariate
kernel function. In order to simplify notation for
model G, we restrict our attention to (tensor) prod-
uct kernels K�u1�×· · ·×K�ud�, with corresponding
bandwidth matrix H = diag�h1� � � � � hd�.
For model A2, we need some additional notation.

Let T∗
12 represent the n × n matrix whose ijth ele-

ment is

�T∗
12	ij = g�X1i�X2j�

g1�X1i�g2�X2j�
− 1

n
�

and let tTi , vj represent the ith row and jth col-
umn of �I− T∗

12�−1, respectively. Let

f ′′1 =


d2f1�X11�

dx2
1
���

d2f1�X1n�
dx2

1

 �

E�f′′
1�X1i��X�2	� =

E�f′′
1�X1i��X21�

���
E�f′′

1�X1i��X2n�

 �

and analogously for f ′′2 and E�f′′
2�X2i��X�1	�.

The local linear estimator of f�·� at a point x for
model G (and, with the obvious changes, model S1),
is defined as f̂�x� = sTx Y, with the vector sTx defined
as

sTx = eT1 �XT
x WxXx�−1XT

x Wx�(18)

with eT1 a row vector with 1 in its first position
and 0’s elsewhere, the weight matrix Wx = 1

�H�
diag�K�H−1�X1 − x��� � � � �K�H−1�Xn − x��� and

Xx =
1 �X1 − x�T
���

���
1 �Xn − x�T

 �
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For model A2, the estimator of f�·� at any loca-
tion x can also be written as a linear smoother, but
the expression is much more complicated and rarely
directly used to compute the estimators. We assume
here that the conditions guaranteeing convergence
of the backfitting algorithm, further described in
Opsomer and Ruppert (1997), are met. These condi-
tions do not depend on the correlation structure of
the errors.
Assumption (AS.I) from Section 3.1 is main-

tained, but the remaining assumptions on the
statistical model and the estimator are replaced by
the following:

(AS.II′) The density g is compactly supported,
bounded and continuous, and g�x� > 0 for all x ∈ χ,

(AS.III′) The second derivative(s) of f�·� are
bounded and continuous.

(AS.IV′) As n → ∞, H→ 0 and n�H� → ∞.

In addition, we assume that the correlation func-
tion ρn is an element of a sequence �ρn� with the
following properties:

(R.I′) ρn is differentiable,
∫
n�ρn�t − x��dt =

O�1�, ∫ nρn�t− x�2 dt = o�1� for all x.
(R.II′)

∃ ξ > 0�
∫
�ρn�t��I��H−1t�>ξ� dt = o

(∫
�ρn�t��dt

)
�

The properties require the effect of ρn to be “short-
range” (relative to the bandwidth), but allow its
functional form to be otherwise unspecified. These
properties are generalizations of assumptions (R.I)
and (R.II) in Section 3.1 to the random, multivariate
design.
As noted in Section 3.1, the conditional bias of

f̂�Xi� is not affected by the presence of correlation in
the errors. We therefore refer to Ruppert and Wand
(1994) for the asymptotic bias of local polynomial
estimators for models G and S1, and to Opsomer and
Ruppert (1997) for the estimator of additive model
A2. We construct asymptotic approximations to the
conditional variance of f̂�Xi� and to the conditional
mean average squared error (MASE) of f̂, defined
in (5) for the fixed design case.

Theorem 4.1. The conditional variance of f̂�Xi�
for models G and S1 is

Var�f̂�Xi��X� = σ2 1
n�H�

µ0�K2�d
g�Xi�

�1+ cn�Xi��

+op
(

1
n�H�

)
�

For model A2,

Var�f̂�Xi��X�

= σ2µ0�K2�
(
g1�X1i�−1�1+ E�cn�Xi�X1i���

nh1

+g2�X2i�−1�1+ E�cn�Xi�X2i���
nh2

)
+ op

(
1

nh1
+ 1

nh2

)
�

We let

Rn = n
∫ 1/2

−1/2
ρn�t�dt

and define ICn = σ2�1+Rn�, the integrated covari-
ance function. We also define the second derivative
regression functionals

θ22�k� l� = E
(
∂f�Xi�
∂X1

∂f�Xi�
∂X2

)

with k� l = 1� � � � � d for models G and S1, and

θ22�1�1� =
1
n

n∑
i=1

(
tTi f

′′
1 − vTi E

(
f′′
1�X1i��X�2	

))2
�

θ22�2�2� =
1
n

n∑
i=1

(
vTi f

′′
2 − tTi E

(
f′′
2�X2i��X�1	

))2
�

θ22�1�2� =
1
n

n∑
i=1

(
tTi f

′′
1 − vTi E

(
f′′
1�X1i��X�2	

))
×
(
vTi f

′′
2 − tTi E

(
m′′

2�X2i��X�1	
))

for model A2. Because of assumptions (AS.I) and
(AS.II′)–(AS.IV′), these quantities are well defined
and bounded, as long as the additive model has a
unique solution.

Theorem 4.2. The conditional mean average
squared error of f̂ for model G (S1) is

MASE�H�X� =
(
µ2�K�

2

)2 d∑
k=1

d∑
l=1

h2
kh

2
l θ22�k� l�

+ 1
n�H�µ0�K2�dICn

+ op

(
d∑

k=1
h4
k +

1
n�H�

)
�
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For model A2,

MASE�H�X� =
(
µ2�K�

2

)2 d∑
k=1

d∑
l=1

h2
kh

2
l θ22�k� l�

+R�K�σ2
(
1+ E�g1�X1i�−1cn�Xi��

nh1

+ 1+ E�g2�X2i�−1cn�Xi��
nh1

)
+ op

(
h4
1 + h4

2 +
1

nh1
+ 1

nh2

)
�

In this more general setting, the optimal rates
of convergence for the bandwidths are again the
same as those found for the independent errors case:
hk = Op�n−1/�4+d�� for models G and S1, and model
A2 achieving the same rate as model S1. Similarly,
if Rn > 0 for those models, the optimal bandwidths
are larger than those for the uncorrelated case. For
model A2, note that independent errors imply that
cn�Xi� = 0, so that the result in Theorem 4.2 reduces
to the MASE approximation derived in Opsomer
and Ruppert (1997) for the independent errors case.
An interesting aspect of Theorem 4.2 is that the

presence of correlated errors induces an adjustment
in the MASE approximations for models G and S1
relative to the independent error case, which does
not depend on the distribution of the observations. It
is therefore easy to show that the MASE approxima-
tions for models G and S1 in Theorem 4.2 are valid
for both random and fixed designs. For the addi-
tive model, the adjustment to the variance contains
cn�Xi� from (17), which depends on the covariate
value and hence will vary depending on the design.
For the case d = 1, Opsomer (1995) develops a

plug-in bandwidth selection method that general-
izes the direct plug-in (DPI) bandwidth selection
proposed by Ruppert, Sheather and Wand (1995) for
the independent error univariate case and extended
to the independent error additive model by Opsomer
and Ruppert (1998). The method described here is
therefore referred to as correlation DPI (CDPI),
and was used as the correlation-adjusted band-
width selection method in Figure 1. The estimation
of the θ22�k� l� in CDPI is analogous to that in
DPI, and ICn is estimated in the frequency domain
by periodogram smoothing (Priestley, 1972) of the
residuals of a pilot fit. CDPI behaves very much like
DPI when the data are uncorrelated, but at least
partly offsets the effect of the correlation when it
is present, as illustrated in Figure 1. To illustrate
this point on a real dataset, we will use the “drum
roller” data analyzed by Laslett (1994) and Altman
(1994) (the data are available on Statlib). As noted

by both authors, the data appear to exhibit signifi-
cant short-range correlation, so that analysis using
a correlation-corrected method is warranted.
Figure 4 shows four fits to the data using both DPI

(dash-dotted lines) and CDPI (solid lines): n = 1150
represents the full dataset, n = 575 uses every
other observation, n = 230 every fifth and n =
115 every tenth. The remaining observations being
located at increasing distance, it can be expected
that the correlation should decrease with decreas-
ing sample size. The plots in Figure 4 indeed exhibit
this behavior, with the DPI fits nearly coinciding
with the CDPI ones for the two smaller sample
sizes. For the two larger sample sizes, CDPI man-
ages to display an approximately “correct” shape for
the mean function, while DPI results in a severely
undersmoothed estimate.

4.2 Smoothing Spline ANOVA Models

All methods reviewed in Section 3.2 are devel-
oped for polynomial splines with special error
structure. Some even require the design points to
be equally spaced, so that their applications are lim-
ited to time series. In many applications, the data
and/or the error structure are more complicated.
Interesting examples are spatial, longitudinal and
spatio-temporal data. The mean function of these
kinds of data can be modeled in a unified fashion
using the general spline models and the smoothing
spline ANOVA models defined on arbitrary domains
(Wahba, 1990). However, previous research on the
general spline models and the smoothing spline
ANOVA models assumed that the observations are
independent. When data are correlated, which often
is the case for spatial and longitudinal data, conven-
tional methods for selecting smoothing parameters
for these models face the same problems as illus-
trated in Section 2. Our goal in this section is to
present extensions of the GML, GCV and UBR
methods for smoothing spline ANOVA (SS ANOVA)
models when observations are correlated.
Consider model (1) with fixed design points

xi = �xi� � � � � xdi� ∈ χ = χ1 ⊗ · · · ⊗ χd, where χi

are measurable spaces of rather general form. We
assume that f belongs to a subspace of tensor prod-
ucts of reproducing kernel Hilbert spaces (RKHS).
More precisely, the model space 	 of a SS ANOVA
model contains elements

f�x� = µ+ ∑
j∈J1

fj�xj�

+ ∑
�j1� j2�∈J2

fj1� j2
�xj1

� xj2
�(19)

+ · · · + ∑
�j1�����jd�∈Jd

fj1�����jd
�xj1

� � � � � xjd
��
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Fig. 4. DPI(– ·� and DPI (–) fits to the drum roller data for four different sample sizes.

where x = �x1� � � � � xd� ∈ χ, xk ∈ χk, and Jk is a
subset of the set of all k-tuples ��j1� � � � � jk�� 1 ≤
j1 < · · · < jk ≤ d� for k = 1� � � � � d. Identifiability
conditions are imposed such that each term in the
sums is integrated to zero with respect to any one of
its arguments. Each term in the first sum is called
a main effect, each term in the second sum is called
a two-factor interaction, and so on. Similar to the
analysis of variance, higher-order interactions are
often eliminated from the model space to relieve
the curse of dimensionality. See Aronszajn (1950)
for details about RKHS and Wahba (1990), Gu and
Wahba (1993) and Wahba et al. (1995) for details
about SS ANOVA models. After a subspace is cho-
sen as the model space, we can regroup and write it
in the form

	 = 	0 ⊕
p∑

j=1
	j�

where 	0 is a finite-dimensional space containing
functions which are not going to be penalized, and
	j’s are subspaces which contain “smooth” elements
in the decomposition (19).
Again, suppose that C is known up to a set of

parameters �. No specific structure is assumed for
C, therefore it is not limited to the autoregressive
or any special type of error structure. In practice,
if the error structure is unknown, different struc-
tures may be fitted to select a final model. See Wang
(1998a) for an example.

To illustrate potential applications of the SS
ANOVA models with correlated errors, consider
spatio-temporal data. Denote χ1 = �0�1	 as the
time domain and χ2 = R2 as the spatial domain
(latitude and longitude). Polynomial splines are
often used to model temporal data and thin plate
splines are often used to model spatial data. Thus
the tensor product of two corresponding RKHS’s
can be used to model the mean function of a spatio-
temporal data (Gu and Wahba, 1993). Components
in model (19) can be interpreted as spatio-temporal
main effects and interactions. An autoregressive
structure may be used to model possible tempo-
ral correlation, and exponential structures may be
used to model spatial correlation. Both correlations
may appear in the covariance matrix C.
A direct generalization of the penalized weighted

least square (8) is

min
f∈	

{
1
n
�Y − f�TC−1�Y − f�

+λ
p∑

β=1
θ−1β �Pβf�2

}
�

(20)

where Pβ is the orthogonal projection in 	 onto
	β. Let φ1� � � � � φM be a basis of 	0 and Tn×M =
�φν�xi��n M

i=1ν=1. Denote T = �Q1 Q2��RT 0T�T as
the QR decomposition of T. Let Rβ be the repro-
ducing kernel of 	β, �β = �Rβ�xi�xj��n n

i=1j=1, and
� = =

p
β=1θβ�β.
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The solution to (20) is

f̂�x� =
M∑
ν=1

dνφν�x� +
n∑

i=1
ci

p∑
β=1

θβRβ�xi�x��(21)

where c = �c1� � � � � cn�T and d = �d1� � � � � dM�T are
solutions to (9), but with T and � defined in this
section.
Denote � = �λ/θ1� � � � � λ/θp���. We propose meth-

ods to estimate all parameters simultaneously. The
GML method is derived from the following Bayes
model:

Yi = F�xi� + εi� i = 1� � � � � n� xi ∈ χ�

with prior defined by assuming that

F�x� =
M∑
ν=1

ηνφν�x� + �nλ�−1/2σ
p∑

β=1
θ
1/2
β Zβ�x��

x ∈ χ�

where 
 = �η1� � � � � ηM�T ∼ N�0� aI�, and Zβ�x�
are independent, mean zero Gaussian stochas-
tic processes, independent of 
, with covari-
ance EZβ�x�Zβ�u� = Rβ�x�u�. We assume that
� = �ε1� � � � � εn�T ∼ N�0� σ2C� and is indepen-
dent of F.
It can be shown that when a approaches to infin-

ity, the posterior mean of the Bayes model equals
the smoothing spline estimate. That is, lima→∞
E�F�x��Y� = f̂�x�, where f̂�x� is given in (21).
Let B��� = � + nλC, where the dependencies on
parameters are expressed explicitly. As argued in
Wahba (1985), the maximum likelihood estimates of
� should be based only on the marginal distribution
of z = QT

2 Y. Accordingly, the generalized maximum
likelihood (GML) estimates of � are maximizers of
the log likelihood based on z,

l1��� σ2�z� = −1
2
log

∣∣∣∣σ2

nλ
QT

2B���Q2

∣∣∣∣
− nλ

2σ2
zT
(
QT

2B���Q2
)−1z+ constant�

Maximizing l1 with respect to σ2, we have

σ̂2 = nλzT
(
QT

2B���Q2
)−1z/�n−m��(22)

Then the GML estimates of � are maximizers of

l2
(
��σ̂2) = −n−m

2
log

zT
(
QT

2B���Q2
)−1z[

det
(
QT

2B���Q2
)−1] 1

n−m
�

Equivalently, the GML estimates are the minimiz-
ers of

M��� = zT
(
QT

2B���Q2
)−1z[

det
(
QT

2B���Q2
)−1] 1

n−m

= YTC−1�I−A�Y[
det+�C−1�I−A��] 1

n−m
�

where det+ is the product of the nonzero eigen-
values.
Comparing the GML and GCV functions for inde-

pendent observations, it is easy to see that a direct
extension of the GCV function is the following:

V��� =
1
n
�C−1�I−A�Y�2[ 1

n
Tr�C−1�I−A��]2 �

The GCV estimates of � are �̂ = arg min� V���.
To introduce an extension of the UBR method, we

define the weighted average squared errors (WASE)
as WASE = �C−1�f̂ − f��2/n. Then,

E(WASE) = 1
n
�C−1�I−A�f�2 + σ2

n
Tr�ATC−2AC��

An unbiased estimate of E(WASE) is

U���= 1
n
�C−1�I−A�Y�2

− σ2

n
Tr C−1 + 2

σ2

n
Tr �C−1A��

(23)

The UBR estimates of � are �̂ = arg min� U���. The
UBR method needs an estimate of σ2; one possible
estimator is given in (22).
Wang (1998b) conducted simulations to com-

pare the extended GML, GCV, UBR methods and
Diggle and Hutchinson’s (1989) method based on
φ�n�d� = d ln�n�. It was found that the GCV
and Diggle and Hutchinson methods are not stable
when the sample size is small and/or the correla-
tion is large. That is, there is a certain probability
that the GCV and Diggle and Hutchinson methods
select the smoothing parameter as zero, resulting
in interpolation. This problem diminishes quickly
when the sample size increases. Beside these obvi-
ous undersmoothed cases, the GCV method worked
as well as the GML method for small to moderate
sample sizes. The WASE of a spline estimate with
the GCV choice of the smoothing parameter con-
verges faster than the WASE of a spline estimate
with the GML choice of the smoothing parame-
ter. The Diggle and Hutchinson method works as
well as the GML method for moderate to large
sample sizes, but it fails badly for small sample
sizes. The UBR method estimates the smoothing
parameter very well, but estimates the correlation
parameters poorly. Furthermore it needs an esti-
mate of the variance. The GML method is stable
and works very well for all situations. Therefore
the GML method is recommended when the sample
size is small to moderate. The GCV method is rec-
ommended when the sample size is large. Similar
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results have been found for independent observa-
tions (Wahba, 1985, Kohn, Ansley and Tharm, 1991
and Wahba and Wang, 1993).
SS ANOVA models have connections to linear

mixed-effects models. Consider the following linear
mixed-effects model:

Y = Td+
p∑

β=1
uβ + � = Td+ Zu + ��

where d is fixed, uβ is random and distributed as
uβ ∼ N�0� σ2θβ�β/nλ�, � ∼ N�0� σ2C�, uβ’s and �
are mutually independent, Zn×np = �In� � � � � In� and
u = �uT

1 � � � � �u
T
p�T. Var�u� = σ2D/nλ where D =

diag�θ1�1� � � � � θp�p�.
Writing D/nλ = �I��D��I/nλ�, the equation (3.3)

in Harville (1976) is(
TTC−1T TTC−1ZD
DZTC−1T nλD+DZTC−1ZD

)(
d
�

)
=
(
TTC−1Y
DZTC−1Y

)
�

(24)

Let c and d be a solution to (9). Because ZDZT = �,
it can be shown that d and � = ZTc is a solu-
tion to (24) if � is invertible. The estimate of u is
û = D� = DZTc. Thus, θβ�βc = ûβ, the smooth-
ing spline ANOVA estimate of the component in the
subspace 	β, is a BLUP. Therefore the smoothing
spline ANOVA estimates of the main effects, the
interactions and the overall function are BLUP’s.
If � is not invertible, the smoothing spline estimate
of the overall function f̂ = Td+ �c is still a BLUP
since it is unique. Furthermore, the GML estimates
of parameters are also REML estimates because
z represents n −M linearly independent contrasts
of Y.
Because of the above connection between a SS

ANOVA model and a linear mixed-effects model,
SAS procedure proc mixed can be used to cal-
culate coefficients c and d in (21). Note that
the spline estimate f̂�x� is defined on the whole
domain χ, whereas an estimate of a linear mixed-
effects model is only defined on the design points.
Our ultimate goal is to find a spline estimate;
the relationships between smoothing spline mod-
els and mixed-effects models are used to achieve
this goal. Several examples using proc mixed are
available from the second author’s homepage:
http://www.pstat.ucsb.edu/∼yuedong.
In the following, we apply the GML method to

fit two datasets. We use the drum roller data intro-
duced in Section 4.1 as our first example. The series
consisting of the odd-numbered observations �n =
575� are fitted by a cubic spline for the determin-
istic mean function �m = 2� and an AR(1) model

for errors. The left plot in Figure 5 shows the data
(points), the estimate of f under the AR(1) model
for the errors (solid line) and its 95% Bayesian con-
fidence intervals (Wahba, 1983). We also plot the
estimate of f under the independence assumption
(dotted line) with the smoothing parameter selected
by the GCV method. The estimate of f under the
independence assumption is very variable. The esti-
mates of the first-order autoregressive parameter
and the residual variance are 0.3 and 0.35, respec-
tively. The fitted mean function is comparable to
that found by local linear regression using CDPI
in Figure 4.
In the second example, we fit spatial data which

consist of water acidity measurements (surface pH),
the calcium concentration and geographic infor-
mation (latitude and longitude) of 284 lakes in
Wisconsin. This is a subset of the 1984 Survey on
Lakes in the USA by the Environmental Protection
Agency. Of interest is the dependence of the water
acidity on the calcium concentration:

pHi = f�calciumi� + εi� i = 1� � � � �284�(25)

The estimate of f under the independence assump-
tion is variable (dotted line in the right plot of
Figure 5), which indicates that the estimate of
the smoothing parameter is too small. Measure-
ments taken at lakes in relatively close proximity
may be more highly correlated than those taken
at more distant lakes. Therefore, an adjustment is
needed to remove the effect of spatial correlation.
We model the spatial correlation by an exponential
structure with a nugget effect: Var�εi� = σ2 + σ2

1
and Cov�εi� εj� = σ2 exp�−dij/ρ�, where dij is the
Euclidean distance between the geographic loca-
tions i and j. The estimates of the parameters σ2, ρ
and σ2

1 are 0.13, 0.05 and 0.1, respectively. The esti-
mate of f under this covariance structure is shown
in the right plot of Figure 5 (solid line). We also
fitted the data with a spherical spatial correlation
structure and obtained similar estimates.

4.3 Rates of Convergence for
Multidimensional Regression

Earlier in this section, local polynomial models
and smoothing spline ANOVA models are studied
for multidimensional regression. When the regres-
sion function is high dimensional, one often faces
the so-called curse of dimensionality; that is, the
traditional methods (e.g., series expansion up to a
certain order, multidimensional kernel) often can-
not provide a reasonably accurate estimate based on
a moderately sized sample. In this situation, more
parsimonious multivariate techniques have the
potential to overcome the curse of dimensionality.
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Fig. 5. Left: drum Roller. Right: water acidity. Dots: observations. Solid lines: estimates with smoothing parameters estimated by GML.
Dashed lines: 95% Bayesian confidence intervals. Dotted lines: estimates assuming independence and smoothing parameters are estimated
by GML.

Examples of such techniques are additive models as
considered in Section 4.1, neural nets (Barron and
Barron, 1988), CART (Breiman, Friedman, Olshen
and Stone, 1984), projection pursuit (Friedman and
Stuetzle, 1981), low-order tensor product splines
(Stone, Hansen, Kooperberg and Truong, 1997) or
smoothing spline ANOVA (as in Section 4.2). The
challenge there lies in both the choice of a good
parsimonious type of modeling among many can-
didates and also the choice of a good–sized model
within the same type of modeling. Some adaptation
results in that direction with independent errors
are in Yang (2000). We here illustrate the advan-
tages of additive or low-order interaction models for
the case of dependent data by studying the rates of
convergence of additive and low-order interaction
classes.
Consider Sobolev classes with various interac-

tion order and smoothness [the one-dimensional
Sobolev space is defined in (7)]. For r ≥ 1, let
zr = �z1� � � � � zr� ∈ �0�1	r. For k = �k1� � � � � kr�
with nonnegative integer components ki, define
�k� = �r

i=1 ki. Let Dk denote the differenti-
ation operator Dk = ∂�k�/∂zk1

1 · · · ∂zkrr . For an
integer α, define the Sobolev norm �g�Wα�r

2
=

�g�2 +
�

�k�=α
∫
�0�1	r �Dkg�2 dzr. Let Wα�r

2 �C� denote
the set of all functions g on �0�1	r with �g�Wα�r

2
≤ C.

Consider the following function classes of different
interaction orders and smoothness:

S1�α�C� =
{ d∑
i=1

gi�xi�� gi ∈ W
α�1
2 �C��1 ≤ i ≤ d

}
�

S2�α�C� =
{ ∑
1≤i<j≤d

gi� j�xi� xj�� gi�j ∈ W
α�1
2 �C��

1 ≤ i < j ≤ d

}
�

Sd�α�C� = W
α�d
2 �C��

with α ≥ 1 and C > 0. The simplest class S1�α�C�
contains additive functions (no interaction), and
with larger r, functions in Sr�α�C� have higher
order interactions. The unknown regression func-
tion f is assumed to be in (at least) one of the
Sobolev classes but with r and α unknown.
Assume that the density of the covariates (with

respect to Lebesgue measure) is supported in �0�1	d
and is bounded above and away from zero. The
errors are assumed to have a long-range depen-
dence with known dependence parameter 0 < γ < 1.

Theorem 4.3. Under the above conditions:

(i) The minimax rate of convergence for estimating
a regression function in Sr�α�C� is n−min�2α/�2α+r�� γ�,
that is,

min
f̂

max
f∈Sr�α�C�

E�f− f̂�2 = O
(
n−min�2α/�2α+r�� γ�)

for 1 ≤ r ≤ d and α ≥ 1.
(ii) Without knowing the hyperparameters α and

the interaction order r, one can construct a minimax
rate adaptive estimator. That is, a single estimator
f̂∗ can be constructed such that

max
f∈Sr�α�C�

E�f− f̂∗�2 = O
(
n−min�2α/�2α+r�� γ�)

automatically for all 1 ≤ r ≤ d and α ≥ 1.

The first result of the theorem suggests the
advantage of additive or low interaction order mod-
els. For a fixed hyperparameter α for the Sobolev
classes, if one knew the true interaction order r,
then a faster convergence rate could be achieved
compared to an estimator obtained assuming the
highest interaction order (i.e., r = d). The improve-
ment in rate of convergence is substantial when r is
small compared to d. For similar results on effects
of dimension reduction with independent errors,



152 J. OPSOMER, Y. WANG AND Y. YANG

see Stone (1994), Nicoleris and Yatracos (1997) and
Yang (1999).
Because the smoothness parameter α and the

interaction order are unknown in most applica-
tions, adaptive estimators of f relative to these
parameters are desired. The second result of the
above theorem guarantees the existence of such
adaptive estimators. General adaptive estimation
with unknown dependence γ is currently being
investigated by one of the authors of this paper.
For the Sobolev (and more generally Besov) classes,
as studied in Wang (1996) and Johnstone and
Silverman (1997) for the one-dimensional case,
wavelet estimators are a natural consideration.
It seems reasonable to expect that, with proper
thresholding and a method to select the interac-
tion order r, tensor-product wavelet estimators will
have the desired adaptation capability.

5. CONCLUSION

Correlation is a common occurrence in practical
applications. In nonparametric regression, this cor-
relation can have important consequences on the
statistical properties of the estimator and on the
selection of the smoothing parameter using data-
driven methods, as shown in this article. We have
reviewed the existing literature on the effect of cor-
relation for several important types of nonparamet-
ric regression methods, including kernel, spline and
wavelet methods and discussed some recent work
in these areas. Clearly, the list of nonparametric
regression techniques discussed in this article is
not exhaustive. Other approaches could include a
fully Bayesian approach in which formal priors are
defined for the correlation function and on the struc-
ture of the mean function.
The techniques reviewed in this article were

shown to be able to handle the correlation, if its
shape can either be parametrically specified or if
the errors are assumed to be short-range depen-
dent. For such correlation structures, data-driven
smoothing parameter selection methods are avail-
able, as discussed in Sections 3 and 4.
Currently, the theoretical results for kernel-based

and wavelet expansion methods under correla-
tion are more extensive than those for smoothing
splines. In the former two types of method, it was
shown that the convergence rates of the estima-
tors are unaffected by short-range dependence or
the errors. Under long-rang dependence, however,
the rate of convergence can be severely damaged,
but level-dependent thresholding for wavelet esti-
mation still leads to optimal rates of convergence.
Theoretical results for adaptive estimation, a use-
ful approach for modelling for high-dimensional

datasets under the assumption of independent
errors, are shown to continue to hold under several
correlation scenarios.
There is still ample room for future methodolog-

ical research in nonparametric regression with cor-
related errors. For kernel-based methods, there is a
need for data-driven bandwidth selection methods
for higher dimensional datasets, especially spatial
data where correlation is induced by the location
of the observations. For smoothing splines, research
on their large-sample properties under short-range
and long-range dependence is still lacking, as well
as methods for estimating smoothing parameters
when the correlation is not parametrically specified.
The results on adaptation also need to be extended
to more general correlation structures for greater
flexibility and applicability.
Perhaps the most pressing area for future

research is the implementation of many of the
existing theoretical and methodological results into
practical algorithms and software. This would pro-
vide users of nonparametric regression with tools to
analyze datasets with correlated observations with
as much ease as those with assumed independence.

ACKNOWLEDGMENTS

Yuedong Wang is supported in part by NIH Grant
R01 GM58533. Yuhong Yang was supported in part
by NSA Grant MDA 9049910060.

REFERENCES

Adenstedt, R. K. (1974). On large sample estimation for the
mean of a stationary sequence. Ann. Statist. 2 1095–1107.

Altman, N. (1994). Krige, smooth, both or neither? Technical
report, Biometrics Unit, Cornell Univ.

Altman, N. S. (1990). Kernel smoothing of data with correlated
errors. J. Amer. Statist. Assoc. 85 749–759.

Aronszajn, N. (1950). Theory of reproducing kernels. Trans.
Amer. Math. Soc. 68 337–404.

Barron, A. R. and Barron, R. L. (1988). Statistical learning net-
works: a unifying view. In Computer Science and Statistics:
Proceedings of the 21st Interface, 192–203.

Beran, J. (1992). Statistical methods for data with long-range
dependence. Statist. Sci. 7 404–416.

Beran, J. (1994). Statistics for Long-Memory Processes. Chap-
man and Hall, New York.

Bierens, H. (1983). Uniform consistency of kernel estimators of
a regression function under generalized conditions. J. Amer.
Statist. Assoc. 78 699–707.

Breiman, L., Friedman, J. H., Olshen, R. and Stone, C. J.
(1984). Classification and Regression Trees. Wadsworth,
Belmont, CA.

Chiu, S.-T. (1989). Bandwidth selection for kernel estimate with
correlated noise. Statist. Probab. Lett. 8 347–354.

Chu, C.-K. and Marron, J. S. (1991). Comparison of two band-
width selectors with dependent errors. Ann. Statist. 19
1906–1918.



NONPARAMETRIC REGRESSION WITH CORRELATED ERRORS 153
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