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Power Prior Distributions
for Regression Models
Joseph G. Ibrahim and Ming-Hui Chen

Abstract. We propose a general class of prior distributions for arbitrary
regression models. We discuss parametric and semiparametric models.
The prior specification for the regression coefficients focuses on observ-
able quantities in that the elicitation is based on the availability of his-
torical data D0 and a scalar quantity a0 quantifying the uncertainty in
D0. Then D0 and a0 are used to specify a prior for the regression coeffi-
cients in a semiautomatic fashion. The most natural specification of D0
arises when the raw data from a similar previous study are available.
The availability of historical data is quite common in clinical trials, car-
cinogenicity studies, and environmental studies, where large data bases
are available from similar previous studies. Although the methodology
we present here is quite general, we will focus only on using historical
data from similar previous studies to construct the prior distributions.
The prior distributions are based on the idea of raising the likelihood
function of the historical data to the power a0, where 0 ≤ a0 ≤ 1. We call
such prior distributions power prior distributions. We examine the power
prior for four commonly used classes of regression models. These include
generalized linear models, generalized linear mixed models, semipara-
metric proportional hazards models, and cure rate models for survival
data. For these classes of models, we discuss the construction of the
power prior, prior elicitation issues, propriety conditions, model selec-
tion, and several other properties. For each class of models, we present
real data sets to demonstrate the proposed methodology.

Key words and phrases: Cure rate model, generalized linear model,
Gibbs sampling, historical data, prior elicitation, model selection, pro-
portional hazards model, random effects model.

1. INTRODUCTION

Prior elicitation perhaps plays the most crucial
role in Bayesian inference. Although noninforma-
tive and improper priors may be useful and eas-
ier to specify for certain problems, they cannot be
used in all applications, such as model selection or
model comparison, as it is well known that proper
priors are required to compute Bayes factors and
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posterior model probabilities. In addition, it is well
known that Bayes factors are generally quite sen-
sitive to the choices of hyperparameters of vague
proper priors, and thus one cannot simply specify
vague proper priors in model selection contexts to
avoid informative prior elicitation. In addition, non-
informative priors can cause instability in the pos-
terior estimates and convergence problems for the
Gibbs sampler. This can occur if the posterior sur-
face is flat when using noninformative or improper
priors. Moreover, noninformative priors do not make
use of real prior information that one may have for
a specific application. Thus, informative priors are
essential in these situations, and, in general, they
are useful in applied research settings where the
investigator has access to previous studies measur-
ing the same response and covariates as the cur-
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rent study. For example, in many cancer and AIDS
clinical trials, current studies often use treatments
that are very similar to or are slight modifications
of treatments used in previous studies. We refer to
data arising from previous similar studies as his-
torical data throughout. In carcinogenicity studies,
for example, large historical databases exist for the
control animals from previous experiments. In all
of these situations, it is natural to incorporate the
historical data into the current study by quantify-
ing it with a suitable prior distribution on the model
parameters. The methodology discussed here can be
applied to each of these situations as well as in other
applications that involve historical data.
From a Bayesian perspective, historical data from

past similar studies can be very helpful in inter-
preting the results of the current study. For exam-
ple, historical control data can be very helpful in
interpreting the results of a carcinogenicity study.
According to Haseman, Huff and Boorman (1984),
historical data can be useful when control tumor
rates are low and when marginal significance levels
are obtained in a test for dose effects. Suppose, for
example, that 4 of 50 animals in an exposed group
develop a specific tumor, compared with 0 of 50 in
a control group. This difference is not statistically
significant (p = 0�12, based on Fisher’s exact test).
However, the difference may be biologically signifi-
cant if the observed tumor type is known to be ex-
tremely rare in the particular animal strain being
studied. By specifying a suitable prior distribution
on the control response rates that reflect the ob-
served rates of a particular defect over a large se-
ries of past studies, one can derive a modified test
statistic that incorporates historical information. If
the defect is rare enough in the historical series,
then even the difference of 4/50 versus 0/50 will be
statistically significant based on a method that ap-
propriately incorporates historical information.
To fix ideas, suppose we have historical data

from a similar previous study, denoted by D0 =
�n0� y0�X0�� where n0 is the sample size of the
historical data, y0 is the n0 × 1 response vector,
and X0 is the n0 × p matrix of covariates based on
the historical data. The power prior is defined to
be the likelihood function based on the historical
data D0, raised to a power a0, where 0 ≤ a0 ≤ 1
is a scalar parameter that controls the influence of
the historical data on the current data. One of the
most useful applications of the power prior is for
model selection problems, since these priors inher-
ently automate the informative prior specification
for all possible models in the model space. They
are quite attractive in this context, since specifying
meaningful informative prior distributions for the

parameters in each model is a difficult task requir-
ing contextual interpretations of a large number of
parameters. In variable subset selection, for exam-
ple, the prior distributions for all possible subset
models are automatically determined once the his-
torical data D0 and the parameter a0 are specified.
Berger and Mallows (1988) refer to such priors
as “semiautomatic” in their discussion of Mitchell
and Beauchamp (1988). Chen, Manatunga and
Williams (1998) use the power prior for heritability
estimates from human twin data. Chen, Ibrahim
and Yiannoutsos (1999) demonstrate the use of the
power prior in variable selection contexts for lo-
gistic regression. Ibrahim, Chen and Ryan (2000)
and Chen, Ibrahim, Shao and Weiss (1999) develop
the power prior for the class of generalized linear
mixed models. Ibrahim and Chen (1998), Ibrahim,
Chen and MacEachern (2000), Chen, Ibrahim and
Sinha (1999) and Chen, Dey and Sinha (1999) de-
velop the power prior for various types of models
for survival data.
The rest of this paper is organized as follows. In

Section 2, we give the general development of the
power prior for arbitrary regression models and dis-
cuss its interpretation and various advantages. In
Section 3, we present the power prior for the class of
generalized linear models and discuss two detailed
applications. In Section 4, we present the power
prior for the class of generalized linear mixed mod-
els and give an example illustrating variable subset
selection. In Section 5, we examine the power prior
for a specific class of semiparametric proportional
hazards models. In Section 6, we study the power
prior for a novel class of cure rate models for sur-
vival data. In Section 7, we discuss generalizations
of the power prior and other elicitation techniques,
and we compare our development to other methods.
We close the article with a brief discussion.

2. THE POWER PRIOR

We consider the power prior for an arbitrary re-
gression model. Let the data from the current study
be denoted by D = �n�y�X�, where n denotes the
sample size, y denotes the n × 1 response vector
and X denotes the n× p matrix of covariates. Fur-
ther, denote the likelihood for the current study by
L�θ �D�, where θ is a vector of indexing parameters.
Thus, L�θ �D� is a general likelihood function for
an arbitrary regression model, such as a general-
ized linear model, random effects model, nonlinear
model or a survival model with right censored data.
Now suppose we have historical data from a similar
previous study, denoted by D0 = �n0� y0�X0�. Fur-
ther, let π0�θ � ·� denote the prior distribution for θ
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before the historical data D0 is observed. We shall
call π0�θ � ·� the initial prior distribution for θ. Given
a0, we define the power prior distribution of θ for the
current study as

π�θ �D0� a0� ∝ L�θ �D0�a0π0�θ �c0��(2.1)

where c0 is a specified hyperparameter for the ini-
tial prior, and a0 is a scalar prior parameter that
weights the historical data relative to the likelihood
of the current study. The prior parameter c0 con-
trols the impact of π0�θ �c0� on the entire prior, and
the parameter a0 controls the influence of the his-
torical data on π�θ �D0� a0�. The parameter a0 can
be interpreted as a relative precision parameter for
the historical data. It is reasonable to restrict the
range of a0 to be between 0 and 1, and thus we take
0 ≤ a0 ≤ 1. One of the main roles of a0 is that it
controls the heaviness of the tails of the prior for
θ. As a0 becomes smaller, the tails of (2.1) become
heavier. Setting a0 = 1, (2.1) corresponds to the up-
date of π0�θ �c0� using Bayes’ theorem. That is, with
a0 = 1, (2.1) corresponds to the posterior distribu-
tion of θ from the previous study. When a0 = 0,
the prior does not depend on the historical data,
and in this case π�θ �D0� a0 = 0� ≡ π0�θ �c0�. Thus,
a0 = 0 is equivalent to prior specification with no
incorporation of historical data. Therefore, (2.1) can
be viewed as a generalization of the usual Bayesian
update of π0�θ �c0�. The parameter a0 allows the in-
vestigator to control the influence of the historical
data on the current study. Such control is impor-
tant in cases where there is heterogeneity between
the previous and current study, or when the sample
sizes of the two studies are quite different.
The hierarchical power prior specification is com-

pleted by specifying a (proper) prior distribution for
a0. Thus we propose a joint power prior distribution
for �θ� a0� of the form

π�θ� a0 �D0� ∝ L�θ �D0�a0π0�θ �c0�π�a0 �γ0��(2.2)

where γ0 is a specified hyperparameter vector. A
natural choice for π�a0 �γ0� is a beta prior. How-
ever, other choices, including a truncated gamma
prior or a truncated normal prior can be used. These
three priors for a0 have similar theoretical proper-
ties, and our experience shows that they have simi-
lar computational properties. In practice, they yield
similar results when the hyperparameters are ap-
propriately chosen. Thus, for a clear focus and expo-
sition, we will use a beta distribution for π�a0 �γ0�
throughout this article. The beta prior for a0 ap-
pears to be the most natural prior to use and leads
to the most natural elicitation scheme. The prior in
(2.2) does not have a closed form in general, but
it has several attractive theoretical and computa-
tional properties for the classes of models consid-
ered here. One attractive feature of (2.2) is that it

creates heavier tails for the marginal prior of θ than
the prior in (2.1), which assumes that a0 is a fixed
value. This is a desirable feature since it gives the
investigator more flexibility in weighting the his-
torical data. In addition, our construction of (2.2) is
quite general, with various possibilities for π0�θ �c0�.
If π0�θ �c0� is proper, then (2.2) is guaranteed to be
proper. Further, (2.2) can be proper even if π0�θ �c0�
is an improper uniform prior. Specifically, Ibrahim,
Ryan and Chen (1998) and Chen, Ibrahim and Yian-
noutsos (1999) characterize the propriety of (2.2) for
generalized linear models and show that, for fixed
a0, the prior converges to a multivariate normal
distribution as n0 → ∞. For the class of general-
ized linear mixed models, Ibrahim, Chen and Ryan
(2000), Chen et al. (1999) and Chen, Dey and Sinha
(2000) characterize the propriety of (2.2) and derive
various other theoretical properties of the power
prior. Ibrahim, Chen and MacEachern (2000) and
Ibrahim and Chen (1998) characterize various prop-
erties of (2.2) for proportional hazards models, and
Chen, Ibrahim and Sinha (1999) examine various
theoretical properties of (2.2) for a proposed class
of cure rate models. We will briefly summarize the
conditions for propriety as well as other properties
for the above-mentioned models here, but refer the
reader to these articles for details and proofs.
The power prior defined in (2.2) can eas-

ily be generalized to multiple historical data
sets. If there are L0 historical studies, we de-
fine D0k = �n0k�X0k� y0k� to be the historical
data based on the kth study, k = 1� � � � �L0 and
D0 = �D01� � � � �D0L0

�. In this case, it may be desir-
able to define a weight parameter a0k for each his-
torical study, and take the a0k’s to be i.i.d. beta ran-
dom variables with hyperparameters γ0 ≡ �δ0� λ0�,
k = 1� � � � �L0. Letting a0 = �a01� � � � � a0L0

�, the prior
in (2.2) can be generalized as

π�β�a0 �D0� ∝
(

L0∏
k=1

[
L�β �D0k�

]a0kπ�a0k �γ0�
)

· π0�β �c0��
(2.3)

3. POWER PRIOR FOR GENERALIZED
LINEAR MODELS

Let y0i denote the ith component of y0, let
x′
0i = �x0i1� x0i2� � � � � x0ip� denote the ith row of X0

with x0i1 = 1 corresponding to an intercept, let
η0i = x′

0iβ denote the linear predictor based on the
historical data, where β is a p × 1 vector, and let
D0 = �n0� y0�X0� denote the historical data. Then,
the likelihood function of β based on the historical
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data D0 is given by

L�β �D0�

=
n0∏
i=1

exp
{
τ0�y0iθ0i − g�θ0i�� + c�y0i� τ0�

}
�

(3.1)

where θ0i = θ�η0i�, θ�·� is a monotonic differentiable
function often referred to as the θ-link, g�·� and c�·�
are known functions and τ0 is a known parameter.
The power prior for the class of generalized linear
models (GLM’s) takes the form

π�β�a0 �D0� ∝
[
L�β �D0�

]a0π0�β �c0�π�a0 �γ0��(3.2)

where π�a0 �γ0� ∝ a
δ0−1
0 �1−a0�λ0−1 and γ0 = �δ0� λ0�.

The prior in (3.2) will not have a closed form in
general, but has several attractive properties.
First, as shown in Ibrahim, Chen and Ryan (2000)
and Chen, Ibrahim and Yiannoutsos (1999), if
π0�β �c0� ∝ 1, L�β �D0� satisfies mild regular-
ity conditions and δ0 > p, then (3.2) is proper.
In addition, if π0�β �c0� ∝ 1 and a0 is taken to
be fixed, then Ibrahim, Ryan and Chen (1998)
show that, as n0 → ∞, π�β �D0� converges to a
normal distribution with mean β̂ and covariance
matrix a−1

0 �X′
0V0X0�−1, where β̂ is the maxi-

mizer of L�β �D0� and V0 is an n0 × n0 diagonal
matrix of variance functions of the GLM. When
λ0 → ∞, π�β�a0 �D0� becomes an improper uni-
form prior for β, resulting in no incorporation of
the historical data. Also, when δ0 → ∞, the his-
torical data and the current data become equally
weighted. For elicitation purposes, it is easier
to work with the prior mean and standard de-
viation of a0, that is, µa0

= δ0/�δ0 + λ0� and
σa0 = (

µa0
�1− µa0

�)1/2 �δ0 + λ0 + 1�−1/2. It is typi-
cally easier to specify �µa0

� σa0� and then solve for
�δ0� λ0� from the implied equations. The investiga-
tor may choose µa0

to be small if he or she assigns
low prior weight to the historical data. If a large
prior weight is desired, then µa0

≥ 0�5 may be
suitable. In practice, we recommend that several
choices of �µa0

� σa0� be used, including ones that
give small and large weight to the historical data,
and several sensitivity analyses be conducted. We
do not recommend doing an analysis based on one
set of prior parameters. The choices recommended
here can be used as starting points from which
sensitivity analyses can be based.
To illustrate the roles of the prior parameters in

the power priors, we consider the following logistic
regression model. We simulated a data set consist-
ing of n0 = 200 independent Bernoulli observations

with success probability

p0i =
exp�−0�5+ 0�5x0i�

1+ exp�−0�5+ 0�5x0i�
� i = 1� � � � � n0�

where the x0i are i.i.d. normal random variables
with mean 0 and standard deviation 0�5. Using the
Gibbs sampler, for each given set of (δ0� λ0�, we gen-
erated 50,000 iterates from the joint prior distribu-
tion π�β�a0 �D0� given by (3.2) taking π0�β �c0� ∝ 1.
The detailed implementation scheme of the Gibbs
sampler can be found in Chen, Ibrahim and Yian-
noutsos (1999). Figure 1 shows the marginal prior
densities of β1 (intercept) and β2 (slope) for three
choices of (µa0

� σa0�. From Figure 1, we see that, as
µa0

gets smaller, both marginal prior density curves
get flatter, but the prior modes of β1 and β2 for all
three choices of (µa0

� σa0� are almost the same. Al-
though not shown in Figure 1, we also obtained the
marginal prior densities for β1 and β2 for �δ0� λ0� =
�3�3�, which are nearly uniform over the real line.

3.1 Illustrative Examples

Example 1. AIDS Data. For illustration we con-
sider an analysis of the AIDS study ACTG036 using
the data from study ACTG019 as historical data.
The ACTG019 study was a double blind placebo-
controlled clinical trial comparing zidovudine (AZT)
to placebo in persons with CD4 counts less than
500. The results of this study were published in Vol-
berding et al. (1990). The sample size for this study,
excluding cases with missing data, was n0 = 823.
The response variable (y0) for these data is binary
with a 1 indicating death, development of AIDS or
development of AIDS-related complex (ARC), and a
0 indicates otherwise. Several covariates were also
measured. The ACTG036 study was also a placebo-
controlled clinical trial comparing AZT to placebo in
patients with hereditary coagulation disorders. The
results of this study have been published by Meri-
gan et al. (1991). The sample size in this study, ex-
cluding cases with missing data, was n = 183. The
response variable �y� for these data is binary with
a 1 indicating death, development of AIDS or de-
velopment of AIDS-related complex (ARC), and a 0
indicates otherwise. We let D0 denote the data from
the ACTG019 study and D denote the data from the
ACTG036 study.
Chen, Ibrahim and Yiannoutsos (1999) use the

priors given by (3.2) and the logistic regression
model to carry out Bayesian variable subset se-
lection, which yields the model containing an
intercept, CD4 count (cell count per cubic millime-
ter of serum), age and treatment as the model
with the largest posterior probability. For that
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Fig. 1. Plots of marginal posterior densities for β1 and β2; (solid curve) �µa0 � σa0 � = �0�94�0�031�� (dotted curve) �µa0 � σa0 � = �0�5�0�078��
(dashed curve) �µa0 � σa0 � = �0�5�0�151�.

model, we here use the power prior (3.2), tak-
ing π0�β �c0� ∝ 1, to obtain posterior estimates of
the regression coefficients for various choices of
�µa0

� σa0�. From Table 1, we see that, as the weight
for ACTG019 study increases, the posterior mean of
a0 [denoted E�a0 �D�D0�] increases, the posterior
standard deviations (std. dev.) for all parameters
decrease and the 95% highest probability density
(HPD) intervals get narrower. Most noticeably,
when �δ0� λ0� = �100�1�, none of the HPD intervals
for the regression coefficients contains 0. Table 1
also indicates that the HPD intervals are not too
sensitive to moderate changes in �µa0

� σa0�. This is
a comforting feature, because it implies that the
HPD intervals are fairly robust with respect to the
hyperparameters of a0. This same robustness fea-
ture is also exhibited in posterior model probability
calculations (see Chen, Ibrahim and Yiannoutsos,
1999). We mention that the Monte Carlo method of
Chen and Shao (1999) was to calculate 95% highest
probability density intervals for the parameters of
interest.

Example 2. Carcinogenicity study. Consider a
study involving r + 1 groups of test animals, one
of which serves as a control and the remaining r
receive a test compound at increasing dose levels.

Denote the dose levels by d1 < d2 < · · · < dr+1,
where d1 ≡ 0 denotes the dose level for the con-
trol group. Let ni denote the number of animals
receiving the ith dose and define

yij =


1� if the jth animal in the ith

dose group has a tumor�
0� otherwise�

Let xij = �xij1� � � � � xijp�′ be a p × 1 vector of co-
variates for the jth animal in the ith dose group
for j = 1� � � � ni, i = 1� � � � � r + 1. Denote by θij, the
probability that animal j in the ith dose level de-
velops a tumor. We assume that yij has a Bernoulli
distribution with parameter θij, which depends on
the covariates through a logistic model,

θij = exp�β0 + bdi + β′
1xij�

1+ exp�β0 + bdi + β′
1xij�

�(3.3)

where xij is the covariate vector for animal ij, β0
is the intercept, b is the dose coefficient and β1 is a
p× 1 vector of regression coefficients corresponding
to xij, i = 1� � � � � r + 1, j = 1� � � � � ni. We write the
�p+ 1� × 1 vector of regression coefficients as

β =
(
β0

β1

)
�

and expand xij to include an intercept. The main
goal for this problem is to derive a test statistic for
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Table 1
Posterior estimates for AIDS data

Posterior Posterior 95% HPD
��0��0� ��a0

��a0
� E(a0 �D�D0) variable mean std. dev. Interval

�5�5� �0�50�0�151� 0.02 Intercept −4.389 0.725 �−5�836�−3�055�
CD4 count −1.437 0.394 �−2�238�−0�711�
Age 0.135 0.221 �−0�314� 0�556�
Treatment −0.120 0.354 �−0�817� 0�570�

�20�20� �0�50�0�078� 0.09 Intercept −3.803 0.511 �−4�834�−2�868�
CD4 count −1.129 0.300 �−1�723�−0�559�
Age 0.176 0.195 �−0�214� 0�552�
Treatment −0.223 0.300 �−0�821� 0�364�

�30�30� �0�50�0�064� 0.13 Intercept −3.621 0.436 �−4�489�−2�809�
CD4 count −1.028 0.265 �−1�551�−0�515�
Age 0.194 0.185 �−0�170� 0�557�
Treatment −0.259 0.278 �−0�805� 0�288�

�50�1� �0�98�0�019� 0.26 Intercept −3.337 0.323 �−3�978�−2�715�
CD4 count −0.865 0.211 �−1�276�−0�448�
Age 0.233 0.160 �−0�081� 0�548�
Treatment −0.314 0.230 �−0�766� 0�138�

�100�1� �0�99�0�010� 0.53 Intercept −3.144 0.231 �−3�601�−2�705�
CD4 count −0.746 0.161 �−1�058�−0�429�
Age 0.271 0.135 �0�001� 0�529�
Treatment −0.356 0.181 �−0�717�−0�011�

Table 2
Summary of historical data from 70 studies

of female B6C3F1 mice

Mean Std. dev. Minimum Maximum

Animals 49.83 4.50 43 79.00
Tumors 12.44 9.41 1 54.00

the null hypothesis H0� b = 0 using the likelihood
based on (3.3) along with the power prior (3.2). From
a frequentist perspective, two natural test statistics
include the score and likelihood ratio tests. These
test statistics are based on the marginal likelihood
of b, denoted L�b�, which is found by integrating
the joint posterior density of �β�a0� given b, with
respect to �β�a0�. Details of the computations of the
score test and the likelihood ratio test can be found
in Ibrahim, Ryan and Chen (1998).
To illustrate this methodology, we consider an ex-

periment conducted on female mice at the National
Toxicology Program (NTP) with a commercial disin-
fectant, called o-benzyl-p-chlorophenol (see Alden,
1994). A detailed and comprehensive analysis of
these data using the power priors can be found in
Ibrahim, Ryan and Chen (1998).
Consider an analysis of liver tumors in female

mice. Our data set involves n = 144 female mice
exposed at 0, 120 and 240 ppm, labeled d1� d2 and
d3, respectively. The numbers of animals at the
three dose levels are 50, 44 and 44 respectively,
with 13, 15 and 17 tumors, respectively, resulting.

There were a total of L0 = 70 studies in the histor-
ical database, with a total of 3,488 animals, 871 of
which had liver tumors. We take D0k = �n0k� y0k�
X0k� to be the historical data from the kth study,
k = 1� � � � �70. Table 2 gives a summary of the an-
imal and tumor counts for all L0 = 70 studies.
There are two covariates available in the histori-
cal and current data, time to death �T� and weight
at 12 months �W�� We consider a logistic regres-
sion model including the covariates time to death
and weight at 12 months. The dose covariate is al-
ways included in the model for the current data.
To determine the evidence of a dose trend, we first
conducted a logistic regression on the current data.
The p-value for the dose effect was 0.15, suggesting
a nonsignificant dose trend. The logistic regression,
however, gave significant p-values for each of the
covariates. Thus, the logistic regression analysis for
the current data appears to suggest a nonsignifi-
cant dose effect, but significance in the regression
coefficients for all of the covariates.
We use a uniform improper initial prior for β

in the analysis, that is, π0�β �c0� ∝ 1. To deter-
mine the effect of the historical data, we first con-
ducted the score test using the point mass prior,
a0 = �0� � � � �0� with probability 1. This corresponds
to the usual score test with no incorporation of his-
torical data, which yielded a nonsignificant p-value
�p = 0�281). On the other hand, using a point mass
prior at a0 = �1� � � � �1� with the model including
only dose (i.e., no covariates) yields a significant re-
sult �p = 0�041�. This demonstrates that the in-
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Table 3
Model with �T�W�

�a0
�a0

Score test p-value LR p-value

0.01 0.003 2.79 0.095 2.70 0.100
0.05 0.032 3.80 0.051 3.73 0.053
0.1 0.1 4.22 0.040 3.95 0.047
0.5 0.288 5.37 0.020 5.11 0.024
0.5 0.152 6.27 0.012 5.84 0.015
0.8 0.381 7.10 0.008 6.45 0.011

corporation of the historical data yields a signifi-
cant score test for the dose trend. Table 3 shows
the results of the score test and likelihood ratio test
(denoted by LR) with covariates T and W for sev-
eral values of the prior parameters �µa0

� σa0�. With
µa0

= 0�01, the p-value for the score and likeli-
hood ratio tests is not significant, whereas for val-
ues of µa0

≥ 0�05, we see that the p-values be-
come more and more significant as µa0

increases.
When no covariates are included in the model, the
p-value for the score test is not significant for values
of µa0

≤ 0�1 and becomes significant when µa0
≥ 0�5.

This shows that, when the covariates are included,
significant results are obtained with much smaller
values of µa0

, thus demonstrating the importance of
the covariates in the analysis. The score test and
likelihood ratio test become much more significant
as µa0

increases.

4. POWER PRIORS FOR GENERALIZED LINEAR
MIXED MODELS

Consider the generalized linear mixed model
(GLMM),

p�yit �β� bi� τ�
= exp

{
τ
[
yitθ�ηit� − g�θ�ηit��

]+ c�yit� τ�
}
�

(4.1)

where ηit = x′
itβ + z′itbi, bi is a q × 1 vector of ran-

dom effects and z′it and x
′
it are vectors of covariates.

Let Xi denote the ni × p matrix with ith row x′
it,

and let Zi denote the ni × q matrix with ith row
z′it. Letting b = �b′1� � � � � b′N�′, y = �y11� � � � � yNnN

�′
and X = �X′

1� � � � �X
′
N�′, Z = diag�Z1� � � � �ZN�, the

joint density of �y� b� based on N subjects for the
GLMM is

p�y� b �β�T� =
N∏
i=1

ni∏
t=1

p�yit �β� bi�π�bi �T��(4.2)

where π�bi �T� is the normal distribution with mean
0 and covariance matrix V = T−1. For ease of expo-
sition, we will assume one previous study, because
the generalization of the prior to multiple previous

studies proceeds as in (2.3). Suppose there exist his-
torical data withN0 subjects that yielded the n0i×1
response vector y0i for subject i.
Let X0i be an n0i × p matrix of fixed covariates,

and let Z0i be an n0i × q matrix of covariates for
the q × 1 vector of random effects b0i for subject
i, i = 1�2� � � � �N0 for the historical data. Also let
b0, y0, X0 and Z0 be defined similar to b, y, X
and Z. Finally let D0 = �N0� X0� y0� Z0� denote
the historical data. Given a0, we propose to take
the power prior distribution for β to be of the form

π�β �D0�T� a0�

∝
N0∏
i=1

(∫
Rq

n0i∏
t=1

[
p�y0it �β� b0i�

]a0
· π�b0i �T�db0i

)
π0�β �c0��

(4.3)

where p�y0it �β� b0i� τ� is (4.1) with �y0it� b0i� τ0�
in place of �yit� bi� τ�. That is, p�y0it �β� b0i� is the
GLMM based on the historical data y0it. We note
that the construction of the power prior in (4.3) is
based on exponentiating the historical data like-
lihood given the random effects, as opposed to
exponentiating the marginal historical data likeli-
hood after the random effects have been integrated
out. The prior in (4.3) turns out to have several
advantages and several attractive computational
properties compared to a power prior based on
the marginal historical likelihood. For example, a
power prior based on the marginal historical data
likelihood is computationally intractable, and it is
not at all clear how to implement Markov chain
Monte Carlo (MCMC) methods with such a prior,
whereas MCMC methods for (4.3) are relatively
straightforward to implement.
The power prior specification is completed by

specifying priors for �a0� σ2
b � ρ�. We take these pa-

rameters independent a priori. We specify a beta
prior for a0, an inverse gamma prior for σ

2
b , denoted

IG�α0�ω0�, and a scaled beta prior for ρ, denoted
scbeta�φ0� ψ0�. Thus, we propose a joint power prior
distribution of the form

π�β�a0� σ2
b � ρ �D0�

∝
N0∏
i=1

(∫
Rq

n0i∏
t=1

�p�y0it �β� b0i��a0

· π�b0i �T� db0i
)
π0�β �c0�

(4.4)
· aδ0−10 �1− a0�λ0−1
· �σ2

b �−�α0+1� exp�−σ−2
b ω0�

· �1+ ρ�φ0−1�1− ρ�ψ0−1�
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where θ0 ≡ �δ0� λ0� α0� ω0� φ0� ψ0� are known prior
parameters. In our analyses, we take π0�β �c0� ∝ 1
and take choices of the prior parameters θ0 leading
to vague but proper prior distributions. If we as-
sume π0�β �c0� ∝ 1, mild regularity conditions on
p�y0 �β� b0�, δ0 > p and α0 > p/2, then (4.4) is
proper. We refer the reader to Chen et al. (1999)
for detailed theorems and proofs characterizing the
propriety of (4.4)

4.1 Example: School Nurse Visits

We illustrate our methodology with a data set in-
volving repeated measures of school nurse visits.
We also illustrate variable subset selection for the
GLMM with these data. The implementation of the
variable subset selection procedure is identical to
that described in Section 5 and thus is omitted here
for brevity. The response for each of 51 grade school
children with complete data is a two-dimensional
vector of the yearly nurse visits for each of two
years. The covariance structure of the bi is an AR-1
model for all models with q ≡ 2 and each Z a 2× 2
identity matrix. Children participated in a labora-
tory cold pressor pain paradigm experiment with
four trials of arm immersion in very cold water. The
goal of this analysis was to see if children’s health
care usage as measured by nurse visits could be
predicted from the results of the experiment. The
full model contains seven covariates and an inter-
cept term, implying 27 = 128 possible subset mod-
els. The seven covariates are age (x1), two treatment
indicator variables (x2 and x3), coping style (x4), tol-
erance (x5), rating (x6) and a coping style by rating
interaction (x7). The response variable y is the total
number of nurse visits, which we model as a Poisson
GLMM. For these data, we have N = 33, N0 = 18,
and all of the ni’s and n0i’s are equal to 2. Since
the ni’s, n0i’s and q are all equal, we can directly
apply the complete hierarchical centering reparam-
eterization of Gelfand, Sahu and Carlin (1996).
Table 4 gives results for the top three models

with δ0 = 10, λ0 = 10, that is, µa0
= 0�5 and

σa0 = 0�11. In addition, we take π0�β �c0� ∝ 1 and
take vague priors for σ2

b and ρ. Specifically, for σ2
b ,

we take �α0�ω0� = �0�005�0�005� and, for ρ, we take
φ0 = ψ0 = 1. Table 4 indicates that treatment, rat-

Table 4
Posterior model probabilities for �µa0 � σa0 � = �0�5�0�11�

m p�m �D�
�x2� x4� x6� x7� 0.119
�x2� x3� x4� x6� x7� 0.111
�x2� x4� x5� x6� x7� 0.059

Table 5
Posterior model probabilities for several values of �µa0 � σa0 �

(�a0
, �a0

) m p(m �D)
�0�5�0�078� �x2� x4� x6� x7� 0.100
�0�5�0�064� �x2� x4� x6� x7� 0.085
�0�5�0�050� �x2� x4� x6� x7� 0.073
�0�91�0�027� �x2� x3� x4� x5� x6� x7� 0.046

ing, coping style and rating by coping style inter-
action are important covariates for explaining the
number of nurse visits. To examine the sensitiv-
ity of model selection to the choices of �µa0

� σa0�,
we computed posterior model probabilities for sev-
eral choices of �µa0

� σa0�. From Table 5, we see that,
for several choices of �µa0

� σa0�, the �x2� x4� x6� x7�
model obtains the largest posterior probability. The
pattern of the posterior probability structure for the
other models for these choices of prior parameters
is similar to that of Table 4. However, model selec-
tion does become sensitive to the choice of �µa0

� σa0�
when we give large weight to the historical data,
as demonstrated in the last line of Table 5. Here,
we see that the top model is �x2� x3� x4� x5� x6� x7�.
Thus, it appears for this data set that there is no
clearcut top model, but perhaps two or three ade-
quate models, which all contain the covariates treat-
ment, rating, coping style and rating by coping style
interaction.

5. PROPORTIONAL HAZARDS MODELS

A proportional hazards model is defined by a haz-
ard function of the form

h�t� x� = hb�t� exp�x′β��(5.1)

where hb�t� denotes the baseline hazard function
at time t, x denotes the p × 1 covariate vector for
an arbitrary individual in the population and β de-
notes a p × 1 vector of regression coefficients. We
first construct a finite partition of the time axis as
in Ibrahim and Chen (1998). Let 0 ≤ s0 < s1 < · · · <
sM denote this partition with sM > maxi�ti�. Fur-
ther, let

δi = hb�si� − hb�si−1�
denote the increment in the baseline hazard in
the interval �si−1� si�, i = 1� � � � �M, and let
4 = �δ1� � � � � δM�. We follow Ibrahim and Chen
(1998) for constructing the likelihood function of
�β�4�. To construct the likelihood function, we use
a piecewise-constant baseline hazard model and
use only information about which interval the fail-
ure times fall into. For an arbitrary individual in
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the population, the cumulative distribution func-
tion for the proportional hazards model at time s is
given by

F�s� = 1− exp
{
− exp�η�

∫ s

0
hb�t�dt

}

� 1− exp
{
− exp�η�

(
�s− s0�hb�s0�

+
M∑
i=1

δi�s− si−1�+
)}

�

(5.2)

where �t�+ = t if t > 0, �t�+ = 0 otherwise and
η = x′β. Let pi denote the probability of a fail-
ure in the interval �si−1� si�, di denote the number
of failures and let ci be the number of right cen-
sored observations in the ith interval, respectively,
i = 1� � � � �M. For ease of exposition, we order the
observations so that in the ith interval the first di
are failures and the remaining ci are right censored,
i = 1� � � � �M. Let xik denote the vector of covariates
for the kth individual in the ith interval and define

uik�β� = exp�x′
ikβ��

ai =
M∑

j=i+1

dj∑
k=1

ujk�β��sj−1 − si−1��

bi =
M∑
j=i

dj+cj∑
k=dj+1

ujk�β��sj − si−1��

Ti�4� = �si − si−1�
i∑

j=1
δj�

Let D = �n�y�X� ν� denote the data for the current
study, where ν = �ν1� � � � � νn�′ is the n × 1 vector of
censoring indicators. The likelihood function for the
current study over all M intervals is given by

L�β�4 �D�

=
{

M∏
i=1

exp
{−δi�ai + bi�

}}

·
{

M∏
i=1

di∏
k=1

(
1− exp�−uik�β�Ti�4��

)}
�

For ease of exposition, we assume that we have one
previous study. Let D0 = �n0� y0�X0� ν0� denote the
historical data and let π0�β�4� denote the initial
prior distribution for �β�4�. The joint power prior
distribution for �β�4� a0� takes the form

π�β�4� a0 �D0�
∝ L�β�4 �D0�a0π0�β�4�aδ0−10 �1− a0�λ0−1�

(5.3)

where L�β�4 �D0� is the likelihood function of �β�4�
based on the historical data. We note that, in (5.3),

�β�4� are not independent, and also the compo-
nents of 4 are not independent a priori. To simplify
the prior specification, we take π0�β�4� = π0�β �c0�
π0�4 �θ0�� where c0 and θ0 are fixed hyperparam-
eters. Specifically, we take a p-dimensional multi-
variate normal density for π0�β �c0� with mean 0
and covariance matrix c0W0, where c0 is a specified
scalar and W0 is a specified p × p diagonal ma-
trix. We take π0�4 �θ0� to have a gamma density of
the form π0�4 �θ0� ∝

�M
i=1 δ

f0i−1
i exp�−δig0i�� where

θ0 = �f01� g01� � � � � f0M�g0M�. If π0�β �c0� ∝ 1, then
(5.3) is proper if π0�4� is proper and δ0 > p. Details
of these results and the Gibbs sampling techniques
for this model can be found in Ibrahim and Chen
(1998) and Ibrahim, Chen and MacEachern (2000).

5.1 Applications to Variable Selection

The power priors lead to a novel formulation for
eliciting prior model probabilities in the variable
subset selection problem. Let � denote the model
space, and let m be a specific model in � . Further,
under model m, let β�m� denote the vector of re-
gression coefficients, let X�m�

0 denote the covariate
matrix and let D�m�

0 = �n0� y0�X�m�
0 � ν0� denote the

historical data. Let

p∗
0

(
β�m�� 4 �D�m�

0

)
= L�β�m�� 4 �D�m�

0 �π0�β�m� �d0�π0�4 �κ0�
(5.4)

denote the unnormalized posterior density of
�β�m�� 4� based only on the historical data D�m�

0 , and
�d0� κ0� are specified hyperparameters. We propose
to take the prior probability of model m as

p�m� ≡ p�m �D�m�
0 �

=
∫∫
p∗
0�β�m�� 4 �D�m�

0 �dβ�m� d4�
m∈�

∫∫
p∗
0�β�m�� 4 �D�m�

0 �dβ�m� d4
�

(5.5)

Because 4 is viewed as a nuisance parameter, we
recommend taking κ0 = θ0 to simplify the elicita-
tion scheme. The prior parameter d0 controls the
impact of π0�β�m� �d0� on the prior model probability
p�m�. This choice for p�m� has several nice inter-
pretations. First, p�m� in (5.5) corresponds to the
posterior probability of model m based on the data
D

�m�
0 using a uniform prior for the previous study.

That is, p0�m� = 2−p form ∈ � , where p0�m� is the
prior probability of model m before observing the
historical data D�m�

0 . Therefore, p�m� ∝ p�m �D�m�
0 �,

and thus p�m� corresponds to the usual Bayesian
update of p0�m� using D�m�

0 as the data. Second, as
d0 → 0, p�m� reduces to a uniform prior on the
model space. Therefore, as d0 → 0, the historical
data D

�m�
0 have a minimal impact in determining
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p�m�. On the other hand, with a large value of
d0, π0�β�m� �d0� plays a minimal role in determin-
ing p�m�, and in this case the historical data play a
larger role in determining p�m�. Thus as d0 → ∞,
p�m� will be regulated by the historical data. The
parameter d0 plays the same role as c0 and thus
serves as a tuning parameter to control the impact
of D�m�

0 on the prior model probability p�m�. We re-
fer the reader to Ibrahim and Chen (1998) for more
details on the variable selection problem for propor-
tional hazards models.

5.2 Example: Myeloma Data

We consider two studies in multiple myeloma.
Krall, Uthoff and Harley (1975) analyzed data from
a study (historical data) on multiple myeloma in
which n0 = 65 patients were treated with alky-
lating agents. A few years later, another multiple
myeloma study (current study) using similar alky-
lating agents was undertaken by the Eastern
Cooperative Oncology Group (ECOG). This study,
labeled E2479, had n = 479 patients with the same
set of covariates being measured as the historical
data. Here, y0 consists of the 65 survival times
from the historical study and X

�m�
0 is an n0 × pm

matrix of covariates, where pm denotes the number
of covariates under model m.
Our main goal in this example is to illustrate the

proposed power priors for variable selection. A de-
tailed data analysis can be found in Ibrahim and
Chen (1998). We also examine the sensitivity of the
posterior probabilities to the choices of �µa0

� σa0�, c0
and d0. Our analysis is based on p = 8 covariates
for the full model. These are blood urea nitrogen
(x1), hemoglobin (x2), platelet count (x3) (1 if nor-
mal, 0 if abnormal), age (x4), white blood cell count
(x5), fractures (x6), percentage of the plasma cells in
bone marrow �x7� and serum calcium �x8�. We con-
duct sensitivity analyses with respect to (i) c0, (ii) d0
and (iii) �µa0

� σa0�. To compute the prior and pos-
terior model probabilities, 50,000 Gibbs iterations
were used to get convergence.
Table 6 gives the model with the largest poste-

rior probability using �µa0
� σa0� = �0�5�0�063� (i.e.,

δ0 = λ0 = 30) for several values of c0. For each value

Table 6
Posterior model probabilities for �µa0 � σa0 � = �0�5�0�063�� d0 = 3

and various choices of c0

c0 m p(m) p(D �m) p(m �D)

3 �x1� x2� x3� x4� x5� x7� x8� 0.015 0.436 0.769
10 �x1� x2� x3� x4� x5� x7� x8� 0.015 0.310 0.679
30 �x1� x2� x3� x4� x5� x7� x8� 0.015 0.275 0.657

of c0 in Table 6, the model �x1� x2� x3� x4� x5� x7� x8�
obtains the largest posterior probability, and thus
model choice is not sensitive to these values. In ad-
dition, for d0 = 3 and for any c0 ≥ 3, the �x1� x2� x3�
x4� x5� x7� x8� model obtains the largest posterior
probability. Although not shown in Table 6, values
of c0 < 3 do not yield �x1� x2� x3� x4� x5� x7� x8�
as the top model. Thus, model choice may become
sensitive to the choice of c0 when c0 < 3� When d0
is changed, the �x1� x2� x3� x4� x5� x7� x8� model
obtains the largest prior probability when d0 ≥ 3.
With values of d0 < 3, however, model choice may
be sensitive to the choice of d0. For example, when
d0 = 0�0001 and c0 = 10, the top model is �x1� x2�
x4� x5� x7� x8� with posterior probability of 0.42 and
the second best model is �x1� x2� x3� x4� x5� x7� x8�
with posterior probability of 0.31. Finally, we men-
tion that as both c0 and d0 become large, the �x1� x2�
x3� x4� x5� x7� x8� model obtains the largest poste-
rior model probability. A monotonic decrease in the
posterior probability of model �x1� x2� x3� x4� x5�
x7� x8� occurs as c0 and d0 are increased. This indi-
cates that there is a moderate impact of the histori-
cal data on model choice. A sensitivity analysis was
also conducted with respect to �µa0

� σa0�, and model
choice is not sensitive to the choice of �µa0

� σa0�. For
a wide variety of choices for �µa0

� σa0�, �x1� x2� x3�
x4� x5� x7� x8� obtains the largest posterior proba-
bility. In addition, there is a monotonic increase in
the posterior model probability as more weight is
given to the historical data.

6. CURE RATE MODELS

Cure rate models have become increasingly pop-
ular for analyzing survival data, because for many
diseases a significant proportion of patients are
“cured” after sufficient follow-up. Here we present
a recently proposed model of Chen, Ibrahim and
Sinha (1999) to demonstrate the power priors for
this class of models. A similar frequentist formu-
lation of the model is also discussed in Tsodikov
(1998).
The model can be derived as follows. Suppose

that, for an individual in the population, we let C
denote the number of metastasis-competent tumor
cells for that individual left active after the ini-
tial treatment, and assume that C has a Poisson
distribution with mean ω. Also let Zi denote the
random time for the ith metastasis-competent cells
to produce a metastatic tumor. That is, Zi can be
viewed as an incubation time for the ith metas-
tastic tumor cell. The variables Zi, i = 1�2� � � � �
are assumed to be independent conditional on C,
and identically distributed with a common distribu-
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tion function F�t� = 1 − S�t�. The time to relapse
of cancer can be defined by the random variable
T = min�Zi�0 ≤ i ≤ C�, where P�Z0 = ∞� = 1.
The survival function for T is given by

Sp�t� = P�no metastatic cancer by time t�
= P�C = 0� +P�Z1 > t� � � � �ZC > t�C ≥ 1�

= exp�−ω� +
∞∑
k=1

S�t�kω
k

k!
exp�−ω�

= exp�−ω+ωS�t�� = exp�−ωF�t���

(6.1)

The cure fraction (i.e., cure rate) is given by
Sp�∞� ≡ P�C = 0� = exp�−ω��
Suppose we have n subjects, and let Ci denote

the number of metastasis-competent tumor cells for
the ith subject. Further, we assume that the Ci’s
are i.i.d. Poisson random variables with mean ω,
i = 1� � � � � n� Further, suppose Zi1� � � � �Zi�Ci

are the
i.i.d. incubation times for the Ci tumor cells for the
ith subject, which are unobserved, and all have cu-
mulative distribution function F�·�� i = 1� � � � � n.
We specify a Weibull distribution for F�·�� We de-
note the indexing parameter (possibly vector val-
ued) by γ, and thus write F�· �γ� and S�· �γ�. Let ti
denote the failure time for subject i, where ti may
be right censored. Let vi denote the censoring time
so that we observe yi = min�ti� vi�, where the cen-
soring indicator νi = I�ti ≤ vi� equals 1 if ti is a
failure time and 0 if it is right censored. We can
represent the observed data by the vector �n�y� ν�,
where y = �y1� � � � � yn� and ν = �ν1� � � � � νn�. Also,
let C = �C1� � � � Cn�. We incorporate covariates for
the cure rate model (6.1) through the cure rate pa-
rameter ω. Let x′

i = �xi1� � � � � xip� denote the p × 1
vector of covariates for the ith subject, and let β =
�β1� � � � � βp�′ denote the corresponding vector of re-
gression coefficients. We relate ω to the covariates
by ωi = exp�x′

iβ�, so that the cure rate for subject
i is exp�−ωi� = exp�− exp�x′

iβ��� i = 1� � � � � n� With
this relation, we can write the complete data likeli-
hood of �β� γ� as

L�β� γ �D�

=
(

n∏
i=1

S�yi �γ�Ci−νi(Cif�yi �γ�
)νi)

· exp
{

n∑
i=1

[
Cix

′
iβ− log�Ci!� − exp�x′

iβ�
]}
�

(6.2)

where D = �n�y�X� ν�C�, X is the n× p matrix of
covariates, f�yi �γ� = αyα−1 exp�λ − yα exp�λ�� and
S�yi �γ� = exp�−yαi exp�λ��.
Let C0 denote the unobserved vector of latent

counts, and let D0 = �n0� y0� X0� ν0� C0� denote

the complete historical data. Further, let π0�β� γ�
denote the initial prior distribution for �β� γ�. The
joint power prior distribution for �β� γ� a0� takes the
form

π�β� γ� a0 �D0� obs�

∝
[∑
C0

L�β� γ �D0�
]a0

· π0�β� γ�aδ0−10 �1− a0�λ0−1�

(6.3)

where L�β� γ �D0� is the complete data likelihood
given in (6.2) with D being replaced by the histori-
cal data D0, and D0� obs = �n0� y0�X0� ν0�. We men-
tion that the sum over C0 in (6.3) has a closed form,
making it computationally tractable. We take a non-
informative prior for π0�β� γ�. Specifically, we take
β and γ to be independent at this stage and take
an improper uniform prior for β. For γ = �α� λ�,
we take a gamma prior for α with small shape pa-
rameter α0 and small scale parameter τ0. Also, we
take an independent normal prior for λ with mean
0 and variance c0, where c0 is large. The prior in
(6.3) does not have a closed form but has several at-
tractive theoretical properties. First, we note that
if π0�β� γ� is proper, then (6.3) is guaranteed to be
proper. Further, let X∗

0 denote the n0 × p matrix
with rows ν0ix

′
0i. Then, if (i) X

∗
0 is of full rank and

(ii) δ0 > p and π�λ� is proper, then (6.3) is proper.
We refer the reader to Chen, Ibrahim and Sinha
(1999) for details of the theorems and proofs.

6.1 Example: Melanoma Data

We consider data from a phase III melanoma clin-
ical trial conducted by the Eastern Cooperative On-
cology Group. The current study, denoted E1684,
was a two-arm clinical trial involving patients ran-
domized to one of two treatment arms: high-dose in-
terferon (IFN) or observation. Three covariates and
an intercept are included in the analyses. The co-
variates are age (x1), gender (x2) (male, female) and
performance status (x3) (fully active, other). Perfor-
mance status is abbreviated by PS in Tables 7. Af-
ter deleting missing observations, a total of n = 284
observations are used in the analysis. A Kaplan–
Meier plot for overall survival shows a “plateau”
(see Chen, Ibrahim and Sinha, 1999) in the survival
curve, and thus a cure rate model appears to be suit-
able for these data.
Several years earlier, a similar melanoma study

with the same patient population was conducted by
ECOG. This study, denoted by E1673, serves as the
historical data for our Bayesian analysis of E1684.
A total of n0 = 650 patients are used in the histori-
cal data. Using the E1673 study as historical data,
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Table 7
Melanoma data: posterior estimates of the model parameters with α ∼ Gamma�1�0�01� and λ ∼ N�0�10�000�

Posterior Posterior
E(a0 �Dobs, D0�obs) Variable mean std. dev. 95% HPD interval

0 (with probability 1) Intercept 0.094 0.106 �−0�115� 0�301�
Age 0.091 0.073 �−0�054� 0�231�
Gender −0.125 0.159 �−0�435� 0�186�
PS −0.226 0.260 �−0�733� 0�281�
α 1.312 0.087 �1�145� 1�484�
λ −1.356 0.123 �−1�596�−1�114�

0.064 Intercept 0.212 0.108 �0�005� 0�426�
Age 0.108 0.068 �−0�025� 0�242�
Gender −0�159 0.148 �−0�447� 0�133�
PS −0�160 0.236 �−0�630� 0�292�
α 1.117 0.066 �0�989� 1�245�
λ −1.525 0.127 �−1�779�−1�282�

0.142 Intercept 0.251 0.100 �0�051� 0�446�
Age 0.119 0.063 �−0�004� 0�243�
Gender −0�196 0.137 �−0�470� 0�068�
PS −0�094 0.215 �−0�533� 0�309�
α 1.062 0.057 �0�949� 1�174�
λ −1�619 0.118 �−1�849�−1�389�

0.288 Intercept 0.257 0.089 �0�081� 0�431�
Age 0.132 0.057 �0�019� 0�242�
Gender −0�241 0.123 �−0�481� 0�001�
PS −0�006 0.187 �−0�382� 0�352�
α 1�028 0.050 �0�932� 1�127�
λ −1�700 0.106 �−1�909�−1�495�

1 (with probability 1) Intercept 0.224 0.062 �0�106� 0�349�
Age 0.159 0.041 �0�077� 0�239�
Gender −0�319 0.087 �−0�495�−0�153�
PS 0.142 0.127 �−0�111� 0�386�
α 0.997 0.036 �0�927� 1�067�
λ −1�822 0.076 �−1�970�−1�673�

we consider an analysis with the proposed priors
(6.3). We take π0�β� ∝ 1 and for π0�α �ν0� τ0� we
take α0 = 1 and τ0 = 0�01 to ensure a proper prior.
The parameter λ is taken to have a normal distri-
bution with mean 0 and variance 10,000.
Table 7 gives posterior estimates of β based

on several values of �δ0� λ0� using the proposed
model (6.1). In Table 7 we obtain, for example,
E�a0 �Dobs� D0� obs� = 0�064 and 0�142 by taking
�δ0� λ0� = �100�100� and �200�1�� respectively. Ta-
ble 7 indicates a fairly robust pattern of behavior.
The estimates of the posterior mean, standard de-
viation or highest posterior density (HPD) intervals
of β do not change a great deal if a low or moderate
weight is given to the historical data. However, if a
higher than moderate weight is given to the histor-
ical data, these posterior summaries can change a
lot. For example, when the posterior mean of a0 is
less than 0.064, we see that all of the HPD inter-
vals for β include 0, and when the posterior mean
of a0 is greater than or equal to 0.064, some HPD

intervals for β do not include 0. Thus, when we give
more weight to the historical data, this has the po-
tential of affecting our inference about β. The HPD
interval for age does not include 0 when the poste-
rior mean of a0 is 0.288, and it includes 0 when the
posterior mean of a0 is less than 0.288. This finding
is interesting, since it indicates that age is a po-
tentially important prognostic factor for predicting
survival in melanoma. Such a conclusion is not pos-
sible based on a frequentist or Bayesian analysis of
the current data alone.
In addition, when the historical data and the cur-

rent data are equally weighted, that is, a0 = 1 with
probability 1, the HPD intervals for age and gen-
der both do not include 0, thus demonstrating the
importance of gender in predicting overall survival.
Thus, we see the potential impact of the histori-
cal data on the posterior analysis of β, and hence
the potential impact on the posterior estimates
of the cure rates. Another feature of Table 7 is that
the posterior standard deviations of the β’s become
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smaller and the HPD intervals become narrower as
the posterior mean of a0 increases. This is a strong
feature of our model since it demonstrates that in-
corporation of historical data can yield more precise
posterior estimates of β.
Incorporation of historical data can also affect the

posterior estimates of the cure rates. The posterior
estimates in the cure rates are quite different in
the model with E�a0 �D0�D0� obs� = 0�288 compared
to the one with no incorporation of historical data.
The mean and standard deviations are 0.361 and
0.048 (a0 = 0) and 0.310 and 0.062 for the model
with E�a0 �Dobs�D0� obs� = 0�288� Thus we see that
the mean cure rate drops from 0.361 to 0.310 when
the historical data is incorporated. A partial expla-
nation of this result is due to the fact that the his-
torical data are much more mature than the current
data, with nearly 20 years of follow-up and a smaller
fraction of censored cases. These results are not sur-
prising, and in fact appealing, since they give us a
better estimate of the cure rate compared to an es-
timate based on the current data alone. Such a con-
clusion is not possible by a frequentist or Bayesian
analysis using the current data alone. We also con-
ducted a detailed sensitivity analysis for the regres-
sion coefficients by varying the hyperparameters for
a0 (i.e., �δ0� λ0�) and varying the hyperparameters
for γ = �α� λ�. Table 7 shows that the posterior es-
timates of the parameters are fairly robust as the
hyperparameters �δ0� λ0� are varied. When we vary
the hyperparameters for γ, the posterior estimates
of β are also robust for a wide range of hyperparam-
eter values.

7. GENERALIZATIONS AND COMPARISONS
WITH OTHER METHODS

If historical data are not available from which to
construct D0 = �n0� y0�X0�, then y0 can be ob-
tained via a prior prediction, including specifica-
tions based on a theoretical prediction model, ex-
pert opinion or case-specific information. For exam-
ple, a theoretical model of the form y0 = g�X0�
may be available for obtaining the prior predictions,
where X0 is the covariate matrix corresponding to
some model m0, and g is a known function. Such
prediction models are often used, for example, in
respiratory studies measuring forced vital capacity
and forced expiratory volume. Also, when historical
data are not available, a common approach is take
X0 to be the covariate matrix of the current study,
that is, X0 = X and n0 = n. This approach has
been motivated and considered by many, including
Zellner (1986), Ibrahim and Laud (1994) and Laud
and Ibrahim (1995). Thus, the power prior is in fact

quite general and can be constructed even if his-
torical data from a previous study is not available.
In any case, the existence of historical data from
a similar previous study leads to the most natural
specification of D0 and serves as the primary moti-
vation for (2.2). Taking D0 to be the raw data from
a similar previous study results in a more natural,
interpretable and automated specification for (2.2).
It sometimes occurs that the set of covariates

measured in the previous study is a subset of the
covariates measured in the current study. This may
occur because the investigators discover “new” and
potentially useful covariates to measure in the cur-
rent study that were not measured in previous
studies. In this case, we can modify (2.2) as follows.
Let X1 denote the n× r matrix of covariates in the
current study that are common to the covariates in
the previous study, and let X2 be the n × s matrix
of new covariates in the current study which are
not measured in the previous study. Write

θ =
(
θ1

θ2

)
�

and let X01 represent the n01 × r matrix of covari-
ates from the previous study, let X02 be an n02 × s
matrix of covariates representing the new covari-
ates and let p = r + s. The most natural choice for
X01 is the raw covariate matrix from the historical
data, and to takeX02 = X2. In this specification, we
assume that the new covariates have small or neg-
ligible correlation to the common covariates, that is,
Corr�X1�X2� ≈ 0. This may be a sensible assump-
tion if in fact the new set of covariates in the cur-
rent study is being scientifically investigated for the
first time. Also let D0j = �n0j� y0j�X0j�, where y0j
is the historical data corresponding toX0j, j = 1�2.
Finally, we assume a priori independence between
θ1 and θ2, which leads to the power prior

π�θ �D0� a0�
= π1�θ1 �D01� a01�π2�θ2 �D02� a02�
∝ L�θ1 �D01�a01L�θ2 �D02�a02π0�θ1� θ2 �c0��

(7.1)

The prior specification is completed by specifying in-
dependent beta priors for �a01� a02�. A natural choice
for y01 is the raw response vector from the previous
study. The elicitation of y02 is less automatic since
no a priori information is available for it. One can
use expert opinion, fitted values or predictions for
specifying y02. For example, in logistic regression,
one possible choice is to pick y02 = �1/2� � � � �1/2�.
The prior parameters for a02 are chosen to reflect
vague prior beliefs, and thus a uniform prior for a02
would be reasonable. We mention that if we take a
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Table 8
Comparisons to other methods

Method Intercept (SD) �1 (SD) �2 (SD) �3 (SD)

a0 = 0 using power prior −4�78 (0.85) −1�64 (0.45) 0.12 (0.23) −0�05 (0.38)
ML for ACTG036 −4�40 (0.77) −1�51 (0.42) 0.12 (0.22) −�004 (0.36)
a0 = 1 using power prior −3�04 (0.17) −0�68 (0.12) 0.30 (0.11) −0�38 (0.14)
ML with pooled −3�01 (0.17) −0�67 (0.12) 0.30 (0.11) −0�37 (0.14)
bi ∼ N�0�0�1� −3�13 (0.30) −0�69 (0.12) 0.30 (0.11) −0�38 (0.14)
bi ∼ N�0�10� −�3�27 (2.38) −0�70 (0.12) 0.30 (0.11) −0�38 (0.14)
meta-analysis −3�19 (0.20) −0�75 (0.13) 0.32 (0.11) −0�34 (0.14)

point mass prior for a02 at a02 = 0, then (7.1) is im-
proper. The prior in (7.1) reduces to (2.1) if the sets
of covariates from the previous and current studies
are identical. If the set of covariates in the current
study is a subset of the covariates in the previous
study, then we can construct a submatrix by omit-
ting those columns corresponding to covariates not
in the current study and take X0 to be that sub-
matrix. For more on these issues, see Ibrahim and
Chen (1997) and Chen, Ibrahim and Yiannoutsos
(1999). Finally, we mention that if Corr�X1�X2� is
not neglible, then the prior in (7.1) may not be ade-
quate, and in this case a more general development
is needed. This is an open research problem under
current investigation.
The power prior in (2.1) gives results that are

equivalent to other methods for special values of
a0. For example, when a0 = 0 and π0�θ �c0� ∝ 1,
then the power prior is the uniform improper prior
and thus yields estimates similar to maximum like-
lihood. Table 8 shows results for a0 = 0 for the AIDS
data and results of a maximum likelihood analysis
of ACTG036. We see that the estimates are nearly
identical. When a0 = 1, (2.1) corresponds to the
posterior distribution of β based on the historical
data. Therefore, taking a0 = 1 essentially corre-
sponds to pooling the historical and current data.
Table 8 shows posterior estimates of β using a0 = 1
for the AIDS data, and a maximum likelihood anal-
ysis based on pooling the ACTG019 and ACTG036
data sets. We see that the estimates are remarkably
similar. The rows in Table 8 correspond to the esti-
mates of β along with the corresponding standard
deviation (SD) given in parentheses, for the various
methods.
In addition, we mention that Bayesian inference

using the power prior is related to maximum like-
lihood inference using a random effects model. For
example, for the AIDS data, we can fit a random
effects logistic regression model for the combined
datasets ACTG019 and ACTG036, where the ran-
dom effect accounts for the heterogeneity between
studies. Denote the random effect by bi ∼ N�0� σ2

b �.

Table 8 shows results from a random effects model
for the AIDS data using several values of σ2

b . We
see that, for small σ2

b , we get results very similar to
those of a0 = 1. As σ2

b gets large, the estimates and
standard errors of β are fairly robust, and the stan-
dard errors are slightly larger than those of a0 = 1.
We also note that meta-analysis type estimates are
related to the power prior. For example, for the AIDS
data, we can construct a meta-analysis type esti-
mate of β as β̂meta = w0β̂1 + �1 − w0�β̂2, where
w0 = n0/�n0 + n�, β̂1 is the maximum likelihood
estimate of β from the ACTG019 data alone and β̂2
is the maximum likelihood estimate of β based on
the ACTG036 data alone. Table 8 shows estimates
and standard errors for β for the AIDS data based
on this meta analysis approach. We see that the es-
timates are quite comparable to the Bayesian anal-
ysis with a0 = 1.
The relationship between the power prior and a

maximum likelihood analysis using a random ef-
fects models has also been investigated for survival
models. Chen, Harrington and Ibrahim (1999) ex-
amine relationships between the power prior and
the frailty model and obtain similar conclusions as
those reported here. We refer the reader to Chen,
Harrington and Ibrahim (1999) for a detailed dis-
cussion.

8. DISCUSSION

We have presented a general class of prior distri-
butions for arbitrary regression models, called the
power priors. The power priors are constructed from
historical data and were demonstrated in detail for
several specific classes of models. These priors are
quite useful in a wide variety of applications, in-
cluding carcinogenicity studies and clinical trials.
They are also quite useful in model selection con-
texts since they automate the prior elicitation proce-
dure for the prior on the model space, as well as the
model parameters arising from the different models
in the model space. The priors are also quite robust
under a variety of settings. Further research work



60 J. G. IBRAHIM AND M.-H. CHEN

is needed to study further computational properties
of these priors, as well as other properties and mod-
ifications of the proposed priors.

ACKNOWLEDGMENTS

The authors thank the Executive Editor and
an Editor for their helpful comments and sugges-
tions, which have led to an improvement in this
article. This work was supported in part by NSF
Grant DMS-97-02172 and NIH Grants CA 70101
and CA 74015.

REFERENCES

Alden, C. J. (1994). Toxicology and carcinogenesis studies of
o-benzyl-p-chlorophenol in F344/N rats and B6C3F1 mice.
Technical Report NTP 424, U.S. Dept. Health and Human
Services.

Berger, J. O. andMallows, C. L. (1988). Discussion of Bayesian
variable selection in linear regression. J. Amer. Statist. Assoc.
83 103-3-1034.

Chen, M.-H., Dey, D. K. and Sinha, D. (2000). Bayesian analy-
sis of multivariate mortality data with large families. Appl.
Statist. 49 129–144.

Chen, M.-H., Harrington, D. P. and Ibrahim, J. G. (1999).
Bayesian models for high-risk melanoma: a case study of
ECOG trial E1690. Technical Report MS-06-99-22, Dept.
Mathematical Sciences, Worcester Polytechnic Inst.

Chen, M.-H., Ibrahim, J. G., Shao, Q.-M. andWeiss, R. E. (1999).
Prior elicitation for model selection and estimation in gener-
alized linear mixed models. Technical Report MS-01-99-17,
Dept. Mathematical Sciences, Worcester Polytechnic Inst.

Chen, M.-H., Ibrahim, J. G. and Sinha, D. (1999). A new
Bayesian model for survival data with a surviving fraction.
J. Amer. Statist. Assoc. 94 909–919.

Chen, M.-H., Ibrahim, J. G. and Yiannoutsos, C. (1999). Prior
elicitation, variable selection and Bayesian computation for
logistic regression models. J. Roy. Statist. Soc. Ser. B 61
223–242.

Chen, M.-H., Manatunga, A. K. andWilliams, C. J. (1998). Her-
itability estimates from human twin data by incorporating
historical prior information. Biometrics 54 1348–1362.

Chen, M.-H. and Shao, Q.-M. (1999). Monte Carlo estimation
of Bayesian credible and HPD intervals. J. Comput. Graph.
Statist. 8 69–92.

Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1996). Efficient
parametrisations for generalized linear mixed models (with
discussion). In Bayesian Statistics 5 (J. M. Bernardo, J. O.
Berger, A. P. Dawid and A. F. M. Smith, eds.) 165–180. Ox-
ford Univ. Press.

Haseman, J. K., Huff, J. and Boorman, G. A. (1984). Use of
historical control data in carcinogenicity studies in rodents.
Toxocologic Pathology 12 126–135.

Ibrahim J. G. and Laud, P. W. (1994). A predictive approach to
the analysis of designed experiments. J. Amer. Statist. Assoc.
89 309–319.

Ibrahim, J. G. and Chen, M.-H. (1997). Predictive variable selec-
tion in the multivariate linear model. Biometrics 53 465–478.

Ibrahim, J. G. and Chen, M.-H. (1998). Prior distributions
and Bayesian computation for proportional hazards models.
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