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The Gaussian Hare and the Laplacian
Tortoise: Computability of Squared-Error
versus Absolute-Error Estimators
Stephen Portnoy and Roger Koenker

Abstract. Since the time of Gauss, it has been generally accepted that
`2-methods of combining observations by minimizing sums of squared er-
rors have significant computational advantages over earlier `1-methods
based on minimization of absolute errors advocated by Boscovich,
Laplace and others. However, `1-methods are known to have signifi-
cant robustness advantages over `2-methods in many applications, and
related quantile regression methods provide a useful, complementary
approach to classical least-squares estimation of statistical models. Com-
bining recent advances in interior point methods for solving linear pro-
grams with a new statistical preprocessing approach for `1-type prob-
lems, we obtain a 10- to 100-fold improvement in computational speeds
over current (simplex-based) `1-algorithms in large problems, demon-
strating that `1-methods can be made competitive with `2-methods in
terms of computational speed throughout the entire range of problem
sizes. Formal complexity results suggest that `1-regression can be made
faster than least-squares regression for n sufficiently large and pmodest.

Key words and phrases: `1, L1, least absolute deviations, median, re-
gression quantiles, interior point, statistical preprocessing, linear pro-
gramming, simplex method, simultaneous confidence bands.

1. INTRODUCTION

Although `1-methods of estimation, which mini-
mize sums of absolute residuals, have a long his-
tory in statistical applications, there is still some
reluctance to adopt them for the analysis of large
datasets because they are regarded as computation-
ally highly demanding. In particular, the simplex
algorithm of linear programming that is the main-
stay of modern `1-computation has acquired a rep-
utation as unwieldy in large problems. This rep-
utation may be partially attributed to theoretical
results on worst-case performance of the simplex al-
gorithm, which establish that for certain patholog-
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ical problems the number of simplex iterations re-
quired for a solution can increase exponentially with
problem size over the range of problem dimensions
typically encountered in statistical practice. How-
ever, in practice the simplex algorithm performs ex-
tremely well for problems of moderate size. Up to a
few hundred observations `1-regression via the sim-
plex algorithm is actually faster, for example, than
conventional `2-regression in the standard imple-
mentations provided by S-PLUS. However, for prob-
lems exceeding a few thousand observations current
implementations of simplex begin to live up to their
slothful theoretical reputation.

Nevertheless, interest in the application of `1-
estimation methods, and quantile regression more
generally, in large-scale data analysis has grown
steadily in recent years. Applications of quantile
regression (Koenker and Bassett, 1978; Powell,
1986) in economics to problems with sample sizes
in the range 10,000–100,000 are now almost rou-
tine. See, for example, Buchinsky (1994, 1995),
Chamberlain (1994) and Manning, Blumberg and
Moulton (1995). Interest in bootstrapped inference
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Fig. 1. The Gaussian Hare and the Laplacian Tortoise: this picture is a slightly “retouched” version of a wood engraving by J. J.
Grandville from “Fables de La Fontaine” (published in Paris, 1838). The portrait of Gauss is taken from an 1803 portrait by J. C. A.
Schwartz. The portrait of Laplace appears in “Cauchy: Un Mathématicien Légitimiste au XIXe Siècle,” by Bruno Belhoste (Belin, Paris).

in such applications makes the need for effi-
cient computational methods acute. Nonparametric
quantile regression using local polynomials (Welsh,
1996; Fan and Gijbels, 1996) or splines (Koenker,
Ng and Portnoy, 1994; Green and Silverman, 1994),
has also stimulated the demand for more efficient
`1-computation. Chen and Donoho (1995) and Tib-
shirani (1996) have recently proposed application of
`1-penalties as model selection devices for a broad
range of applications including image processing.
Finally, there has been considerable interest in mul-
tivariate analysis in problems like the Oja (1983)
median, which can be formulated as `1-regression
problems with pseudoobservations constructed as
U-statistics from an initial sample. See Chaudhuri
(1992) for a development of this approach. Taken
together, these developments strongly motivate the
search for improved methods of computing `1-type
estimators when n is large.

Following Karmarkar (1984), there has also
been intense interest among numerical analysts
in alternative “interior point” methods for solving
linear programs (LP’s). Rather than moving from
vertex to vertex around the outer surface of the
constraint set as dictated by simplex, the interior

point approach solves a sequence of quadratic prob-
lems in which the relevant interior of the constraint
set is approximated by an ellipsoid. This approach,
as shown by Karmarkar and subsequent authors,
provides demonstrably better worst-case perfor-
mance than the simplex algorithm and has also
demonstrated impressive practical performance on
a broad range of large-scale linear programs aris-
ing in commerce as well as in extensive numerical
trials.

After a brief historical introduction to `1-
computation, we compare recent interior point
methods to existing simplex-based methods. We
find, quite in accordance with recent literature on
more general LP’s, that the interior point approach
is competitive with simplex in moderate-sized prob-
lems (say, n up to 1,000) and exhibits a rapidly
increasing advantage over simplex for larger prob-
lems. We then propose a new form of statistical
preprocessing for general quantile regression prob-
lems that also has the effect of dramatically re-
ducing the computation burden. This preprocessing
step is somewhat reminiscent of the subsampling
approach in earlier O�n� univariate quantile algo-
rithms like that of Floyd and Rivest (1975). Taken
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together, the preprocessing step and a careful choice
of interior point versus simplex yields an algorithm
that is 10 to 100 times faster than current simplex
methods for a variety of test problems with sam-
ple sizes in the range 10,000–200,000. In practice,
as we will see, combining the preprocessing step
and interior point methods yields `1-computations
which rival the speeds achievable with current
`2-methods over the entire range of problem di-
mensions. In theory, the results of Section 6 imply
that `1-computations can be made strictly faster
than their `2 counterparts for problems with n
sufficiently large.

2. INTRODUCTION TO Ý1-COMPUTATION

In 1760, the Croatian Jesuit Roger Boscovich,
while on a visit to London, posed the following
problem to Thomas Simpson:

Let there be any number of quantities a; b; c; d; e,
all given, and let it be required to find corrections
to be applied to them under these conditions:

1. that their differences may be in a given ratio;
2. that the sum of the positive corrections may be

equal to the sum of the negative;
3. that the sum of the positive and sum of the neg-

ative corrections may be a minimum.

In modern notation the problem may be formu-
lated as follows: find α̂; β̂ such that

yi = α̂+ β̂xi + ûi
for given observations �yi; xi�; i = 1; : : : ; n; the
“corrections” ûi satisfy

∑
ûi = 0

and
∑
�ûi� = min!

Clearly the differences in the corrected observa-
tions

ŷi − ŷj = β̂�xi − xj�
would then satisfy the first requirement that they
were in given ratios, determined solely by the x’s.

Stigler (1984), in his lively commentary on this
exchange, concludes that Simpson made some
progress on the problem, recognizing, for example,
that the solution should pass through the point
�x̄; ȳ� and one data point. Boscovich provided a ge-
ometric solution, but the problem does not seem to
have been fully resolved in print until the publica-
tion of Laplace (1789), who recognized (see Stigler,
1986) that one could obtain the slope estimate β̂
by computing a weighted median of the candidate

slopes si = �yi − ȳ�/�xi − x̄�; i = 1;2; : : : ; n: More
explicitly, let s�i� denote the ordered si’s and let w�i�
be the associated weights, wi = �xi − x̄�, ordered
according to the si’s. Then β̂ = s�m�, where

m = min
{
j
∣∣∣

j∑
i=1

∣∣w�i�
∣∣ ≥

n∑
i=1

�w�i��
2

}
:

With the advent of least squares at the end of
the 18th century, Boscovich’s prototype `1-estimator
faded into obscurity. It was revived more than a cen-
tury later by Edgeworth (1887), who, like Laplace
earlier, argued that it could deliver better estimates
when the required “corrections” did not happen to
follow the Gaussian law. Subsequently, Edgeworth
(1888) discarded Boscovich’s second constraint that
the residuals sum to zero, and proposed to mini-
mize the sum of absolute residuals with respect to
both intercept and slope parameters, calling this
his “double median” method. He noted that this ap-
proach could be extended, in principle, to a “plural
median” method. A geometric algorithm was given
for the bivariate case, and a discussion of conditions
under which such median methods were preferable
to least-squares methods was also provided. Un-
fortunately, the geometric approach to computing
Edgeworth’s new median regression estimator was
rather awkward, requiring, as he admitted, “the
attention of a mathematician, and in the case of
many unknowns some power of hypergeometrical
conception” (Edgeworth, 1888, page 190).

Only with the emergence of the simplex algo-
rithm for linear programming in the late 1940s
did `1-methods become practical on a large scale.
Papers by Charnes, Cooper and Ferguson (1955),
Wagner (1959) and others provided a foundation
for modern implementations, such as Barrodale
and Roberts (1974) and Bartels and Conn (1980).
See Bloomfield and Steiger (1983) for an exten-
sive discussion of the algorithmic development of
`1-methods, including some very interesting em-
pirical comparisons of the performance of several
competing algorithms.

The simplex approach to solving the general `1-
regression problem

min
b∈<p

n∑
i=1

�yi − x′ib�(2.1)

relies on the reformulation as the linear program

min
{
e′u+ e′v �y=Xb+u−v; �u; v� ∈ <2n

+
}
:(2.2)

Here e denotes an n-vector of ones. This problem
has the dual formulation

max
{
y′d �X′d = 0; d ∈ �−1;1�n

}
;(2.3)
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or, equivalently, setting a = d+ �1/2�e,

max
{
y′a

∣∣∣X′a = 1
2
X′e; a ∈ �0;1�n

}
:(2.4)

A p-element subset of N = �1;2; : : : ; n� will be de-
noted by h, and X�h�; y�h� will denote the subma-
trix and subvector of X;y with the corresponding
rows and elements identified by h. Recognizing that
solutions of (2.1) may be characterized as planes
which pass through precisely p = dim�b� observa-
tions, or as convex combinations of such “basic” so-
lutions, we can begin with any such solution, which
we may write as

b�h� =X�h�−1y�h�:(2.5)

We may regard any such “basic” primal solution
as an extreme point of the polyhedral convex con-
straint set. A natural algorithmic strategy is then
to move to the adjacent vertex of the constraint set
in the direction of steepest descent. This transition
involves two stages: the first chooses a descent di-
rection by considering the removal of each of the cur-
rent basic observations and computing the gradient
in the resulting direction; then, having selected the
direction of steepest descent and thus an observa-
tion to be removed from the currently active “basic”
set, we must find the maximal step length in the
chosen direction by searching over the remaining
n − p available observations for a new element to
introduce into the “basic” set. Each of these transi-
tions involves an elementary “simplex pivot” matrix
operation to update the current basis. The iteration
continues in this manner until no direction is found,
at which point the current b�h� can be declared
optimal.

The simplex algorithm offers an extremely ef-
ficient approach to computing `1-type estimators
for many applications, yielding, as we shall see be-
low, timings that are quite competitive with least
squares on problems of moderate size. See Shamir
(1993) for a survey of the extensive literature on the
computational complexity of the simplex method.
However, the performance of simplex on large prob-
lems is somewhat less satisfactory. Problems of
sample size 50,000 may require as much as 50
times the computational effort of least squares to
compute a median regression, `1, estimate. Re-
cent implementations of simplex, notably those of
Bixby and collaborators (see, e.g., Bixby’s discussion
of Lustig, Marsden and Shanno, 1994), primarily
address efficient treatment of sparsity, and prepro-
cessing to eliminate strictly dominated constraints,
and therefore do not seem to be promising from
the point of view of statistical applications. We be-
gin our search for more efficient methods for large

problems by looking in the most obvious place: the
literature on interior point algorithms for linear
programming, which have dramatically improved
upon simplex for a broad class of problems.

3. INTERIOR POINT METHODS
FOR CANONICAL LP’S

Although prior work in the Soviet literature of-
fered theoretical support for the idea that linear
programs could be solved in polynomial time, Kar-
markar (1984) constituted a watershed in thinking
about linear programming both by making a more
cogent theoretical argument and by offering direct
evidence for the first time that interior point meth-
ods were demonstrably faster in specific, large, prac-
tical problems.

The close connection between the interior point
approach of Karmarkar (1984) and earlier work on
barrier methods for constrained optimization, no-
tably Fiacco and McCormick (1968), was observed
by Gill et al. (1986) and others and has led to what
may be called without much fear of exaggeration
a paradigm shift in the theory and practice of lin-
ear and nonlinear programming. Remarkably, some
of the fundamental ideas required for this shift ap-
peared already in the 1950s in a sequence of Oslo
working papers by the economist Ragnar Frisch.
This work is summarized in Frisch (1956). We will
sketch the main outlines of the approach, with the
understanding that further details may be found
in the excellent expository papers of Wright (1992),
Lustig, Marsden and Shanno (1994) and the refer-
ences cited there.

Consider the canonical linear program

min
{
c′x �Ax = b; x ≥ 0

}
;(3.1)

and associate with this problem the following loga-
rithmic barrier (potential-function) reformulation:

min
{
B�x;µ� �Ax = b

}
;(3.2)

where

B�x;µ� = c′x− µ
∑

log xk:

In effect, (3.2) replaces the inequality constraints in
(3.1) by the penalty term of the log barrier. Solv-
ing (3.2) with a sequence of parameters µ such that
µ→ 0 we obtain in the limit a solution to the orig-
inal problem (3.1). This approach was elaborated
in Fiacco and McCormick (1968) for general con-
strained optimization, but was revived as a linear
programming tool only after its close connection to
the approach of Karmarkar (1984) was pointed out
by Gill et al. (1986). The use of the logarithmic po-
tential function seems to have been introduced by
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Frisch (1956), who described it in the following vivid
terms:

My method is altogether different than sim-
plex. In this method we work systematically
from the interior of the admissible region and
employ a logarithmic potential as a guide—a
sort of radar—in order to avoid crossing the
boundary.

Suppose that we have an initial feasible point x0
for (3.1), and consider solving (3.2) by the classical
Newton method. Writing the gradient and Hessian
of B with respect to x as

∇B = c− µX−1e;

∇2B = µX−2;

where X = diag�x� and e denotes an n-vector of 1’s,
we have at each step the Newton problem

min
p

{
c′p−µp′X−1e+ 1

2 µp
′X−2p

∣∣Ap=0
}
:(3.3)

Solving this problem and moving from x0 in the
resulting direction p toward the boundary of the
constraint set maintains feasibility and is easily
seen to improve the objective function. The first-
order conditions for this problem may be written
as

µX−2p+ c− µX−1e = A′y;(3.4)

Ap = 0;(3.5)

where y denotes an m-vector of Lagrange multipli-
ers. Solving for y explicitly, by multiplying through
in the first equation by AX2 and using the con-
straint to eliminate p, we have

AX2A′y = AX2c− µAXe:(3.6)

These normal equations may be recognized as gen-
erated from the linear least squares problem

min
y

∥∥XA′y−Xc− µe
∥∥2

2:(3.7)

Solving for y, computing the Newton direction p
from (3.4) and taking a step in the Newton direc-
tion toward the boundary constitute the essential
features of the primal log barrier method. A special
case of this approach is the affine scaling algorithm
in which we take µ = 0 at each step in (3.6), an ap-
proach anticipated by Dikin (1967) and studied by
Vanderbei, Meketon and Freedman (1986) and nu-
merous subsequent authors.

Recognizing that similar methods may be applied
to the primal and dual formulations simultaneously,
recent theory and implementation of interior point
methods for linear programming have focused on

attacking both formulations. The dual problem cor-
responding to (3.1) may be written as

max
{
b′y �A′y+ z = c; z ≥ 0

}
:(3.8)

Optimality in the primal implies

c− µX−1e = A′y;(3.9)

so setting z = µX−1e we have the system

Ax = b; x > 0;

A′y+ z = c; z > 0;(3.10)

Xz = µe:
Solutions �x�µ�; y�µ�; z�µ�� of these equations con-
stitute the central path of solutions to the loga-
rithmic barrier problem, which approach the clas-
sical complementary slackness condition x′z = 0, as
µ→ 0, while maintaining primal and dual feasibil-
ity along the path.

If we now apply Newton’s method to this system
of equations, we obtain



Z 0 X

A 0 0

O A′ I






px

py

pz


 =




µe−Xz
b−Ax

c−A′y− z


;(3.11)

which can be solved explicitly as

py = �AZ−1XA′�−1

·
[
AZ−1X�c−µX−1e−A′y�+ b−Ax

]
;

px =XZ−1�A′py + µX−1e− c+A′y�;
pz = −A′py + c−A′y− z:

(3.12)

Like the primal method, the real computa-
tional effort of computing this step is the Choleski
factorization of the diagonally weighted matrix
AZ−1XA′: Note that the consequence of moving
from a purely primal view of the problem to one
that encompasses both the primal and dual is that
AX−2A′ has been replaced by AZ−1XA′ and the
right-hand side of the equation for the y-Newton
step has altered somewhat. However, the computa-
tional effort is essentially identical. To complete the
description of the primal-dual algorithm we would
need to specify how far to go in the Newton direc-
tion p, how to adjust µ as the iterations proceed
and how to stop.

In fact, the most prominent examples of imple-
mentations of the primal-dual log barrier approach
now employ a variant due to Mehrotra (1992), which
resolves all of these issues. We will briefly describe
this variant in the next section in the context of a
slightly more general class of linear programs which
encompasses the `1-problem as well as the general
linear quantile regression problem.
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4. INTERIOR POINT METHODS FOR
QUANTILE REGRESSION

Quantile regression, as introduced in Koenker
and Bassett (1978), places asymmetric weight on
positive and negative residuals, and solves the
slightly modified `1-problem

min
b∈<p

n∑
i=1

ρτ�yi − x′ib�;(4.1)

where ρτ�r� = r�τ − I�r < 0�� for τ ∈ �0;1�: This
yields the modified linear program

min
{
τe′u+ �1− τ�e′v �y =Xb+ u− v;

�u; v� ∈ <2n
+
}(4.2)

and dual formulations

max
{
y′d �X′d = 0; d ∈ �τ − 1; τ�n

}
(4.3)

or, setting a = d+ 1− τ,
max

{
y′a �X′a = �1− τ�X′e; a ∈ �0;1�n

}
:(4.4)

The dual formulation of the quantile regression
problem fits nicely into the standard formulations
of interior point methods for linear programs with
bounded variables. The function a�τ� that maps
�0;1� to �0;1�n plays a crucial role in connecting
the statistical theory of quantile regression to the
classical theory of rank tests as described in Guten-
brunner and Jurečková (1992) and Gutenbrun-
ner, Jurečková, Koenker and Portnoy (1993). See
Koenker and d’Orey (1987, 1993) for a detailed de-
scription of modifications of the Barrodale–Roberts
(Barrodale and Roberts, 1974) simplex algorithm
for this problem.

Adding slack variables, s, satisfying the con-
straint a+ s = e, we obtain the barrier function

B�a; s; µ� = y′a+ µ
n∑
i=1

(
log ai + log si

)
;(4.5)

which should be maximized subject to the con-
straints X′a = �1 − τ�X′e and a + s = e. The
Newton step δa solving

max
{
y′δa + µδ′a

(
A−1 −S−1)e

− 1
2µδ

′
a

(
A−2 +S−2)δa

}
;

(4.6)

subject to X′δa = 0; satisfies

y+ µ�A−1 −S−1�e− µ�A−2 +S−2�δa =Xb(4.7)

for some b ∈ <p, and δa such that X′δa = 0: As
before, multiplying through by X′�A−2+S−2�−1 and
using the constraint, we can solve explicitly for the
vector b,

b = �X′WX�−1X′W
[
y+ µ�A−1 −S−1�e

]
;(4.8)

where W = �A−2 + S−2�−1: This is a form of the
primal log barrier algorithm described above. Set-
ting µ = 0 in each step yields an affine scaling
variant of the algorithm. We should stress again
that the basic linear algebra of each iteration is
essentially unchanged, only the form of the diag-
onal weighting matrix W has changed. We should
also emphasize that there is nothing especially sa-
cred about the explicit form of the barrier func-
tion used in (4.5). Indeed, one of the earliest pro-
posed modifications of Karmarkar’s original work
was the affine scaling algorithm of Vanderbei, Meke-
ton and Freedman (1986), which used, implicitly,
µ
�n
i=1 log�min�ai; si�� in lieu of the additive spec-

ification.
Again, it is natural to ask if a primal–dual form

of the algorithm could improve performance. In
the bounded variables formulation we have the La-
grangian

L�a; s; b; u;µ�
= B�a; s; µ� − b′

(
X′a− �1− τ�X′e

)

− u′�a+ s− e�;
(4.9)

and setting v = µA−1 we have the first-order con-
ditions, describing the central path (see Gonzaga,
1992),

X′a = �1− τ�X′e;
a+ s = e;

Xb+ u− v = y;
USe = µe;
AVe = µe;

(4.10)

yielding the Newton step

δb = �X′WX�−1
[
�1− τ�X′e−X′a

+X′Wξ�µ�
]
;

δa =W
[
Xδb + ξ�µ�

]
;

δs = −δa;
δu = µA−1e−Ue−A−1Uδa;

δv = µS−1e−Ve+S−1Vδs;

(4.11)

where ξ�µ� = y −Xb + µ�S−1 − A−1�e: The most
successful implementations of this approach to date
employ the predictor-corrector step of Mehrotra
(1992), which is described in the context of bounded
variables problems in Lustig, Marsden and Shanno
(1992). A related earlier approach is described in
Zhang (1992). In Mehrotra’s approach we proceed
somewhat differently. Rather than solving for the
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Newton step (4.11) directly, we substitute the step
directly into (4.10) to obtain

X′�a+ δa� = �1− τ�X′e;
�a+ δa� + �s+ δs� = e;

X�b+ δb�+ �u+ δu�− �v+ δv� = y;
�U+ 1u��S+ 1s� = µe;
�A+ 1a��V+ 1v� = µe;

(4.12)

where 1a; 1v; 1u; 1s denote the diagonal matrices
with diagonals δa; δv; δu; δs, respectively. As noted
by Lustig, Marsden and Shanno, the primary dif-
ference between solving this system and the prior
Newton step is the presence of the nonlinear terms
1u1s; 1a1v in the last two equations. To approxi-
mate a solution to these equations, Mehrotra (1992)
suggests first solving for an affine primal–dual di-
rection by setting µ = 0 in (4.11). Given this pre-
liminary direction, we may then compute the step
length using the following ratio test:

γ̂P = σ min
{

min
j

{
− aj
δaj

; δaj

}
;

min
j

{
− sj
δsj
; δsj

}}
;

(4.13)

γ̂D = σ min
{

min
j

{
− uj
δuj

; δuj

}
;

min
j

{
− vj
δvj

; δvj

}}
;

(4.14)

using scaling factor σ = 0:99995, as in Lustig, Mars-
den, and Shanno. Then, defining the function

ĝ�γ̂P; γ̂D� = �s+ γ̂Pδs�′�u+ γ̂Dδu�
+ �a+ γ̂Pδa�′�v+ γ̂Dδv�;

(4.15)

the new µ is taken as

µ =
(
ĝ�γ̂P; γ̂D�
ĝ�0;0�

)3 ĝ�0;0�
2n

:(4.16)

To interpret (4.15) we may use the first three equa-
tions of (4.10) to write, for any primal–dual feasible
point �u; v; s; a�,

τe′u+ �1− τ�e′v−
[
a− �1− τ�e

]′
y

= u′s+ a′v:
(4.17)

So the quantity u′s+a′v is equal to the duality gap,
the difference between the primal and dual objective
function values at �u; v; s; a�, and ĝ�γ̂P; γ̂D� is the
duality gap after the tentative affine scaling step.
Note that the quantity a − �1 − τ�e is simply the
vector d appearing in the dual formulation (4.3). At
a solution, classical duality theory implies that the

duality gap vanishes; that is, the values of the pri-
mal and dual objective functions are equal and the
complementary slackness condition u′s + a′v = 0
holds. If, in addition to feasibility, �u; v; s; a� hap-
pened to lie on the central path, the last two equa-
tions of (4.10) would imply that

u′s+ a′v = 2µn:

Thus, the function ĝ in (4.15) may be seen as an at-
tempt to adapt µ to the current iterate in such a
way that, for any given value of the duality gap, µ
is chosen to correspond to the point on the central
path with that gap. By definition, ĝ�γ̂P; γ̂D�/ĝ�0;0�
is the ratio of the duality gap after the tentative
affine-scaling step to the gap at the current iter-
ate. If this ratio is small the proposed step is favor-
able and we should reduce µ further, anticipating
that the recentering and nonlinearity adjustment
of the modified step will yield further progress. If,
on the other hand, ĝ�γ̂P; γ̂D� isn’t much different
from ĝ�0;0�, the affine scaling direction is unfa-
vorable, and further reduction in µ is ill-advised.
Since leaving µ fixed in the iteration brings us back
to the central path, such unfavorable steps are in-
tended to enable better progress in subsequent steps
by bringing the current iterate back to the vicinity
of the central path. The rationale for the cubic ad-
justment in (4.16), which implements these heuris-
tics, is based on the fact that the recentering of the
Newton direction embodied in the terms µA−1e and
µS−1e of (4.11) and (4.18) accommodates the O �µ�
term in the expansion of the duality gap function ĝ
while the nonlinearity adjustment described below
accommodates the O �µ2� effect of the δsδu and δaδv
terms.

We compute the following approximation to the
solution of system (4.12) with this µ and the non-
linear terms 1s1u and 1a1v taken from the prelim-
inary primal-dual affine direction:

δb = �X′WX�−1
[
�1− τ�X′e−X′a

+X′Wξ�µ�
]
;

δa =W
[
Xδb + ξ�µ�

]
;

δs = −δa;
δu = µA−1e−Ue−A−1Uδa+A−11s1ue;

δv = µS−1e−Ve+S−1Vδs+S−11a1ve:

(4.18)

The iteration proceeds until the algorithm termi-
nates when the duality gap y′a − �1 − τ�e′Xb + e′v
becomes smaller than a specified ε. Recall that the
duality gap is zero at a solution, and thus this cri-
terion offers a more direct indication of convergence
than is usually available in iterative algorithms.
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Fig. 2. Timing comparison of three `1-algorithms for median regression: times are in seconds for the median of five replications
for iid Gaussian data. The parametric dimension of the models is p + 1 with p indicated above each plot; p columns are gen-
erated randomly and an intercept parameter is appended to the resulting design. Timings were made at eight design points in
nx 200;400;800;1;200;2;000;4;000;8;000;12;000. The solid line represents the results for the simplex-based Barrodale–Roberts al-
gorithm implemented in S-PLUS as l1fit, the rqfn dashed line represents a primal-dual interior point algorithm, mek uses an affine
scaling form of the interior point approach and the dotted line represents least-squares timings based on lm(y∼x) as a benchmark.

Our expectations about satisfactory computa-
tional speed of regression estimators are inevitably
strongly conditioned by our experience with least
squares. In Figure 2 we illustrate the results of
a small experiment to compare the computational
speed of three `1-algorithms: the Barrodale–Roberts
simplex algorithm (Barrodale and Roberts, 1974),
which is employed in many contemporary statistical
packages; Meketon’s affine scaling algorithm; and
our implementation of Mehrotra’s (1992) predictor-
corrector version of the primal–dual log barrier
algorithm. The former is indicated in the figure
as mek and the latter as rqfn for regression quan-
tiles via Frisch–Newton. The two interior point
algorithms were coded in Fortran employing La-
pack (Anderson et al., 1995) subroutines for the
requisite linear algebra. They were then incor-
porated as functions into S-PLUS and timings
are based on the S-PLUS function unix-time().
The Barrodale–Roberts timings are based on the
S-PLUS implementation l1fit(x,y). For compar-
ison we also illustrate timings for least-squares
estimation based on S-PLUS function lm(y∼x).

Such comparisons are inevitably fraught with
qualifications about programming style, system
overhead and so on. We have chosen to address the

comparison within the S-PLUS environment be-
cause (a) it is the computing environment in which
we feel most comfortable, a view widely shared by
the statistical research community, and (b) it offers
a convenient means of incorporating new functions
in lower-level languages, like Fortran and C, provid-
ing a reasonably transparent and efficient interface
with the rest of the language. We have consider-
able experience with the Barrodale–Roberts (BR)
Fortran code (Barrodale and Roberts, 1974) as
implemented in S-PLUS for l1fit. This code also
underlies the quantile regression routines described
in Koenker and d’Orey (1987, 1993) and still rep-
resents the state of the art after more than 20
years. The S-PLUS function l1fit incurs a modest
overhead getting problems into and out of BR’s For-
tran, but this overhead is quickly dwarfed by the
time spent in the Fortran in large problems. Simi-
larly, we have tried to write the interior point code
to minimize the S-PLUS overhead, although some
improvements are still possible in this respect.

Least-squares timings are also potentially contro-
versial. The S-PLUS function lm as described by
Chambers (1992) offers three method options: QR
decomposition, Cholesky and singular-value decom-
position. All of our comparisons are based on the
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default choice of the QR method. Again there is a
modest overhead involved in getting the problem
descriptions into and the solutions out of the lower-
level Lapack routines which underlie lm. We have
run some very limited timing comparisons outside
S-PLUS directly in Fortran to evaluate these over-
head effects and our conclusion from this is that any
distortions in relative performance due to overhead
effects are slight.

We would stress that the code underlying the
least-squares computations we report is the prod-
uct of decades of refinement, while our interior
point routines are still in their infancy. There is
still considerable scope for improvement in the
latter.

Several features of the figures are immediately
striking. For small problems all the `1-algorithms
perform impressively. They are all faster than the
QR implementation of least squares which is gen-
erally employed in lm. For small problems the sim-
plex implementation of Barrodale and Roberts is the
clear winner, but its roughly quadratic (in sample
size) growth over the illustrated range quickly dis-
sipates its initial advantage. The interior point algo-
rithms do considerably better than simplex at larger
sample sizes, exhibiting roughly linear growth, as
does least squares. Meketon’s affine scaling algo-
rithm performs slightly better than the primal–dual
algorithm, which is somewhat surprising, but for
larger p the difference is hardly noticeable.

Beyond the range of problem sizes illustrated
here, the advantage of the interior point method
over simplex grows exorbitant, fully justifying the
initial enthusiasm with which Karmarkar (1984)
was received. Nevertheless, there is still a signif-
icant gap between `1 and `2 performance in large
samples. We explore this gap from the probabilistic
viewpoint of computational complexity in the next
section.

5. COMPUTATIONAL COMPLEXITY

In this section we investigate the computational
complexity of the interior point algorithms for quan-
tile regression described above. We should stress at
the outset, however, that the probabilistic approach
to complexity analysis adopted here is rather dif-
ferent than that employed in the rest of the inte-
rior point literature, where the focus on worst-case
analysis has led to striking discrepancies between
theoretical rates and observed computational expe-
rience. The probabilistic approach has the virtue
that the derived rates are much sharper and conse-
quently more consonant with observed performance.
A similar gap between worst-case theory and aver-

age practice can be seen in the analysis of paramet-
ric linear programming via the simplex algorithm,
where it is known that in certain problems with an
n-by-p constraint matrix there can be as many as
np distinct solutions. However, exploiting some spe-
cial aspects of the quantile regression problem and
employing a probabilistic approach, Portnoy (1991)
was able to show that the number of distinct vertex
solutions (in τ) is Op�n log n�, a rate which provides
excellent agreement with empirical experience.

For interior point methods the crux of the com-
plexity argument rests on showing that at each it-
eration the algorithm reduces the duality gap by a
proportion, say θn < 1. Thus, after K iterations, an
initial duality gap of 10 has been reduced to θKn 10.
Once the gap is sufficiently small (say, less than
ε), there is only one vertex of the constraint set at
which the duality gap can be smaller. This follows
obviously from the fact that the vertices are discrete.
Thus, the vertex with the smaller duality gap must
be the optimal one, and this vertex may be identi-
fied by taking p simplex-type steps. This process,
called purification in Gonzaga (1992, Lemma 4.7),
requires in our notation p steps involving O �np2�
operations, or O �np3� operations. Hence, the num-
ber of iterations K required to make θKn 10 < ε is

K < log�10/ε�/�− log θn�:
In the worst-case analysis of the interior point

literature, ε is taken to be 2−L, where L is the to-
tal number of binary bits required to encode the
entire data of the problem. Thus, in our notation ε
would be O �np�: Further, the conventional worst-
case analysis employs the bound θn < �1 − cn−1/2�
and takes 10 independent of n so the number of
required iterations is O �√nL�. Since each itera-
tion requires a weighted least-squares solutions of
O �np2� operations, the complexity of the algorithm
as a whole would be O �n5/2p3�, apparently hope-
lessly disadvantageous relative to least squares.
Fortunately, however, in the random problems for
which quantile regression methods are designed,
the ε bound on the duality gap at the second best
vertex can be shown to be considerably larger,
at least with probability tending to 1, than this
worst-case value of 2−L. Lemma A.1 provides the
bound log ε = Op�p log n� under mild conditions on
the underlying regression model. This leads to a
considerably more optimistic view of these methods
for large problems.

Renegar (1988) and numerous subsequent au-
thors have established the existence of a large
class of interior point algorithms for solving lin-
ear programs which, starting from an initially
feasible primal–dual point with duality gap 10,
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can achieve convergence to a prescribed accuracy
ε in O �√n log�10/ε�� iterations in the worst case.
More recently, Sonnevend, Stoer, and Zhao (1991)
have shown under somewhat stronger nondegen-
eracy conditions that this rate can be improved to
O �na log�10/ε�� with a < 1/2. We will call an al-
gorithm which achieves this rate an na-algorithm.
They give explicit conditions, which hold with prob-
ablity 1 if the the y’s have a continuous density, for
the case a = 1/4. The following result then follows
immediately from Lemma A.1.

Theorem 5.1. Under the conditions of Lemma
A.1, an na-algorithm for median regression con-
verges in Op�nap log n� iterations. With O �np2�
operations required per iteration and O �np3� oper-
ations required for the final “purification” process
such an algorithm has complexity Op�n1+ap3 log n�.

Mizuno, Todd and Ye (1993) provide an alterna-
tive probabilistic approach to the existence of an
na-algorithm, with a < 1/2, and provide a heuris-
tic argument for a = 1/4. They also conjecture that
na might be improvable to log n, by a more refined
probabilistic approach. This would improve the
overall complexity in Theorem 5.1 to Op�np3 log2 n�
and seems quite plausible in light of the empirical
evidence reported below, and elsewhere in the inte-
rior point literature. In either case we are still faced
with a theoretical gap between `1 and `2 perfor-
mance that substantiates the empirical experience
reported in the previous section. We now introduce
a new form of preprocessing for `1-problems that
has been successful in further narrowing this gap.

6. PREPROCESSING FOR
QUANTILE REGRESSION

Many modern linear programming algorithms in-
clude an initial phase of preprocessing which seeks
to reduce problem dimensions by identifying redun-
dant variables and dominated constraints. See, for
example, the discussion in Lustig, Marsden, and
Shanno (1994, Section 8.2) and the remarks of the
discussants. Bixby, in this discussion, reports reduc-
tions of 20–30% in the row and column dimensions
of a sample of standard commercial test problems
due to “aggressive implementation” of preprocess-
ing. Standard preprocessing strategies for LP’s are
not, however, particularly well suited to the statisti-
cal applications which underlie quantile regression.
In this section we describe some new preprocess-
ing ideas designed explicitly for quantile regression,
which can be used to reduce dramatically the effec-
tive sample sizes for these problems.

The basic idea underlying our preprocessing step
rests on the following elementary observation. Con-
sider the directional derivative of the median re-
gression (`1) problem

min
b

n∑
i=1

�yi − x′ib�;

which may be written in direction w as

g�b;w� = −
n∑
i=1

x′iw sgn∗
(
yi − x′ib;−x′iw

)
;

where

sgn∗�u; v� =
{

sgn�u�; if u 6= 0;
sgn�v�; if u = 0:

Optimality may be characterized as a b∗ such that
g�b∗;w� ≥ 0 for all w ∈ <p. Suppose for the moment
that we “knew” that a certain subset JH of the ob-
servations N = �1; : : : ; n� would fall above the op-
timal median plane and another subset JL would
fall below. Then consider the revised problem

min
b∈<p

∑
i∈N\JL∪JH

�yi − x′ib� + �yL − x′Lb� + �yH − x′Hb�;

where xK =
�
i∈JK xi, for K ∈ �H;L�, and yL; yH

can be chosen as arbitrarily small and large enough,
respectively, to ensure that the corresponding resid-
uals remain negative and positive. We will refer in
what follows to these combined pseudo-observations
as globs. The new problem, under our provisional
hypothesis, has exactly the same gradient condition
as the original one, and therefore the same solu-
tions, but the revision has reduced effective sample
size by #�JL;JH� − 2, that is, by the number of
observations in the globs.

How might we know JL;JH? Consider computing
a preliminary estimate β̂ based on a subsample of
m observations. Compute a simultaneous confidence
band for x′iβ based on this estimate for each i ∈N.
Under plausible sampling assumptions we will see
that the length of each interval is proportional to
p/
√
m, so if M denotes the number of yi falling

inside the band, M = Op�np/
√
m�. Take JL;JH

to be composed of the indices of the observations
falling outside the band. So we may now create the
“globbed” observations �yK; xK�; K ∈ �L;H�, and
reestimate based on M+2 observations. Finally, we
must check to verify that all the observations in
JH;JL have the anticipated residual signs; if so,
we are done; if not, we must repeat the process. If
the coverage probability of the bands is P, presum-
ably near 1, then the expected number of repetitions
of this process is the expectation of a geometric ran-
dom variable Z with expectation P−1. We will call
each repetition a cycle.
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6.1 Implementation

In this subsection we will sketch some further de-
tails of the preprocessing strategy. We should em-
phasize that there are many aspects of the approach
that deserve further research and refinement. In
an effort to encourage others to contribute to this
process we have made all of the code described be-
low available at the website http://www.econ.uiuc.

edu/research/rqn/rqn.html. We will refer in what
follows to the Frisch–Newton quantile regression al-
gorithm with preprocessing as prqfn.

The basic structure of the current prqfn algorithm
looks like this:

k← 0
l← 0
m← �2n2/3�
while (k is small)�
k = k+ 1
solve for initial rq using first m observations
compute confidence interval for this solution
reorder globbed sample as first M observations
while (l is small)�
l = l+ 1
solve for new rq using the globbed sample
check residual signs of globbed observations
if no bad signs: return optimal solution
if only few bad: adjust globs, reorder sample,

update M, continue
if too many bad: increase m and break to

outer loop
�

�

The algorithm presumes that the data has un-
dergone some initial randomization so the first
m observations may be considered representative
of the sample as a whole. In all of the exper-
iments reported below we use the Mehrotra–
Lustig–Marsden–Shanno primal–dual algorithm to
compute the subsample solutions. For some “inter-
mediately large” problems it would be preferable
to use the simplex approach, but we postpone this
refinement. Although the affine scaling algorithm
of Meketon (1986) exhibited excellent performance
on certain subsets of our early test problems,
like those represented in Figure 2, we found its
performance inconsistent in other tests. It was
consequently abandoned in favor of the more reli-
able primal–dual formulation. This choice is quite
consistent with the general development of the
broader literature on interior point methods for
linear programming, but probably also deserves
further exploration.

6.2 Confidence Bands

The confidence bands used in our reported com-
putational experiments are of the standard Scheffé
type. Under iid error assumptions the covariance
matrix of the initial solution is given by

V = ω2�X′X�−1;

where ω2 = τ�1−τ�/f2�F−1�τ��; the reciprocal of the
error density at the τth quantile is estimated using
the Hall–Sheather bandwidth (Hall and Sheather,
1988) for Siddiqui’s (1960) estimator. Quantiles of
the residuals from the initial fit are computed us-
ing the Floyd–Rivest algorithm (Floyd and Rivest,
1975). We then pass through the entire sample com-
puting the intervals

Bi =
(
x′iβ̂− ζ��V̂1/2xi��; x′iβ̂+ ζ��V̂1/2xi��

)
:

The parameter ζ is currently set, naively, at 2, but
could, more generally, be set as ζ = �8−1�1 − α� +√

2p− 1�/
√

2 = O �√p� to achieve �1 − α� cover-
age for the band, and thus assures that the num-
ber of cycles is geometric. Since, under the moment
condition of Lemma A.1, if p → ∞, the quantity
��V̂1/2xi�� also behaves like the square root of a χ2

random variable, the width of the confidence band
is Op�p/

√
m�.

Unfortunately, using the Scheffé bands requires
O �np2� operations, a computation of the same or-
der as that required by least-squares estimation of
the model. It seems reasonable, therefore, to con-
sider alternatives. One possibility, suggested by the
Studentized range, is to base intervals on the in-
equality

∣∣x′iβ̂
∣∣ ≤ max

j

{ �β̂j�
sj

}
×

p∑
j=1

�xij� sj;(6.1)

where sj is ω̂ times the jth diagonal element of
the �X′X�−1 matrix, and ω̂ is computed as for the
Scheffé intervals. This approach provides conserva-
tive (although not “exact”) confidence bands with
width cq

�p
j=1 �xj� sj. Note that this requires only

O �np� operations, thus providing an improved rate.
Choice of the constant cq is somewhat problem-
atic, but some experimentation with simulated data
showed that cq could be taken conservatively to be
approximately 1, and that the algorithm was re-
markably independent of the precise value of cq. For
these bands the width is again Op�p/

√
m�, as for

the Scheffé bands. Although these O �np� confidence
bands worked well in simulation experiments, and
thus merit further study, the computational expe-
rience reported here is based entirely on the more
traditional Scheffé bands.
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After creating the globbed sample, we again solve
the quantile regression problem, this time with the
M observations of the globbed sample. Finally, we
check the signs of the globbed observations. If they
all agree with the signs predicted by the confidence
band we may declare victory and return the opti-
mal solution. If there are only a few incorrect signs,
we have found it expedient to adjust the globs, rein-
troduce these observations into the new globbed
sample and resolve. If there are too many incorrect
signs, we return to the initial phase, increasing the
initial sample size somewhat, and repeat the pro-
cess. One or two repetitions of the inner (fixup) loop
are not unusual; more than two cycles of the outer
loop is highly unusual given current settings of the
confidence band parameters.

6.3 Choosing m

The choice of the initial subsample size m and its
implications for the complexity of an interior point
algorithm for quantile regression with preprocessing
is resolved by the next lemma.

Theorem 6.1. Under the conditions of Lemma
A.1, for any nonrecursive quantile regression algo-
rithm with complexity Op�nαpβ log n�, for problems
with dimension �n;p�, there exists a confidence
band construction based on an initial subsample
of size m with expected width Op�p/

√
m�, and,

consequently, the optimal initial subsample size is
m∗ = O ��np�2/3�. With this choice of m∗, M is also
O ��np�2/3�. Then, with α = 1 + a and β = 3, from
Theorem 5.1, the overall complexity of the algorithm
with preprocessing is, for any na underlying interior
point algorithm,

Op
[
�np�2�1+a�/3p3 log n

]
+ Op�np�:

For a < 1/2, n sufficiently large and p fixed, this
complexity is dominated by the complexity of the
confidence band computation, and is strictly smaller
than the O �np2� complexity of least squares.

Proof. Formally, we treat only the case of p
fixed, but we have tried to indicate the role of p in
the determination of the constants, where possible.
Thus, for example, for p → ∞, we have suggested
above that the width of both the Scheffé bands and
the Studentized range bands are Op�p/

√
m�. For p

fixed this condition is trivially satisfied. By indepen-
dence we may conclude that the number of observa-
tions inside such a confidence band will be

M = Op
(
np/
√
m
)
;

and minimizing, for any constant c,

mαpβ logm+
(
cnp/
√
m
)α
pβ log

(
cnp/
√
m
)

(6.2)

yields

m∗ = O
[
�np�2/3

]
:

Substituting this m∗ back into (6.2), Theorem 5.1
implies that we have complexity

O
[
�np�2�1+a�/3p3 log n

]
;

for each cycle of the preprocessing. The number of
cycles required is bounded in probability since it is
a realization of a geometrically distributed random
variable with a finite expectation. The complex-
ity computation for the algorithm as a whole is
completed by observing that the required residual
checking is O �np� for each cycle, and employ-
ing the Studentized range confidence bands also
requires O �np� operations per cycle. Thus the con-
tribution of the confidence band construction and
residual checking is precisely Op�np�, and for any
a < 1/2 the complexity of the `1-algorithm is there-
fore dominated by this term for any fixed p and n
sufficiently large.

Remarks. (1) Clearly these results above apply
not only to median regression, but to quantile re-
gression in general. (2) If the explicit rates in p of
Theorem 6.1 hold for p → ∞, and if the Mizuno–
Todd–Ye conjecture that na can be improved to log n
holds, then the complexity of the algorithm becomes

O
(
n2/3p3 log2 n

)
+ Op�np�:

The contribution of the first term in this expres-
sion would then assure an improvement over
least squares for n sufficiently large, provided
p = o�n1/5�, a rate approaching the domain of
nonparametric regression applications. (3) It is
tempting to consider the recursive application of
the preprocessing approach described above, and
this can be effective in reducing the complexity of
the solution of the initial subsample m problem,
but it does not appear possible to make it effective
in dealing with the globbed sample. This accounts
for the qualifier “nonrecursive” in the statement of
the theorem.

7. COMPUTATIONAL EXPERIENCE

In this section we provide some further evidence
on the performance of our implementation of the
algorithm on both simulated and real data. In Fig-
ure 3 we compare the performance of l1fit with the
new prqfn, which combines the primal–dual algo-
rithm with preprocessing. With the range of sample
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Fig. 3. Timing comparison of two `1-algorithms for median regression: times are in seconds for the mean of five replications for iid
Gaussian data. The parametric dimension of the models is p+1 with p indicated above each plot; p columns are generated randomly and
an intercept parameter is appended to the resulting design. Timings were made at four design points in nx 20;000;40;000;80;000;120;000.
The dotted line represents the results for the simplex-based Barrodale–Roberts algorithm l1fit, which increases roughly quadratically
in n. The solid line represents prqfn, the timings of the Frisch–Newton interior point algorithm, with preprocessing.
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Fig. 4. Timing comparison of two `1-algorithms for median regression: times are in seconds for the mean of 10 replications for iid
Gaussian data. The parametric dimension of the models is p + 1 with p indicated above each plot; p columns are generated randomly
and an intercept parameter is appended to the resulting design. Timings were made at eight design points in nx 40;000, 60;000, 80;000,
100;000, 120;000, 140;000, 160;000, 180;000. The rqfn dashed line represents a primal-dual interior point algorithm; prqfn is rqfn with
preprocessing; and the dotted line represents least-squares timings based on lm(y∼x) as a benchmark.

sizes 20,000–120,000, the clear superiority of prqfn
is very striking. At n = 20;000, prqfn is faster than
l1fit by a factor of about 10, and it is faster by a
factor of 100 at n = 120;000. The quadratic growth
in the l1fit timings is also quite apparent in this
figure.

In Figure 4 we illustrate another small experi-
ment to compare rqfn and prqfn with lm for n up
to 180,000. Patience, or more accurately the lack
thereof, however, does not permit us to include fur-
ther comparisons with l1fit. Figure 4 displays the
improvement provided by preprocessing and shows
that prqfn is actually slightly faster than lm for
p = 4 and quite close to least squares speed for
p = 8 for this range of sample sizes. It may be
noted that internal Fortran timings of prqfn have
shown that most of the time is spent in the primal–
dual routine rqfn for n < 200;000. The results of
Sections 5 and 6 suggest that the greatest value of
preprocessing appears when n is large enough that
the time needed to create the globs and check resid-
uals is comparable to that spent in rqfn.

Finally, we report some experience with a moder-
ately large econometric application. This is a fairly
typical wage equation as employed in the labor eco-
nomics literature. See Buchinsky (1994, 1995) for a
much more extensive discussion of related results.
The data are from the 5% sample of the 1990 U.S.
Census and consists of annual salary and related
characteristics on 113,547 men from the state of Illi-
nois who responded that they worked 40 or more

weeks in the previous year and who worked on av-
erage 35 or more hours per week.

We seek to investigate the determinants of the
logarithm of individuals’ reported wage or salary
income in 1989 based on their attained educational
level, a quadratic labor market experience effect,
and other characteristics. Results are reported for
five distinct quantiles. Least-squares results for
the same model appear in the final column of Ta-
ble 1. The standard errors reported in parentheses
were computed by the sparsity method described
in Koenker (1994) using the Hall–Sheather band-
width. There are a number of interesting findings.
The experience profile of salaries is quite consis-
tent across quantiles, with salary increasing with
experience at a decreasing rate. There is a very
moderate tendency toward more deceleration in
salary growth with experience at the lower quan-
tiles. The white–nonwhite salary gap is highest at
the first quartile, with whites receiving a 17% pre-
mium over nonwhites with similar characteristics,
but this appears to decline both in the lower tail
and for higher quantiles. Marriage appears to en-
tail an enormous premium at the lower quantiles,
nearly a 30% premium at the fifth percentile, for
example, but this premium declines somewhat as
salary rises. The least squares results are quite
consistent with the median regession results, but
we should emphasize that the pattern of esti-
mated quantile regression coefficients in the table
as a whole is quite inconsistent with the classi-
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Table 1
Quantile regression results for a U.S. wage equation

Covariate t 5 0:05 t 5 0:25 t 5 0:5 t 5 0:75 t 5 0:95 ols

Intercept 7.60598 7.95888 8.27162 8.52930 8.54327 8.21327
(0.028468) (0.012609) (0.009886) (0.010909) (0.025368) (0.010672)

exp 0.04596 0.04839 0.04676 0.04461 0.05062 0.04582
(0.001502) (0.000665) (0.000522) (0.000576) (0.001339) (0.000563)

exp 2 −0.00080 −0.00075 −0.00069 −0.00062 −0.00056 −0.00067
(0.000031) (0.000014) (0.000011) (0.000012) (0.000028) (0.000012)

Education 0.07034 0.08423 0.08780 0.09269 0.11953 0.09007
(0.001770) (0.000784) (0.000615) (0.000678) (0.001577) (0.000664)

White 0.14202 0.17084 0.15655 0.13930 0.10262 0.14694
(0.014001) (0.006201) (0.004862) (0.005365) (0.012476) (0.005249)

Married 0.28577 0.24069 0.20120 0.18083 0.20773 0.21624
(0.011013) (0.004878) (0.003824) (0.004220) (0.009814) (0.004129)

cal iid-error linear model or, indeed, any of the
conventional models accommodating some form of
parametric heteroscedasticity.

In Table 2 we report the time (in seconds) re-
quired to produce the estimates in Table 1, using
three alternative quantile regression algorithms.
The time required for the least-squares estimates
reported in the last column of Table 1 was 7.8
seconds, roughly comparable to the prqfn times.
Again, the interior point approach with preprocess-
ing as incorporated in prqfn is considerably quicker
than the interior point algorithm applied to the full
data set in rqfn. The simplex approach to comput-
ing quantile regression estimates is represented
here by the modification of the Barrodale–Roberts
(Barrodale and Roberts, 1974) algorithm described
in Koenker and d’Orey (1987) and denoted by rq

in the table. There is obviously a very substantial
gain in moving away from the simplex approach to
computation in large problems of this type.

8. CONCLUSIONS

There is a compelling general case for the superi-
ority of interior point methods over traditional sim-
plex methods for large linear programming prob-
lems, and for large quantile regression applications
in particular. We have shown that preprocessing
can effectively reduce the sample size dimension
of quantile regression problems from n to Op�n2/3�,

Table 2
Timing comparisons for three methods in wage equation example:
results are given in seconds for three different quantile regression

algorithms described in the text

Method t 5 0:05 t 5 0:25 t 5 0:5 t 5 0:75 t 5 0:95

prwfn 9.92 9.78 19.91 7.68 8.64
rqfn 41.07 42.34 28.33 40.87 59.69
rq 565.97 2545.42 3907.42 3704.50 3410.49

thereby enabling computational speed comparable
to that of least squares for some large quantile re-
gression problems. There are many possible refine-
ments of the basic approach investigated here, but
the message for that Gaussian hare who has been
frolicking in the flowers, confident of victory, is clear.
Laplace’s old tortoise, despite the house he wears
on his back to protect him from inclement statisti-
cal weather, has a few new tricks and the race is far
from over.

APPENDIX

Lemma A.1. In the linear model Yi = x′iβ + ui,
i = 1; : : : ; n; assume the following:

(i) ��xi;Yi�; i = 1; : : : ; n� are iid with a bounded
continuous density in <p+1;

(ii) E�xij�p <∞ and E�Yi�a <∞; for some a > 0:

Then the duality gap of the median regression esti-
mator at the second best vertex exceeds n−�p+5� with
probability tending to 1 as n → ∞; and the initial
duality gap 10 satisfies log 10 = Op�log n�.

Proof. Let β̂ denote the optimal median re-
gression solution based on the data ��xi;Yi�; i =
1; : : : ; n�, and let d̂ denote the corresponding dual
solution. Consider the duality gap at another trial
solution pair �β̃; d̃�, which we can write

1∗ =
n∑
i=1

�Yi − x′iβ̃� −Y′d̃

=
n∑
i=1

�Yi − x′iβ̃� −
n∑
i=1

�Yi − x′iβ̂�

+Y′d̂−Y′d̃;

(A.1)

since the duality gap at �β̂; d̂� is zero. Now, as in
Koenker and Bassett (1978), let h = �i1; : : : ; ip�
denote a subset of N = �1;2; : : : ; n� consisting of
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p distinct indices. Define X�h� to be the p × p
matrix with rows �x′ix i ∈ h�, define Y�h� to be
the vector with coordinates �Yix i ∈ h� and let
β�h� = X−1�h�Y�h�. Now suppose ĥ is the subset
defining the optimal solution (i.e., β̂ = β�ĥ�) and
that h̃ represents the vertex of the constraint set
(distinct from ĥ) for which β̃ = β�h̃� is nearest to β̂
in terms of the primal objective function.

Note that h̃ is also a subset of size p and dif-
fers from ĥ in exactly one element. Let i1 be the
(unique) index in ĥ ∩ h̃c, and let i2 ∈ h̃ ∩ ĥc, where
hc denotes the complement of h. Let r̂i and r̃i de-
note the respective ith residuals for β̂ and β̃, and
note the following: r̂i = 0 for i ∈ ĥ; r̃i = 0 for
i ∈ h̃; sgn�r̂i� = sgn�r̃i� for i 6∈ ĥ∪ h̃; and sgn�r̂i2� =
− sgn�r̃i1�. Therefore, since the dual contribution to
1∗ is positive, we can write

1∗ ≥ 1∗1 ≡
∑
i6∈h
�Yi − x′iβ̃� −

∑

i6∈h̃
�Yi − x′iβ̂�

=
(
Yi1
− x′i1β̃

)
sgn�r̃i1�

−
(
Yi2
− x′i2β̂

)
sgn�r̂i2�

−
∑

i6∈ĥ∪h̃
x′iβ̃ sgn�r̃i� +

∑

i6∈ĥ∪h̃
x′iβ̂ sgn�r̂i�

=
(
Yi1
+Yi2

)
sgn�r̃i1�

−
∑

i6∈h̃
sgn�r̃i�x′iX−1�h̃�Y�h̃�

+
∑

i6∈ĥ
sgn�r̂i�x′iX−1�ĥ�Y�ĥ�

≡
p+1∑
j=1

bjYij
;

(A.2)

where, for j = 2; : : : ; p,

b1 = sgn�r̃i1� −
(∑

i6∈h̃
sgn�r̃i�x′iX−1�h̃�

)

1

b2 = sgn�r̃i1� −
(∑

i6∈ĥ
sgn�r̂i�x′iX−1�ĥ�

)

1

bj+1 =
(∑

i6∈ĥ
sgn�r̂i�x′iX−1�ĥ�

)

j

−
(∑

i6∈h̃
sgn�r̃i�x′iX−1�h̃�

)

j

:

(A.3)

Now let H be the set of all pairs �h;h∗�, where h
and h∗ are p-element subsets of indices that differ
in exactly one element. Note that there are

(
n

p+ 1

)(
p+ 1

2

)

such pairs. For �h;h∗� ∈ H , let 11�h;h∗� =�p+1
j=1 bjYij

, where �bj� are defined for arbitrary
�h;h∗� ∈ H as in (A.3) and where �ij� ranges over
h ∪ h∗. Then, clearly,

1∗1 ≥ inf
{
11�h;h∗�x �h;h∗� ∈ H

}
:(A.4)

Now fix an arbitrary pair �h; h∗� ∈ H ,

P
{
�11�h; h∗�� ≤

1
np+5

}

≤ P
{
�bj� ≤

1
n3
; j = 2; : : : ; p+ 1

}

+P
{

for some jx �bj� >
1
n3

∧
∣∣∣∣Yij
+
∑
k6=j

bk
bj
Yik

∣∣∣∣ ≤
1

np+2

}

≡ PA +PB:

(A.5)

Now note that PA is the probability that the vec-
tor whose coordinates are the “sum over i 6∈ ĥ”
terms in �b2; : : : ; bp+1� (see (A.3)) lies in a speci-
fied cube with sides of length 2/n3 (centered at the
other terms in bj). That is, if C denotes the set of
all cubes in <p with sides of length 2/n3, then

PA ≤ sup
{

P
{(∑

i6∈h
sgn�ri�x′i

)

·X−1�h� ∈ C
}
x C ∈ C

}(A.6)

Now, multiplying the condition in PA through by
X�h� and noting that the density of the sum inPA is
bounded by the density of a single xi, (A.6) becomes

PA ≤ Eha0 Vol�C�det�X�h�� ≤ a1

(
2
n3

)p

≤ a2

np+2

(A.7)

where a0, a1 and a2 are constants, det�X�h�� is
bounded by the moment condition on �xi� and, for
p ≥ 1, 3p ≥ p+ 2.

Similarly, PB is bounded by

PB ≤ sup
t

{
P
{
Yij
∈ �t; t+ n−�p+2��

}}
≤ a3

np+2
(A.8)

(where a3 is a bound on the density of Yi). Thus,
from (A.5), (A.7) and (A.8),

P
{∣∣1∗1

∣∣ ≤ n−�p+5�}

≤
(

n

p+ 1

)(
p+ 1

2

)
a2 + a3

np+2
→ 0:

(A.9)

That is, 1∗1 > n
−�p+5� with probability tending to 1.
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Finally, taking the initial β and d to be 0, the
initial duality gap is bounded by 10 =

� �Yi�. How-
ever, a simple Chebyschev-type inequality based on
the moment condition (E�Yi�a < +∞) yields

P
{ n∑
i=1

�Yi� ≥ n1+2/a
}
≤ nP

{
�Y1� ≥ n2/a}

≤ nE�Y1�a
n2a/a

→ 0:
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Comment
Ronald A. Thisted

1. INTRODUCTION

There are few papers on statistical computa-
tion that deserve to be described as “fabulous,” but
surely this is one. It contains a number of signifi-
cant contributions, both to the practice of statistical
computation and to the ways in which we think
about the difficulty of computational problems that
are relevant to data analysis. While absolute-error
estimation is formally equivalent to linear program-
ming, it is refreshing to see computational advances
in this area that focus on specifically statistical ap-
plications, since those applications often have quite
different features from a “typical” linear program-
ming problem viewed form the operations research
perspective. While the mathematical structure of
quantile regression can be reduced to the same
structure that is required to maximize profits for
an airline given the constraints of equipment, crew,
bookings and so on, the practical issues that arise
in the two contexts are actually quite different. By

Ronald A. Thisted is Professor, Departments of
Statistics, Health Studies, and Anesthesia and Crit-
ical Care, University of Chicago, Chicago, Illinois
60637 (e-mail: thisted@galton.uchicago.edu).

concentrating on the statistical aspects, Portnoy
and Koenker have produced real computational ad-
vances specific to the statistical problem of quantile
regression.

This article also illustrates how valuable it can
be to switch from a statistical point of view to a nu-
merical analyst’s point of view, and then back. In
many ways, this interplay of statistical and compu-
tational approaches is reminiscent of the gains that
integrating a dual problem with a primal algorithm
can produce.

An important feature of this work is that it
brings attention to the primal–dual formulation of
the quantile regression problem, which has the use-
ful feature that it provides a natural measure of
convergence for the computation. The “duality gap,”
that is, the difference between the current value of
the objective function being minimized in the pri-
mal problem and the value of the objective function
being maximized by the dual problem, shrinks to
zero at an optimal solution.

For considering the performance of algorithms in
statistical contexts, the notion of average-case as
opposed to worst-case performance is an appealing
one. This contrasts with much work on algorith-
mic complexity investigations in computer science,
which tend to focus on the latter rather than the for-
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mer. Indeed, the notion of average-case performance
of an algorithm that is, for instance, incorporated
into a statistical package, is one that should be ap-
pealing to frequentists and Bayesians alike—albeit
for different reasons.

In the remainder of my comments, I shall address
this aspect of the paper in a bit more detail, and
shall also propose some attractive lines for addi-
tional research.

2. AVERAGE-CASE VERSUS
WORST-CASE PERFORMANCE

Floyd and Rivest’s work on algorithms for comput-
ing quantiles (Floyd and Rivest, 1975) is the earliest
example of which I am aware of using average-time
performance of an algorithm to assess its computa-
tional complexity in a formal way. What has become
clear is that if, in fact, average performance is of
great practical importance, there are large gains in
computing time which can be realized by using al-
gorithms that occasionally may do worse than their
“optimal” counterparts. The Floyd–Rivest selection
algorithm is a good example.

The Floyd–Rivest idea for selecting an empirical
quantile involves a preprocessing step. In this step,
confidence intervals are calculated from a subset of
the data, say the first m points in the data set, in
order to (provisionally) exclude points from the com-
putation which are quite unlikely to be near the
quantile of interest. Occasionally the true quantile
will fall outside the confidence interval, requiring
the computation to backtrack after the error is rec-
ognized. Using this idea, however, requires that the
first m data points constitute a random sample of
the entire data. In the context of quantile regres-
sion (of which quantile selection is a very special
case), this objective can be achieved by an initial
randomization step (as the authors note).

By selecting a random m of n elements to occupy
the first m data positions, the randomization step
adds O �m� = O �n2/3� to the computation, which of
course does not affect the asymptotics presented in
the paper—provides that only one pass through the
data needs to be made. Unfortunately, very large
data sets cannot always fit into random access mem-
ory, which increases both the computational and the
data-management complexity of the problem.

Given the sloth to which the human (and the
hare) both are wont, many implementors of the tech-
niques described here will simply omit implemen-
tation of the randomization step. For this reason,
it would be instructive to know what happens to
rqfn when it is applied to a large data set in which
the signed residuals obtained from the final fit are

already sorted. This corresponds to the worst-case
scenario for Floyd–Rivest, and in this unfavorable
situation their algorithm performs quite badly. If
this does cause problems for rqfn, just how “non-
random” must the data be in order for an approach
such as rq once again to become competitive?

Statistical decision theorists will recognize the
discussion above as a variant on the minimax ver-
sus Bayesian decision framework. If the worst-case
distribution of data point is a real (or even a likely)
possibility, then the best algorithm is one which
works well against this least-favorable (prior) dis-
tribution. On the other hand, if the data can be
thought of as a random sample from a particular
distribution, then the best algorithm is one which
works well for most realizations from that (prior)
distribution.

The gains to be made from the preprocessing
step are impressive, but they are based on Gaus-
sian, not Laplacian distributions. The empirical
investigations described by the authors use data in
which the errors are also Gaussian, guaranteeing
the applicability of their asymptotics. It would be
worthwhile to repeat the series of experiments re-
ported here using two alternative data distributions
with non-Gaussian shapes. First, a contaminated
normal, for example,

�1− α�N�0;12� + αN�0;32�
might be expected to produce globs which are
smaller than the Gaussian calculations would sug-
gest. Second, a lognormal would introduce the
treble features of failing to have moments, being
highly asymmetric and actually being representa-
tive of some data sets which we might actually see
(in economics, for instance). Tortoiselike plodding in
this direction might be fruitful indeed in helping us
to appreciate the limitations (or the robustness!) of
the preprocessing included in the prqfn approach.

3. BATCH PROCESSING

Whenever I wish to calculate a quantile regres-
sion function for a data set, I am usually interested
in obtaining several quantiles at once. Are there
gains that can be achieved by performing the cal-
culations simultaneously for several choices of π,
instead of repeating the entire algorithm for each?

The most promising venue for exploring this ques-
tion appears to be in the globbing phase of the pre-
processing. If, for instance, we are interested in

τ ∈ �0:01;0:10;0:25;0:50;0:75;0:95;0:99�;
it would seem that I could first solve the τ = 0:01
problem, and then automatically include all of data
points whose residuals fell below the first percentile
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in the lower glob for assessing the 99th percentile
problem. I would then alternate between high and
low choices for τ, perhaps decreasing m after every
second iteration of this process.

4. CONCLUSION

The results presented here should provide im-
petus to revise the standard reference works in

statistical computation (such as Kennedy and Gen-
tle, 1980; Press, Flannery, Teukolsky and Vetterling,
1986; Thisted, 1988), several of which discuss the
difficulties of L1-methods. This paper also opens
the door to potentially large areas of fruitful re-
search in statistical computing. The authors are
commended for accelerating the pace of this re-
search by making their computer code available on
the World Wide Web.

Comment
M. R. Osborne

This is an interesting and unusual paper stylishly
written in a manner well-reflected in the title. I
trust it finds a wide readership. The authors indi-
cate that there is considerable opportunity for fur-
ther application of their ideas.

The paper presents two main themes:

1. a case for the use of interior point methods
instead of the more usual simplicial style of
algorithm here identified with Barrodale and
Roberts’s LP-based algorithm as implemented
in S-PLUS; other alternatives to the simplicial
style methods have been championed recently
(see Osborne and Watson, 1996);

2. an argument for “preconditioning” the calcula-
tion by tentatively classifying residuals predicted
not to be zero in the final solution and aggre-
gating their contribution to the necessary condi-
tions; there is no reason why this step cannot
be applied to methods other than interior point
methods.

I have reservations about the case for the use of in-
terior point methods, although not necessarily about
the conclusions. These reservations are as follows:

1. Exponential worst case behavior of the simplex
method is unusual. The examples I know can all
be classified as very badly scaled. Quite a deal
of work has gone into computing average case
behavior, and this tends to give a very different
picture. Given the general stochastic bias of the

M. R. Osborne is staff member, Centre for Mathe-
matics and its Applications, Australian National
University, Canberra ACT 0200, Australia.

development here, it is a little surprising that
this aspect is not referenced.

2. There is additional structure in the quantile
problem over and above the generic LP. This
comes from the special interval constrained form
of the dual problem. This allows one simplex
step to move off one bound constraint to its op-
posite bound, and this means that the new basic
solution can be written down without further
calculation. This pattern can occur in sequences
of consecutive steps. This sequence is actually
a linesearch step in other formulations (Os-
borne, 1985). It can be computed by the fast
median algorithm of Bloomfield and Steiger, for
example. The Barrodale–Roberts approach is
equivalent to using a comparison sort in this
context and seems already sufficient to explain
the O�n2� behavior observed. Recently, Osborne
and Watson (1996) have observed that the secant
algorithm can be applied here and interpreted as
an alternative to the usual median of three par-
titioning in the fast median computation. The
improvement over Bloomfield and Steiger can be
staggering in problems which arise in fitting a
deterministic model in the presence of noise. For
the record, the code distributed by Bartels, Conn
and Sinclair used a heap sort in the linesearch
implementation and was perhaps the first to im-
prove on the O�n2� asymptotics. It would seem
to be time that S-PLUS used a more modern
implementation.

3. There is at least some folk law concerning the
inferior performance of interior point methods
when compared with simplex-style methods in
postoptimality computations. However, this is
the type of computation employed when study-
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ing the behavior of regression quantiles as a
function of the quantile parameter.

4. Primal-dual interior point methods have some
question marks regarding their complete numer-
ical stability when nonuniqueness or degeneracy
occurs. That this potential trouble is on the cards
is well documented in the original Basset and
Koenker paper for the stackloss data set. The ro-
bustness possible with piecewise linear continua-

tion methods is documented in my paper in JIMA
Numerical Analysis of some years ago.

Disclaimer. Constraints of time and vagaries of
the mail service have meant this discussion has to
be prepared between Sydney and Singapore, and
after an excellent dinner. Unintentionally, claims
made may be stronger than would have been the
case if a better vehicle than memory were available.

Rejoinder
Stephen Portnoy and Roger Koenker

We would like to begin by thanking the discus-
sants for their encouraging comments as well as
expressing our appreciation to the Editor, Paul
Switzer, for organizing the discussion. We certainly
share Ron Thisted’s hope that this work may in-
duce others to reevaluate the frequently lamented
computational burden of `1-methods, and thereby
gradually expand the domain of applicability for
quantile regression and related methods.

There are many pathways left to explore. As
Mike Osborne notes there are significant potential
improvements possible in the simplex approach. It
is indeed remarkable that the algorithm by Barro-
dale and Roberts is still the vehicle of choice among
most statistically minded tortoises 25 years after its
appearance. Our preprocessing strategy provides a
very effective way of speeding up the simplex ap-
proach as well. In fact, it was only after we found
this approach unsatisfactory for very large n and p
that we began to explore interior point alternatives
to simplex.

Both discussants comment on the importance of
effective postoptimality analysis. In several earlier
papers we have emphasized the value of estima-
tion and inference methods based on the entire pri-
mal and dual quantile regression processes. As we
have noted these processes can be computed with
Op�n log n� simplex steps, starting from any initially
optimal basic solution. However, in large problems
it may suffice to compute the process β̂�τ� or its
dual counterpart on some prespecified grid. In such
cases, it seems reasonable to explore interior point
strategies for moving from one τ to the next, in
effect, tunneling back through the interior rather
than traversing from one vertex to another on the
exterior of the constraint set. For n large this may

be significantly quicker. As Osborne notes, there
have been some doubts raised about interior point
methods for postoptimality analysis. However, re-
cent work, notably Monteiro and Mehrotra (1996),
appears more promising. Thisted’s suggestions for
adapting our preprocessing approach for postopti-
mality analysis are worth pursuing since the quan-
tile regression solution at any given τ is clearly in-
formative about other solutions at nearby τ.

Following Thisted’s comments, some experimen-
tation was done to explore the consequences of
nonnormal distributions. We considered Cauchy re-
sponse and design variables—a setting where the
random mechanism underlying globbing may be
expected to fail, and also lognormal distributions.
Approximate ratios of timings to those for normal
cases appear in Table 1. Cauchy disturbances ap-
pear to degrade performance somewhat for large n
and modest p, but asymmetry has negligible effect.
Other informal experimentation indicates little ef-
fect for distributions less extreme than Cauchy,
although a more systematic study of the adaptive
choice of the tuning constants of the algorithm
may have some value in improving performance for
Cauchy-like samples.

Mike Osborne raises the question of the effect of
degeneracy on the performance of the algorithm. Be-

Table 1
Ratios of timings to those for normal samples

Cauchy Lognormal

n 5 100;000 n 5 50;000 n 5 100;000 n 5 50;000

p = 8 1.34 1.07 1.09 1.01
p = 4 1.75 0.82 1.05 0.89
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cause degeneracy is a serious potential problem for
exterior point methods, there has been considerable
attention devoted to it in the interior point liter-
ature. Güler, den Hertog, Ross and Terlaky (1993)
provide an excellent survey of this topic. Since pri-
mal and dual degeneracy involve extreme points
(vertices) of the primal and dual constraint sets,
respectively, there is reason to believe that inte-
rior point methods may be less sensitive to degener-
acy than simplex. This has been our experience in
some limited experiments, but further investigation
is definitely warranted.

Thinking about degeneracy leads naturally, in the
theology of linear programming at least, to the sub-
ject of purification. Under degeneracy most interior
point methods converge to a point on the relative in-
terior of the solution set, thus apparently complicat-
ing any attempt to “purify” an interior point solution
by finding a nearby vertex solution. Whether effec-
tive purification strategies can be devised to com-
bine interior and exterior point approaches remains

a subject of intense research interest and may even-
tually yield further hope for the Laplacian tortoise.
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