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Computing Environments for Data Analysis

Ronald A. Thisted

Abstract. A computing environment is a collection of hardware and software
tools that are integrated so as to work well with one another and designed
to make a selected class of computations easy and natural to carry out.
Experience with interactive statistical programs such as GLIM, Snap, and
Minitab suggests that experienced data analysts develop distinctive com-
puting styles when approaching data that integrate some of the tools these
programs provide into more general strategies for data analysis. Computing
environments specifically designed for data analysis make these strategies
easier and more natural to describe and to implement, and make them
accessible to data analysts with considerably less experience.
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1. INTRODUCTION

In the 1940’s, the computations required for data
analysis were done using mechanical calculators, pen-
cils, and stacks of graph paper. In the 1950’s, these
same computations—and others hitherto impossi-
ble—were accomplished through specially written pro-
grams for large computers. In the 1960s, packages of
statistical programs for large mainframe computers
became available, making even newer and more com-
plex things possible, and establishing a path to statis-
tical computation that could be followed even by
nonprogrammers and nonstatisticians. In the 1970’s,
interactive statistical programs became widely avail-
able, and for the first time it became possible using
the computer to duplicate the high degree of interac-
tion with data characteristic of statistical computing
in the 1940’s. In each of these decades, major changes
have occurred in the way computations associated
with data analysis have been carried out. Each of
these changes has made it possible to do more thor-
ough and more penetrating analyses while, at the same
time, making it possible for a greater number of sci-
entists to use statistical methods profitably. Each, too,
has been a logical outgrowth of its predecessor. The
decade of the eighties will be no different in this
respect.

In the 1980’s yet one more forward step is being
taken—creation of computing environments. We can
view the computer terminals, the statistical software
packages, the programming languages, the editors, the
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operating systems, and the output devices and displays
as separate “tools” used to carry out portions of a data
analysis. A computing environment is an integrated
collection of such tools. By “integrated” we mean that
the tools are designed to work well together so as to
make a selected class of computations, namely the
ones we employ in data analysis, easy and natural to
carry out.

The sorts of things that should be easy and natural
will, of course, depend on the nature of the data
analysis—the kind of data being examined, the kinds
of models being entertained, the dimensionality of the
data set. A good computing environment will make it
easy to access those tools which are appropriate in a
given context, and to shift from one to another as
more is learned in the process of data analysis itself.
It will help to consider one or two familiar interactive
programs for data analysis and to examine how they
could be integrated into a larger collection of tools to
make data analysis using them easier, more natural,

‘and more productive. The two programs we shall use

as examples in the sequel are GLIM and Minitab, the
former because it is an extremely flexible and powerful
program capable of examining quite general models
including both continuous and discrete data, the latter
because it is extremely easy to learn and to use, even
for those with little training or experience in statistics
and computing. (Unfortunately, GLIM is not easy and
Minitab is not powerful; a good computing environ-
ment is both.) Some preliminary comments about
GLIM will set the stage for further discussion.

The acronym “GLIM” stands for generalized linear
interactive modeling (Nelder and Wedderburn, 1972).
This is as good a place as any to note that by “data
analysis” we really mean modeling in the broad sense,
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incorporating such aspects as tentative model identi-
fication, diagnostic checking, transformation, and
data cleaning, as well as the usual inferential proce-
dures such as estimation of parameters and their
standard errors associated with a particular model. It
is the interactive modeling aspects of GLIM that will
be of interest to us in our discussion of computing
environments. ’

At a conference on generalized linear models held
at the University of Texas at Austin in June 1984,
Carl Morris raised the question in his keynote address,
“Is GLIM a package or a concept?” The answer is
that it is both. GLIM’s success as a package derives
in part from the fact that it enables us to adopt a
particularly helpful approach to data analysis. This
same assertion cannot be made about most of the
statistical program packages in wide use today, partic-
ularly the batch statistical computing programs.

There are two aspects of the Nelder/Wedderburn
approach to modeling: it provides a framework which
unifies exponential family regression, and it provides
software which makes it possible as a practical matter
to adopt the framework. This framework for analysis
is well described in McCullagh and Nelder (1983).
Thus, we have a powerful and general approach to
modeling a wide variety of responses depending in
quite general ways on covariates and a way to put that
unified theory into practice.

The GLIM “theory” is really a paradigm. Namely,
analysis proceeds by thinking separately about three
aspects of the model: the random component Y, which
has mean value p and variance function V(u), the
systematic component 7 = ¥, 8;x; which describes the
dependence on the covariates X, and a link function
g which relates the mean of the random component Y
to the systematic component n by n = g(). It is this
separability of components that makes GLIM a pow-
erful general tool. In effect, this separability helps us
to structure our approach to data analysis by allowing
us first to break the problem into small, distinct
“chunks,” and then to focus on each of these chunks
in turn. This structured approach to data analysis is
close in spirit and practice to the modern “top-down”
approach to programming.

Might a batch program which fits such models do
just as well as GLIM for our purposes? The answer
must be, “No!” GLIM is essentially interactive, and
that is an intrinsic aspect of its usefulness and appeal.
Interactive programs are typically built around a col-
lection of atomic commands, each of which performs
some small unit of work. Because the sequence in
which commands will be entered in any session is not
known in advance (even to the user!), each command
must represent a small step in the analysis (otherwise,
there would be no need. for interaction). Exploratory
data analysis must by its very nature proceed in just

such small steps. Indeed, modeling is an inherently
interactive process, requiring as it does constant
checking of tentative models and fitting of plausible
alternatives. Moreover, what is learned up to any given
point in the analysis can and should affect the course
of what follows. One model for the process of modeling
is that of traversing a search tree, where at each node
we must decide among several choices for such things
as variable selection, outlier identification, and choice
of link function. It seems clear, then, that if GLIM is
to be incorporated into a more general computing
environment, the latter will necessarily be interactive,
and perhaps will be more so (in some sense) than
GLIM currently can be.

The GLIM program, then, is the tool that we need
to implement a new and powerful strategy for data
analysis. In general, this is precisely the role that
software should play in statistics. Past efforts in sta-
tistical computing have been directed toward imple-
menting statistical methods rather than data analytic
strategies. We are now at the point in our understand-
ing both of data analysis and of computing systems
that we can and should think seriously about the
latter. Our theme, then, will be that good computing
environments consist of software tools, integrated
with appropriate hardware, which implement strate-
gies for data analysis.

2. WHAT IS A COMPUTING ENVIRONMENT?

We have loosely defined the idea of a computing
environment in terms of three criteria: a collection of
integrated hardware and software tools designed to
make a selected class of related computations easier
or more natural to carry out. The fundamental tools
of which such environments are built need not be—
often they should not be—highly complex. Indeed,
gluing together relatively primitive components is of-
ten all that is needed to produce a quantum leap in
the utility of the result. Some examples of computing
environments may help to make this point more
clearly.

Example

Lotus 1-2-3 is a popular program for business users
of personal computers such as the IBM PC. Some
argue that it is single-handedly responsible for the
great acceptance of personal computers in the mana-
gerial office. Lotus 1-2-3 might be termed an environ-
ment for business users. It integrates three tools, each
of which is fairly primitive in absolute terms: a data
base manager, an electronic spreadsheet, and a busi-
ness graphics program. (“Business graphics” programs
typically allow one to draw pie charts and bar charts,
and to adorn them with color, labels, and fancy grids;
such capabilities are rarely useful in data analysis.)
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Each of these is a rudimentary tool for business anal-
ysis or communication, and it is common to use each
of them in the course, say, of examining options to
buy or to sell a property under a range of assumptions.
The forward step that Lotus 1-2-3 represents is that
its authors recognized that the output from any one
of these three activities might well be used as input to
another at a subsequent stage of analysis. So what
Lotus 1-2-3 does is to make it easy and natural for the
business manager to combine different (complemen-
tary) analyses based on different data sets and on
alternative assumptions. What it has done is to elim-
inate the time- and knowledge-consuming steps re-
quired to move data from one application to another,
thus making it possible for the business person to
spend more time doing analysis and less time learning
about computing systems. The leap in productivity
achieved by linking these three primitive activities
was enormous, partly because of the time saved, but
partly because the analyst no longer needed to divert
his or her attention from the questions of primary
interest to deal with unrelated, but utterly essential,
aspects of operating systems and data formats and the
like.

Example

UNIX, together with the Programmer’s Workbench,
is a computing environment for software development.
These tools make it easy and natural to track different
versions of a program under development, to track
differences between versions, to insure that the most
recent version of a module will always be used, to
document programs being developed and to keep the
documentation up to date, and to communicate with
others working on the.same project. UNIX enhances
programmer productivity by relieving the software
development team of the most tedious—and essen-
tial—tasks in the process. In effect, the programming
environment provides much of the glue needed to hold
the project together.

Example

The S statistical system is an example of one ap-
proach to designing an environment for data analysis
(Becker and Chambers, 1984a, 1985). S is an open-
ended program which allows users to link together
primitive constructions in order to build special pur-
pose tools (which can then be used themselves as
building blocks for further extensions). The system is
specifically designed for interactive exploratory work;
details of the system design are given in Becker and
Chambers (1984b).

The “objects” which we compute with (or construct)
in data analysis are not easily expressed as rectangular
arrays. For example, the output from a regression

analysis typically will include a vector of fitted values,
a vector of residuals, a vector of estimated regression
coefficients, a matrix of variances and covariances of
the latter, and a set of observation numbers indicating
those observations in the data set worth further ex-
amination. This output collection should be treated
logically as a single entity with important constituent
parts. The classical n X p rectangular array can cer-
tainly be used as a container for these constituents,
but only at the expense of having the user of the array
do some bookkeeping on the side to keep track of what
is in the array, and where. Of course, such bookkeeping
work has nothing whatsoever to do with data analysis.

S was designed to allow completely general hierar-
chical data structures. What is more, the user of S
need not be aware of what individual structures look
like in order to use the system. This serves two im-
portant purposes, each of which serves to increase
human productivity. First, for the builder of new tools,
it becomes easy to incorporate natural data structures
without having to construct an appropriate represen-
tation of the data built from standard data structures.
Since the data structures can be extended by users,
the user can make his or her data structures reflect
the way he or she thinks about the problem instead of
being constrained to think about the problem solely
in terms of those data structures which may be avail-
able. Second, for those using S for data analysis, the
details of data management are hidden, so that there
is less technical material that needs to be learned as
a prerequisite to using the program, and more of the
time spent at the computer can be devoted to produc-
tive activities.

Example

DART (Donoho, 1983) is an interactive statistical
computing language that extends the S language, add-
ing special features such as the ability to debug func-
tions, and introducing notations for referring to and
making assignments with general tree-like structures.
DART is optimized for programming power rather

. than natural interaction during data analysis; it is

designed to provide tools for expert data analysis with
which programs for particular data analyses can be
built. As such it is a promising environment for statis-
tical programming.

Becker and Chambers note that, “the effectiveness
of the human is the most important criterion for
design of a computer system” (1984b, p. 488). So the
central question is this: How should statistical soft-
ware be designed so as to perform these basic tasks of
integrating the fundamental tools we use and of im-
proving our effectiveness as statisticians by taking on
essential support tasks? To answer this question, we
must examine the sorts of tools that statisticians use,
and then we need to look at what sorts of nondata
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analytic work we often must do in the course of data
analysis.

3. WHAT ARE THE TOOLS OF DATA
ANALYSIS?

Whenever we sit down to examine a data set from
a new problem, we make use of many features of the
computing systems available to us. These features
include computer terminals, telecommunications,
computer hardware, operating systems, workstations,
programming languages, editors, statistical packages,
special purpose programs, printers, and plotters. We
shall conduct a brief examination of some of these
basic tools and of how they are used in data analysis.

For most statisticians, the computer hardware, the
telecommunications links, and the operating systems
represent merely the substrate on which data analysis
is conducted. For most, these aspects of their total
computing environment are given and relatively un-
changeable. What is more, only rarely have these
components been designed with data analysis specifi-
cally in mind. Rather, they represent general purpose
structures for general purpose computation. In the
past 5 years, efforts have been directed toward devel-
oping computer hardware configurations, and operat-
ing systems for those configurations, for the specific
purpose of doing data analysis. A good recent example
is the ORION-1 workstation developed by Jerome
Friedman, Werner Stuetzle, and their colleagues at
the Stanford Linear Accelerator Center in the early
1980’s (Friedman and Stuetzle, 1983).

In general, workstations are single-user computers
integrated into a hardware system designed for a spe-
cial purpose. In addition to the ORION-1 data analysis
workstation, other- examples include the SUN and
Apollo graphics workstations, and the Symbolics Lisp
machine, designed for developing software for sym-
bolic computation. The key advantages which such
workstations provide are not directly applicable to
data analysis, although they have great potential as
the medium in which effective data analysis environ-

ments may be realized. The power inherent in work-

stations such as the SUN or Apollo lies in synergies
achieved by combining three categories: high band-
width communication with other resources on a com-
puting network (including other workstations), the
ability to use a wide variety of applications software,
and a graphical interface to those applications which
supports multicontext use (Joy and Gage, 1985). LISP
machines such as the Symbolics 3600 have superb
programming environments, some features of which
can be adapted to data analysis. Here, too, the poten-
tial for data analysis lies in the window/menu systems
which allow rapid and natural contex switching be-
tween multiple concurrent tasks. As of now, there is

no generally available software for data analysis which
makes intrinsic use of any of these distinguishing
capabilities of workstations.

By developing appropriate software (and perhaps
adjunct hardware), a general purpose workstation can
serve as the basic tool for a comprehensive special
purpose computing environment, such as one designed
for interactive data analysis. Whatever the software
looks like, to be effective it must coexist well, if not
synergistically, with the underlying hardware. Al-
though the remainder of this paper will focus primarily
on software aspects (since the goal of implementing
statistical strategies seems more amenable to software
than to hardware approaches), we shall also raise the
matter of suitable hardware and its integration into a
unified system where it is appropriate to do so. A
detailed and informative series of papers by McDonald
and Pederson (1985a, 1985b) discusses hardware con-
siderations in constructing environments for data
analysis.

The data analyst sometimes has a choice of com-
puter terminals to use, and there is a wide array of
choices available. There are paper copy terminals,
ranging from inexpensive dot matrix devices to letter
quality impact terminals. There are display terminals
of every stripe, from the “glass teletypes” to intelligent -
editing terminals; from high resolution graphics de-
vices to full color instruments. These display termi-
nals often have facilities for producing permanent
copies of screen displays. It is interesting to note,
however, that only in the past year or two have com-
mercial statistical software products begun to have
the capability of using any features at all beyond those
of the “glass teletype.”

On the software side, much data analysis is cur-
rently done using statistical packages such as GLIM,
ISP, Minitab, Snap, SCSS, IDA, S, or any of a host
of other interactive programs. These programs each
have their strengths, although none is entirely ade-
quate for every data analysis. It is often desirable to
shift from one package to another in the course of an
analysis, although it is rarely feasible to do so in
practice. Another frequent occurrence is that a sepa-
rate computer program must be written, either to solve
a formatting problem, or to do a side calculation, or
to carry out more complicated or special purpose anal-
yses than the standard packages provide. For the most
part, it is difficult or impossible to move from one of
these tools to another.

We also find ourselves using features of the oper-
ating system and other, nonstatistical software to
perform some of our basic work. In particular, system
sorting facilities and text editors are essential for such
routine tasks as entering and screening a data set.
Again, these tools provided by the operating system
are rarely accessible at times when they would be most
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useful, say, while in the middle of examining a data
set using Minitab.

In short, then, what we often have at our disposal
is an unintegrated collection of highly useful tools.
Our next step is to examine how statisticians use these
tools in practice, in order to suggest fruitful ways of
integrating them. It is important to note that a suit-
able integrated system will provide the capabilities of
today’s tools without necessarily providing them in a
form recognizably derivative from today’s standard
computing packages.

4. WHAT DO DATA ANALYSTS DO?

A prerequisite to constructing a computing environ-
ment is to understand what sorts of things should be
easy to accomplish, and what are natural ways to
think of data analysis problems. This way of thinking
about the problem represents a behavioral approach
to software design. Rather than focus on the particular
computations that we want the package to do—that
is, the particular statistical analyses we want to have
implemented—we focus instead on the program’s in-
teractions with us while we do our work. The emphasis
is on how we behave when we work with data, and on
how a program can be designed to mesh comfortably
with our own behavior. To some extent, if this plan
were successfully carried out it would require that a
different program be written for each data analyst.
That is not a bad goal, nor is it as far fetched as it
may at first sound. What it suggests is that a good
environment will fit many people well, and will have
sufficient flexibility that it can be tailored to accom-
modate differences in computing style. Thus, in de-
signing a system, we must consider both aspects: it
must be generally useful and must be “customizable.”
We first address the former.

The best way to find out what data analysts do is
to watch them at work. Since many people, data
analysts included, do not enjoy having someone look
over their shoulders, one place to start is with some
self-observation. (We can look in on some other data
analysts a little later, and we shall mention some
technical devices for doing so in Section 6.) In this
introspective phase, the question we should have in
the, back of our minds is this, “What strategies do I
adopt when I do data analysis, and what must I now
go through in order to implement those strategies?

Whether we observe ourselves or others, there is a
general approach that we can take. Watch how a user
interacts with one or more interactive statistical pro-
grams, preferably over the course of an entire session,
from first look at the data to last. Note particularly
aspects of what might be termed a “computing style”:
the ways in which features of the package and of the
operating system are combined with one another. Note

the frustrations encountered in using these systems.
Note the ad hoc devices (that is, shortcuts) that the
user invents in order to get the job done. These short-
cuts usually represent aspects of the problem that are
so basic—or so useful—that they have merited some
intellectual effort diverted from the main task at hand
in order to make them easier to get done. What we
are watching for in all of this are peripheral, but
essential, tasks from which the data analyst might be
spared, making it possible to concentrate more com-
pletely on the tasks of data analysis.

Let’s work through an example, based on introspec-
tion but not too different, I hope, from scenarios
recognizable to most data analysts. I often use Minitab
(Ryan et al., 1976) to take a first look at data. I log in
to my local computer through a display terminal,
preferably one which will communicate at high data
rates (4800 baud or faster). I also sit down with pencil
and a pad of paper. If the data set is a small one, I
enter it directly into the Minitab worksheet. If I find
that I have mistyped an entry, or have left one out, I
usually end up retyping a substantial fraction of the
data set, so I try to be very careful when I enter the
data. If, on the other hand, the data set is moderately
large, I first create a data file using my favorite editor,
and then I enter Minitab. If I then find errors, I leave
Minitab, go back to the editor and make corrections,
then I return to Minitab.

In the course of the analysis, I often divide the
observations into subsets, or I remove one or two
points provisionally. I also will frequently examine the
effect of one or more transformations on some of the
variables in the data set. At any given point, I have
several alternative versions of my data with which I
am working: the original (painstakingly typed), the
version with In(y) instead of y, the version which
omits Alaska and Hawaii, the version which includes
only those individuals with a family history of allergy.
To construct these derivative data sets requires con-
siderable use of Minitab’s PICK and CHOOSE com-
mands, and before long, columns containing portions
of these data subsets are scattered throughout the
worksheet. With each of these derived data sets I
perform a few statistical computations (such as fitting
a least squares line), and I draw a few plots (such as a
scatterplot or a residual plot).

A very small number of these analyses are of suffi-
cient interest to keep for reference. What I must do
to obtain a paper copy of those few depends on the
particular device I am using as a terminal. If I am
using a personal computer with a terminal-emulation
program, then I can press a key which will start saving
a transcript of the terminal session on a floppy disk,
the contents of which I can later print out. If I am
using a plain vanilla display terminal (that is, one
with no hard copy facility or page memory), then I
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must have Minitab direct all of its output to a file,
repeat the analysis, and then leave Minitab. At that
point, I can direct the file to a printer which, for me,
is located a 10-min walk away. Alternatively, I can log
off the computer, then log in again using a slow hard
copy terminal on which the saved file can be typed
out while I wait (and wait). Finally, if I am working
at a terminal which has a printer of its own attached
to it, I simply press a key to obtain a hard copy of
each potentially useful display.

By the end of this process, the pad of paper next to
me has been filled. What is on the paper? First, it
contains notes about intermediate results, created
variables and, what is most important, a map through
them. Without this map, I would lose my way in the
plethora of newly created variables and data subsets.
The paper, therefore, keeps track of which variables
have been placed in which columns, and some nota-
tions of how columns are related to one another.
Second, since the very notion of modeling implies
repeated comparison, I have notes which keep track
of my current best candidates and of aspects of them
worth noting, such as values of the deviance, or the
residual standard deviation, or possible outliers, or
possible transformations. These are the notes I need
in order to compare one model to another, both in
terms of goodness of fit and in terms of qualitative
differences. Third, the paper contains a “stack” of
possible next steps, and some notations as to which
of these are most promising. At each stage in the
analysis it is possible—even likely—that the results
so far will suggest two or more paths to follow. Only
one of these paths can be explored at a time, so I make
notations about things to come back to later. A useful
way of describing what is done in interactive modeling
is to say that a search tree is being constructed. The
paper notepad keeps track of our current position and
of our plans for further exploration in this tree. Fi-
nally, if I have access to immediate hard copies of
what appears on my screen, my notebook will contain
annotated copies of useful plots and other displays
such as tables of regression coefficients.

The notebook, then, contains a fairly detailed record
_ of the process and progress of the actual analysis (as

opposed to computation). It records the information
necessary to reconstruct the context within which
each of the computations was performed. Part of this
record is valuable after the computer session is com-
plete, for example notes comparing features of alter-
native models, and annotated output from Minitab.
Most of the record is ephemeral, reflecting bookkeep-
ing chores that were needed to keep from losing track
of where we were, what we had done, and where we
had put things. These latter portions of the record all
required substantial effort and some planning; per-
forming these tasks diverted attention and energy

from the modeling process itself. These tasks can be
minimized or eliminated entirely by an appropriately
designed computing system. In the next section we
examine some ways in which a computing environ-
ment for data analysis could do so.

5. DESIGNING A DATA ANALYSIS
ENVIRONMENT: SOME EXAMPLES

Now that we have examined a typical computer data
analysis session, we can identify some rough spots in
the process, and imagine how a better computing
system might alleviate or eliminate those difficulties.
First we consider some “brute force” methods of im-
proving the computing environment in the context
which is most widely available to statisticians today,
namely the timesharing computer system. We then
proceed to examine how more carefully tailored envi-
ronments based on more recent (but more expensive
and less available) technology can improve matters
still further.

5.1 Interactive Timesharing Systems

The very first thing we do is to decide whether to
use a fast display terminal without hard copy or a slow
terminal which provides a permanent log of the ses-
sion. We have noted that speed is essential. If we have
to wait two minutes for Minitab to produce each plot,
we will do less plotting and we must twiddle thumbs
(or the mental equivalent) while waiting for each
picture to be produced. At the same time, permanent
copies of portions of the computed output are also
essential. Right now, we must choose which aspect
has higher priority, and then make do with respect to
the other.

Most statisticians choose display speed over hard
copy and with good reason. The matter of computer
speed is not simply a convenience, it affects the quality
of the data analysis. Even short periods of time spent
waiting for output tend to divide the total effort de-
voted to the actual analysis into disjoint fragments,
and fragmented time is rarely well spent. An hour of
concentrated effort is usually more productive than
that same hour spread over twelve 5-min intervals
during the course of a day. In each working interval,
there is a period of gearing up at the beginning and
tidying up at the end, both mentally and physically.
Long waits for portions of the output encourage time
fragmentation. When the plot is finally done, what-
ever other activity that has been done in the meantime
must be interrupted and the data analysis process
resumed.

Permanent copies of some subresults are necessary,
however, since we need to compare results such as
shapes of regression curves, or magnitudes of coeffi-
cients, or sizes of residual standard deviations, across
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two or more models. A common expedient is to copy
down important numerical results onto a scratch pad.
This solution also causes time fragmentation, but
since it occurs relatively less frequently than would
long waits at a hard copy terminal, the trade off is
usually deemed acceptable. The most difficult analyses
to do are those in which these two considerations are
roughly in balance.

The conflicting demands of speed and reference
copy availability can be met by a computing environ-
ment that addresses both issues simultaneously. A
colleague of mine, David Draper, deals with the prob-
lem by logging in to the mainframe computer system
simultaneously on a fast display terminal and a slow
hard copy terminal. He then switches back and forth
between the two, depending on his particular needs at
the moment. Doing this requires some cooperation
from the computer’s operating system, such as the
ATTACH command provided by the TOPS-20 oper-
ating system, which allows one to switch a computer
session from one terminal to another.

Many display terminals now have an output port
built into them through which the contents of the
screen may be dumped to a printer (or even to a hard
copy terminal). With such a configuration, it makes it
possible to dump fragments of text or plots directly to
a hard copy whenever desired; the only limitation is
that the entire image to be preserved must fit on a
single screen. This is sometimes a limitation when
“printer plots” are produced by programs such as
Minitab. Graphics terminals have for some time had
hard copy units attached to them with the capability
of taking a snapshot of the display screen’s current
contents. Their major drawback has typically been
their cost, both the original hardware and the cost per
copy. This difficulty is rapidly vanishing.

5.2 Windows

The two methods described above make use of ex-
isting technologies, albeit using brute force. A third
possibility for addressing this problem—not now
available in any generally available system for data
analysis—is not to have two physical terminals at all,
but rather, for a single device to emulate a pair of
terminals that behave in an appropriately integrated
way. Today’s workstations make this possible. In ef-
fect, we use a single display the screen of which can
be divided into two or more regions (called “win-
dows”). Separate tasks are conducted in separate win-
dows, and one switches tasks by moving the cursor
from one window to another. For example, when the
cursor is in the first window, it is as if we have logged
in and are using Minitab in the usual fashion. What
appears in the first window is just what would appear
on the terminal screen during an ordinary Minitab
session. In the second window a “notebook” program

in running; when the cursor is in this window, we are
able to enter annotations, and to copy portions of
what appears in the first window. Moreover, the con-
tents of the second window are continuously and
automatically saved in a file for later reference during
the computing session. We can think of a three-ring
binder as being a metaphor for the second window.
Whenever we desire, we can 1) add a leaf to the
notebook by copying parts of the first window to the
second, 2) add a leaf by typing annotations or notes
directly in the second window, 3) observe the most
recently created leaf by staring at the second window,
and 4) examine previously created pages by leafing
through the notebook. These entries in the notebook
would optionally be accompanied with an automatic
time stamp.

Having a “fast” notebook right next to the fast
display used for the analysis makes the entire process
easier and more natural. Indeed, the plain vanilla
approach to using Minitab (with just Minitab running
on a single terminal) uses the computer to do only
part of what we used to do by hand; the rest we still
had to do by hand. The proposal in the previous
paragraph integrates much more of the process. In-
deed, a fast virtual notebook addresses another matter
easily and naturally—the fact that much of what we
write down on our legal pads is needed only during
the analysis session, and is of little use after. With the
virtual notebook, we can at any time discard those
pages which are no longer of direct use and, at the end
of the process, we are left with an archival document
containing the important elements of lasting value
from the analysis.

To implement such an approach requires appropri-
ate hardware, software, and operating systems sup-
port. The amount of information that can be displayed
on a single screen varies widely from one brand of
terminal to the next. Since the terminal must at times
display substantial portions of two windows at the
same time, the amount of displayable information per
window is cut at least in half, so the terminal will have

-to have an adequate information display density.

Workstation displays typically meet this requirement;
high resolution timesharing terminals which do so are
only now becoming available. Under some circum-
stances it may be adequate to display completely only
one window at a time, with portions of other windows
“covered” by the active window.

A terminal with 24 lines of 72 characters is just
barely adequate for many purposes, and may be in-
adequate for all but the most rudimentary graphics
applications. If this area is cut in half, either horizon-
tally or vertically, the amount of displayable infor-
mation in each window becomes too small to be useful.
Fortunately, screen density is increasing quickly, and
it is relatively easy to find excellent inexpensive
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display terminals with 30 or more lines vertically and
130 positions horizontally. Other terminals (and com-
puters emulating terminals) have high resolution bit
map displays which are more than equal to the task.
The terminal, too, must provide for separate address-
ing and access to different portions of the screen, so
that when activity takes place in one window, the
other window need not be disturbed. (Without this
feature, the entire screen would need to be redisplayed
to deal with any change, raising the specter of having
to wait uncomfortably while the screen is recon-
structed.) Similarly, the operating system would have
to provide support for multiple tasks, since, in effect,
each window is controlled by a separate computer
program, although these programs are linked to one
another. The operating system is the most desirable
level at which this linking should take place. Finally,
the statistical analysis program itself should be de-
signed with the understanding that it will be used in
a multiple-window environment of the type described,
so that it can provide more useful output, and so that
the transition from one window to the other can
proceed smoothly and naturally.

The notion of windowing is more generally useful
in the design of data analysis software than simply
providing an electronic replacement for the notebook
on the side. Whenever there is a task to be done that
is not comfortably done within the statistical program
itself, or is more logically done using a separate pro-
gram, that second computation can be performed in a
separate window. Windows need not be simultane-
ously visible. The windows visible on the screen at
any given time will be the ones corresponding to the
tasks to which the analyst is currently devoting his
attention; all of the other windows will be hidden,
available on a “need to see” basis. In subsequent
sections we shall suggest useful features of a data
analysis environment, many of which can be imple-
mented naturally using multiple windows.

5.3 Transcripts and Journals

One of the advantages of the hard copy terminal is
that a complete log of the entire analysis session is
, available at all times, typically on a continuous sheet
of fanfold paper spewed from the top of the terminal.
The window metaphor can be brought to bear here,
too. Think of the screen of the display terminal as a
window being passed from top to bottom over the
stream of fanfold paper; the paper hasn’t vanished,
but only the last 24 lines of its contents are visible. A
display terminal with memory of its own can save the
entire transcript and can allow the user to move the
window “backward” so that it is once again over earlier
portions of the terminal session. Many display termi-
nals can be purchased today which have 16K bytes of
memory and automatic scrolling of this sort built in.

The Apple Macintosh computer running Mac-
Terminal terminal emulation software can save as
much of the terminal session as there is free space on
the disk, which can amount to more than 200K bytes,
all of which is instantly accessible at any time during
the session. The same result can be achieved using the
EMACS editor running under UNIX by initiating a
new shell within an EMACS buffer.

Having such a continuously accessible transcript of
the analysis session obviates much of the need for
transcribing relevant portions of the analysis for later
reference. An extra advantage of the transcript is that
the portions of the analysis which are relevant often
become apparent only later. The transcript feature,
then, reduces the need for omniscience on the part of
the investigator. This is actually an important aspect
of a computing environment. While the experienced
data analyst will have developed a feel for those as-
pects of the analysis to date which are likely to be
useful later on in the process, the novice can rely on
the transcript to supplement his maturing judgment.
Thus, a good computing environment will facilitate
both learning and doing.

The transcript contains both the commands to the
statistical package and the resulting output. Since it
may take only a few commands to generate several
screen’s worth of output, it is difficult to review the
analysis as a whole (or even the computational part
of the analysis) simply by reviewing the transcript. A
separate, but closely related device makes this task
much easier. A journal consists of a transcript of the
commands only sent to the statistical package, to-
gether with automatic numbering. This device oper-
ates within the statistical program in much the same
way that the history feature operates at the operating
system (shell) level in Berkeley UNIX. The journal is
continuously updated, and always available, but need
not be always visible. When it is desired to review a
portion of the analysis, the journal window is activated
and then the entire set of commands is available for
inspection.

Mere inspection of the commands may not be
enough. If the session is very long or the terminal used
has limited memory, it may not be possible to have
the entire transcript available. In this case, it would
be helpful to be able to “play back” portions of the
session selected from the journal. The portion of the
session to be replayed can be selected with a pointing
device such as a mouse or trackball, or by explicit
reference to command numbers. Indeed, the ability to
replay a set of commands given earlier is a useful
supplement to a macro facility, particularly since we
often realize that we want to perform the same set of
operations repeatedly after we have found them to be
useful. (Once again, the experienced analyst may use
a macro, recognizing in advance that a particular
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sequence of commands will be repeated, while the less
experienced user will be able to use the alternative
facility of the journal window to achieve the same
result.).

The contents of the journal window can, of course,
be saved permanently as a text file which can then be
annotated after the fact, or which can be “replayed”
in order to reconstruct an analysis.

5.4 An Example

Minitab and other statistical programs could be
extended to provide some of the facilities of a journal
file, even when used on standard terminal equipment,
by adding automatic command sequence numbers and
two commands, SHOW and REDO. Thus, for in-
stance, after entering 92 commands in a session, the
user could type

[93]—show 25-30
which would then display

[25]—regress column c¢1 on 2 carriers: ¢18, ¢33 (c20,

c21)

[26]—plot c20 vs c21

[27]—let ¢22 = ¢1 — ¢21 compute raw residuals

[28]—let ¢23 = ¢22 = ¢22 squared residuals

[29]—plot ¢22 vs ¢21 raw residual plot

[30]—plot ¢23 vs c21 heteroscedasticity?

To get the same analysis for the logarithm of the
dependent variable, one could then simply enter the
commands

[94]—1let c1 = In(c1)

[95]—redo 25-30

There are several alternative ways of implementing
the same function, some of which do not involve
modifying Minitab itself. One approach is to modify
the operating system in such a way that history facil-
ities are available within processes as well as at the
operating system level. A second approach is to utilize
“mark, cut, and paste” facilities provided by the op-
erating system (as is generally available in Macintosh
software). A third approach is to introduce an inter-
mediate software layer which implements the neces-
sary recording, selecting, and “pasting” features; an
example is through EMACS shell windows. In the
latter case, Minitab would be executed within one of
several buffers (or windows) all under the control of a
screen-oriented text editor.

5.5 Multiple Worksheets

Earlier we likened the process of data analysis to
that of constructing and then traversing a search tree.
Due to the sequential nature of most analysis software,
most statisticians adopt a style of analysis that follows
one branch of the search tree until it becomes apparent
that further progress in that direction is unlikely. At
that point the analyst backtracks to an earlier part of
the tree and proceeds from there. Since the analysis

progresses at any stage by modifying or adding to the
current data set—say, by omitting points temporarily,
or by introducing a transformation of the underlying
variables—in order to return to a previous point in
the analysis the effect of these modifications must be
undone. Unfortunately, most current software pack-
ages make it difficult to “undo” work selectively.
Rather, one must either save copies of the current
session at all of the critical junctures (of course, keep-
ing track of where each of these copies is saved,
together with all of the necessary bookkeeping infor-
mation needed to use each of them), or one must
reconstruct the previous state of things by executing
the inverse transformations. Cowley and Whiting
(1985) and Gale (1985) discuss investigations on
these topics currently under way at Pacific North-
west Laboratories and at AT&T Bell Laboratories,
respectively.

In Minitab, the data set is thought of as a “work-
sheet” similar to what one would lay out on paper,
were the analysis to be done by hand. A more general
concept is that of a workspace, which can be thought
of as a collection of linked worksheets. At any given
time, a single worksheet is the active worksheet; the
others are inactive. Each worksheet in the workspace
can be assigned a name to which it can be referred.
The key to making multiple worksheets effective is
the linking structure, which must be automatically
taken care of by the computing system.

One plan for organizing a workspace is to reflect
the structure of the search tree being traversed. This
means that the workspace itself would consist of a
hierarchical structure of worksheets. Each node in
this structure would consist of a worksheet derived by
a series of transformations from its parent node (that
is, parent worksheet), together with a node history
containing the journal entries by which the transfor-
mation was accomplished (for reference purposes),
and a “memo” in which the analyst could record notes
about the direction being taken in the analysis up to
this point. The “history” attached to the node would

. consist only of those commands which actually mod-

ified the data set; display and analysis commands
would be omitted. At any time, the analyst would be
able to visit other nodes to examine the worksheet
there, to recall that node’s history, to display data, or
to continue the analysis from that node. In addition,
at any time the analyst can create a new node, con-
sisting of a new copy of the current worksheet, an
empty history window, and a blank memo window.
Such a structure would allow the statistician to un-
dertake a highly nonlinear analysis, alternating be-
tween various aspects of the data as their relevance
changes during the course of the analysis.

This linked-list structure partially reflects the way
some data analysts think of the analysis process itself.
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A somewhat simpler special case is that of a binary
tree—an analysis in which every node represents a
decision point between two possible continuations.
Traversing a binary tree can be easily done using a
stack, or a last-in, first-out queue. With such a struc-
ture each node has exactly one predecessor (except for
the “root” node) and at most one successor. The only
node without a successor is the last node created,
which means it is at the “top” of the stack. One
“leaves” a node in one of only two ways: by removing
the node from the stack entirely and returning to its
predecessor (thereby making the predecessor the top
of the stack), or by creating a successor node. Simply
having a workspace which allows automatic creation
of a stack of worksheets may be sufficient for many
purposes.

Whether the computing environment allows a full
hierarchical tree structure or merely the ability to
switch between named worksheets in an unstructured
way, it is important to have the ability to copy subsets
of the data from one worksheet to another. Note that
this copying must have a “one-way” character in the
case of the tree-structured workspace, since only nodes
which have no children can be allowed to be modified.

5.6 Active Links

The previous section introduced the notion of linked
worksheets or data sets, where the links represent the
logical structure of the data analysis. There is another
kind of linking, however, which links columns of a
worksheet to a computation. These links are called
active links, because changes in the worksheet cause
immediate changes to be made either in the contents
of other columns in the worksheet, or in the contents
of an associated window, or both. The passive links of
the workspace represent the relationship between two
versions of the data set; an active link specifies a
computational relationship among columns in the
data set.

The idea of the active link is closely related to the
notion of a “cell” in the many spreadsheet programs

available for microcomputers. Each cell of the spread-

sheet can contain either numerical data, or the de-
scription of a computation to be performed on other
cells in the spreadsheet. In the latter case, the contents
of the cell is automatically recomputed whenever the
contents of the cells to which it refers is modified.
The cells which appear in one of these computational
formulas may themselves to be the results of other
formulas. What the user sees is not the algebraic
relationships among the cells, but rather the result of
all of the algebraic computations. Changing any of the
input variables causes automatic recomputation of the
entire spreadsheet.

The idea is too useful not to be adapted to data
analysis, particularly as it provides a useful alternative

to macros or to replaying journal segments in repeti-
tive, but local, computations. For example, consider
the problem of performing a multiple regression fit,
Y = XB, using the same Y and X variables, but
omitting one or several points in succession. The point
is to assess the effect of particular points on the
analysis. This is cumbersome enough to do once in
such systems as Minitab or GLIM, due in part to the
inadequacies of the data structures built in to those
systems. In Minitab, for instance, one can either PICK
and JOIN rows to be retained into a new set of
columns corresponding to the original columns, or (for
single-point deletions) one can generate a column of
row identification numbers and then OMIT a row
with the selected identification number, again placing
the result in a new set of columns, or one can generate
a column of ones and zeros, zero representing points
to be omitted, and then running a weighted regression
with the dummy column as weights. After selecting
the rows to be included (by whatever method), the
appropriate regression command must be given, fol-
lowed by the commands to construct and to display
the residual plots.

The solution using active links is to associate a
particular column with the dependent variable Y, par-
ticular columns with the regressors X, and another
column with, say, the column of weights. These col-
umns are then actively linked to two new columns,
the contents of which are defined to be the residuals
from the weighted regression of Y on X, and the fitted
values from the same model. In addition, two windows
are created the contents of which contain the regres-
sion statistics and the residual plot, respectively.
Whenever the column of regression weights is modi-
fied (hence changing the subset of cases included in
the regression), both the regression statistics and the
residual plot are automatically recalculated and dis-
played. This makes it very easy for the analyst to
perform one logical operation (change the subset of
included cases) and then immediately see the effect
on the matters of interest.

Another example, somewhat simpler, is that of se-
lecting a transformation for the dependent variable Y
in the regression above. The dependent-variable col-
umn can itself be replaced by an active link which
raises Y to a power, where the power is a constant in
the Minitab worksheet. Changing the value of this
constant causes the dependent-variable column to be
recomputed, which causes the regression and residual
plots to be recomputed. By replacing the dependent-
variable column by various transformed versions of Y
in this way, the effect of a transformation on curvature
in the residual plot can be instantaneously deter-
mined. Again, the data analyst can focus on one
thing—twiddling the parameter of interest—while di-
rectly observing its effects. This facilitates the
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comparisons necessary to choose between, say various
candidate transformations, or various alternative sub-
sets of the cases.

5.7 Side Computations, Filters, Tasks, and Pipes

In the middle of an analysis we often find that we
would like to compute a function on a grid of points,
where either the function, or the grid, or both depend
on the current contents of the worksheet. More gen-
erally, we want to perform a side computation based
on the current data, the results of which we would like
to paste into the current worksheet for further display
or analysis. Typically, these computations are the sort
of thing we would like to perform in a programming
language such as FORTRAN, not GLIM. Indeed,
sometimes it is impossible to do the side computation
within the statistical package itself.

For example suppose that, for each row of an n X p
matrix the statistician wants to construct a column of
length m. This task is exceedingly difficult, if not
impossible, to accomplish using most packages. Yet
this is precisely what must be done to construct the
coordinates for Andrews (1972) plots, for example.
(This example was brought to my attention by David
Wallace.)

As another example, after fitting a nonlinear func-
tion of X to a dependent variable Y, it may be desirable
to plot the original data with the estimated mean
function overlayed. Since the grid of points on which
the values of X fall in the data may be quite unevenly
spaced, it is desirable to plot ¥ (x) on a narrow mesh,
equally spaced grid of points the range of which is
determined by that of the data.

Some ideas from the UNIX environment are useful
in dealing with this problem. It is relatively easy in
UNIX both to create a new process and to make
the output from one process be the input to another
using pipes. A process is a job or a task which consists
of a running computer program. UNIX is an operating
system designed to allow many different tasks, or
processes, to run simultaneously; indeed, UNIX allows
each user to create as many processes as he or she
likes. More accurately, it allows for many different
tasks to share the same resources of a computing
system by scheduling resources and their use by tasks.
Such computing systems are said to provide for
multitasking. (Etymological note. While the terms
“process” and “task” are synonymous, the terms
“multiprocessing” and “multitasking” are not (al-
though they are often confused). The former applies
to a computing system which has several central proc-
essors which can be shared by tasks; the latter means
that the system allows several tasks to contend for
resources.) A program which accepts input from a
standard device and which writes output to a standard
device is said to be operating as a filter. In our case,

we can think of the data worksheet as the “device”
both from which input is read and into which output
is to be written.

The data analysis environment should make it easy
to leave the analysis program temporarily in order to
write or to invoke a program to do the side computa-
tion. It should then be possible to return to the
Minitab process and to invoke a Minitab command
which does the following. It creates a new process
which runs the filter program, and then it pipes the
contents of the selected input portions of the work-
sheet to the filter, and pipes the filter’s output into
specified columns of the worksheet. When the filter
process is complete, the process is killed.

5.8 Graphs

Much has been written recently concerning statis-
tical graphics executed using computer graphics hard-
ware and software, and new methods for statistical
analysis based on the capabilities of computer graphics
systems have been proposed. New graphical methods
can incorporate animation and simulated motion, as
well as dynamically adjustable color, as integral fea-
tures. Most of the emphasis has been on designing
useful new methods and on implementing them effec-
tively on computing systems. (See for instance, Fried-
man and Stuetzle (1983) and Thisted (1984).) What
has been little discussed are ways of integrating graph-
ical methods of all kinds—both new and old—into
effective strategies for data analysis using computer
assistance. In short, the nature of computing environ-
ments which make it easier to create, retrieve, and
compare graphical displays has not been systemati-
cally studied. Many of the principles of software de-
sign illustrated above apply equally well to graphics,
and some of the specific suggestions for data analysis
environments can be carried over directly to the
graphical aspects of data analysis as well. Rather than
discuss specific methods such as those involving
kinematic displays, the remainder of this section will
be devoted to a few comments suggesting how graphics

. can be integrated into the overall data analysis envi-

ronment.

Graphic displays are essential elements of effective
data analysis. A good computing environment will
make it easier to work with graphic displays during
the course of data analysis. Since much of the analysis
process is based on comparing the consequences of
alternative models, the environment should make it
easy to compare similar graphic displays from com-
peting models. For instance, we have already discussed
a way to use active links in selecting an appropriate
transformation of a response variable Y by contin-
ously varying a transformation parameter while mon-
itoring the effect on a plot of Y against a suitable
predictor X.
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Using multiple windows, we can display two or more
graphs side by side. To do this, the computing envi-
ronment should make it easy to save and to retrieve
graphs that are created in the course of an analysis. If
the metaphor for the electronic notebook is the three-
ring binder, an appropriate metaphor for saving and
retreiving graphs is the slide carousel. Each graph can
be thought of as a 35-mm slide, which can be inserted
into, or retrieved from, a “carousel.” One can review
and compare graphs by cycling through the carousel,
“projecting” the graph in a window devoted to that
purpose.

An interesting and instructive description of an
attempt to integrate graphics and graphical methods
into a computing environment, in this case, an envi-
ronment for economists and econometricians, is de-
scribed in Williams (1984).

6. COMPUTING ENVIRONMENTS AND
EXPERT SYSTEMS

A good computing environment for data analysis is
easy and natural to use, and makes it easier for novices
to take advantage of techniques and strategies discov-
ered and refined by more experienced statisticians. It
is a small conceptual step from the idea of a useful
environment to that of a helpful one. An expert system
for data analysis would consist of software which could
offer consultation of various sorts during the course
of an analysis session. Ideally, it would be fully inte-
grated into the computing environment.

We have discussed ways in which a computing en-
vironment could be designed, and we have emphasized
that such a computing system should be nearly trans-
parent to the user, in the sense that the things that
are easy to do within the system are precisely the
things that the user would actually like to do to get
the job done. To achieve this goal, it is necessary to
understand what it is that data analysts—especially
the best ones—actually do. Indeed, the procedures
that statisticians employ and the strategies they adopt
reflect experience and understanding of data sets, of

statistical methods, of mathematical structures, and -

of the nature of experimentation and data collection
(Thisted, 1985a). This base of knowledge is the start-
ing point for constructing an expert system to provide
assistance (or even just a second opinion) to users of
a statistical system.

In order to develop a base of statistical knowledge
that could be incorporated into an expert system, a
logical starting point is to collect transcripts of data
analysis sessions, to observe precisely what it is that
analysts do. These transcripts, automatically collected
by the computing environment described here, could
then be examined and analyzed as records of the data
analysis process. The authors of these transcripts
could be interviewed about their reasons for doing

particular things, or doing them in a particular order.
Through these devices the heuristics that are used—
whether conscious or not—and their effectiveness can
be assessed. Thus, an appropriately designed comput-
ing environment can serve as a useful tool for con-
structing the knowledge base of an expert statistical
consultant. The dual role of computing environments
in representing and discovering knowledge of statis-
tical analysis strategies is discussed in Thisted
(1985b).

7. OTHER COMPUTING ENVIRONMENTS
FOR STATISTICIANS

Statisticians do far more than data analysis, and
the role of the computer in statistics is far larger than
simply that of performing the computations involved
in analyzing data. These other tasks that involve
computing could themselves profit from suitably
designed computing environments. Of course these
environments would differ greatly from the data anal-
ysis environment considered here, simply because the
tasks which should be easy and natural are so different
in the different settings. We outline some areas of
statistical endeavor in which designing a computing
environment could well produce great benefit.

The “Monte Carlo Workbench” would consist of a
large collection of tools and building blocks necessary
to conduct a simulation study. The tools would include
a set of random number generators, looping con-
structs, automatic performance monitoring modules,
and interfaces which produce output suitable for anal-
ysis using a data analysis package. This environment
would make it easy to construct pilot studies, perhaps
even full simulation studies, using standard experi-
mental designs and producing easily examined and
analyzed results.

The “Theoretical Statistician’s Environment”
would include such things as numerical and symbolic
integrators and differentiators, and plotting routines.
Such an environment would make it easy to explore
such diverse things as asymptotic expansions, oper-
ating characteristics, and likelihood surfaces.

Just as the statistical methodologist must often
employ simulations to explore numerical statistical
methods, so must the investigator of graphical meth-
ods also explore the range of situations over which
particular candidate methods perform well. An envi-
ronment for constructing and testing new graphical
methods would play much the same role for such an
investigator as the Monte Carlo Workbench might
play for those studying more traditional methods.
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buried by irrelevant details, shifts in viewpoint and
unnecessarily old-fashioned examples. The reader’s
overall level of confusion may rise rather than fall.
Rather than quibbling with the paper, however, it will
be more helpful for me to present, briefly, my own
view of the topic.

What are the important points about computing
environments for data analysis? Here are two, from
which most of the relevant conclusions follows:

(1) Computing environments should be judged by
their complete, present and future, contribution to
their user’s effectiveness.

(2) Most of the important improvements in statis-
tical computing environments have come through ad-
vances in general computing, not from anything stat-
isticians have done. This will continue to be true for
the immediate future.

Point (1) implies that it is not sufficient to ask how
easily the user can carry out a specific current data
analysis, important as that question may be. Two
other questions must also be weighed. How well does
the environment carry out the nonstatistical tasks



