Positive linear maps of Banach algebras with an involution

By

Seiji WATANABE

(Received Nov. 30, 1970)

1. Introduction

A linear map $T: A \to B$ is called a *positive linear map* if $T(A^+) \subset B^+$, where A and B are complex Banach *-algebras, and, A^+ and B^+ are the sets of all finite sums of the form $x^*x(x \in A \text{ or } x \in B)$ In [7], we investigated some properties of positive linear maps of Banach *-algebras. In this paper, we shall also consider some properties of positive linear maps of complex *-Banach algebras with an identity (namely, Banach *-algebras with an isometric involution and an identity of norm one)

Let A be a complex *-Banach algebra with an identity e_A . By ||x||, we denote the norm of $x \in A$. Moreover, we denote the well known pseud-norms on A as follows:

 $\|x\|_{1,A} = \sup\{|f(x)|; f \text{ is positive linear functional on } A \text{ such that } f(e_A) \leq 1\},\ \|x\|_{2,A} = \sup\{(f(x^*x))^{\frac{1}{2}}; f \text{ is positive linear functional on } A \text{ such that } f(e_A) \leq 1\}.$

Then we have $||x||_{1, A} \leq ||x||_{2, A} \leq ||x||$. If A is a C*-algebra, we have $||x||_{1, A} = ||x||_{2, A}$ A = ||x|| for every hermitian element x of A. Moreover $\{x \in A; ||x||_{1, A} = 0\}$ and $\{x \in A; ||x||_{2, A} = 0\}$ coincide with the *-radical $R^{(*)}_{A}$ of A. We recall that, if A has an identity, any positive linear map is self-adjoint (namely, $T(x^*) = (T(x_i))^*$). The notations given in [7] will be quoted without notice.

2. Operator norm of positive linear map

In [7], we discussed the continuity of positive linear maps of Banach *-algebras. In this section, we consider the operator norm of positive linear map of *-Banach algebras with an identity.

We need the following definition.

DEFINITION 2.1. Let A and B be a *-Banach algebra and a C*-algebra respectively, and T be a positive linear map of A into B. Then T is said to satisfy the stronger form of generalized Schwarz inequality provided $T(x^*)$ $T(x) \leq ||T|| T(x^*x)$ for every $x \in A$.

If T(x) is of the form $V^*\rho(x)V$ for every $x \in A$, where ρ is a *-representation of A on a complex Hilbert space K, and H is a complex Hilbert space on which B acts, and V is a

S. Watanabe

bounded linear operator of H into K, then T satisfies the stronger form of generalized Schwarz inequality. Indeed, let e_A be the identity element of A, then $||Te_A|| \leq ||T||$, $||(\rho(e_A)V)^* (\rho(e_A)V)| \leq ||T||$. Then, we have $||(\rho(e_A)V) (\rho(e_A)V)^*|| \leq ||T||$. Thus, we have $(\rho(e_A)V) (\rho(e_A)V)^* \leq ||T|| \cdot I$, where I is the identity operator on K. Then, we have

$$T(x^{*})T(x) = V^{*}\rho(x)^{*}VV^{*}\rho(x)V$$

= $V^{*}\rho(x)^{*}(\rho(e_{A})V) (\rho(e_{A})V)^{*}\rho(x)V$
 $\leq V^{*}\rho(x)^{*}||T|| \cdot I\rho(x)V$
= $||T||V^{*}\rho(x^{*}x)V = ||T||T(x^{*}x).$

PROPOSITION 2. 2. Let A and B be complex *-Banach algebras with an identity e_A and e_B respectively, and T be a positive linear map of A into B. If B is *-semi-simple, then the operator bound of T with respect to the norm $\| \|_{1,B}$ coincides with the norm $\| T(e_A) \|_{1,B}$. In particular, if B is a C*-algebra and T satisfies the stronger form of generalized Schwarz inequality, then the operator norm $\| T \|$ of T coincides with $\| T(e_A) \|$.

PROOF. It is clear that we have, for every $x \in A$,

$$||Tx||_{1,B} \leq ||Te_A||_{1,B} ||x||.$$

Since $||e_A|| = 1$, the first part of proposition follows.

Next, suppose B is a C*-algebra, and T satisfies the stronger form of generalized Schwarz inequality. Since $T(H_A) \subset H_B$ (H_A and H_B mean the sets of all hermitian elements of A and B respectively), it follows, for every $x \in H_A$,

$$||Tx|| = ||Tx||_{1,B} \leq ||Te_A||_{1,B} ||x|| = ||Te_A|| ||x||.$$

Then, for every $x \in A$, we have

$$||Tx||^{2} = ||(Tx)^{*} (Tx)|| \leq ||T|| ||Tx^{*}x|| \leq ||T|| ||Te_{A}|| ||x||^{2}.$$

Thus we have $||T|| \leq ||Te_A||$ which implies that $||T|| = ||Te_A||$ and completes the proof.

If A and B be C*-algebras, any positive linear map T satisfy the stronger form of Generalized Schwarz inequality for unitary operators. Hence we have $||T|| = ||Te_A||$. (see. [4], [5])

3. Extreme positive linear maps

In this section, we investigate the extreme points of a certain convex set consisting of positive linear maps. We define $P_0(A, B)$ as follows:

 $P_0(A, B) = \{T: A \rightarrow B: \text{ positive linear map such that } \|T\|_0 \leq 1\},\$

where $||T||_0$ is the operator bound with respect to the pseud-norm $|| ||_{2,A}$. We shall show that if B is symmetric and semi-simple, any multiplicative positive linear map in $P_0(A, B)$

2

is the extreme point of $P_0(A, B)$ A useful tool in the proof is the generalized Schwarz inequality due to R. V. Kadison.

We need the following lemmas.

LEMMA 3. 1. Let A and B be complex *-Banach algebras with an identity e_A and e_B respectively and T be a positive linear map of A into B. Then we have $T(R^{(*)}A) \subset R^{(*)}B$.

PROOF. For every $x \in A$, we have

 $||T(x)||_{1, B}$

= sup {|f(T(x))|; f is positive linear functional on B such that $f(e_B) \leq 1$ }

 $\leq \|T(e_A)\|_{1,B} \cdot \sup \{|g(x)|; g \text{ is positive linear functional on } A \text{ such that } g(e_A) \leq 1\}$

= $||T(e_A)||_{1,B} ||x||_{1,A}$. Therefore we have $T(R^{(*)}A) \subset R^{(*)}B$. q. e. d.

In his paper [2], Kadison has proved the following tool in study of positive linear maps.

LEMMA 3. 2. (Generalized Schwarz inequality) Let A be a C*-algebra, and T be a linear order-preserving map of A into the algebra of all bounded operators on some Hilbert space such that $||T|| \leq 1$. Then we have $T(a^2) \leq (T(a))^2$ for every $a \in H_A$.

Now we have the following two lemmas.

LEMMA 3. 3. Suppose that A is a *-Banach algebra and B is a C*-algebra. Let T be a positive linear map of A into B such that $||T||_0 \leq 1$. Then $T(a^2) - (T(a))^2$ is contained in B+ for every $a \in H_A$.

PROOF. Suppose that A is *-semi-simple. Let $\| \|_{2,A}$ be the C*-norm of A and C* (A) be the completed C*-algebra of A with respect to $\| \|_{2,A}$, that is, the enveloping C*-algebra of A. Since T is continuous on A with respect to the C*-norm $\| \|_{2,A}$, T may be extended to a positive linear map \widetilde{T} of the C*-algebra $C^*(A)$ into the C*-algebra B such that $\| \widetilde{T} \|_0 \leq 1$. From lemma 3. 2, we have $T(a^2) - (T(a))^2 \in B^+$ for every $a \in H_A$.

Next suppose that A is non *-semi-simple. Let $R^{(*)}_A$ be the *-radical of A. Then the quotient *-Banach algebra $A/R^{(*)}_A$ is *-semi-simple. Let π be the canonical *-homomorphism of A onto $A/R^{(*)}_A$. Since C*-algebra is *-semi-simple, T vanishes on $R^{(*)}_A$ from lemma 3. 1. Thus we may define a linear map \widehat{T} of $A/R^{(*)}_A$ into B by $\widehat{T}(\pi(x)) = \widehat{T}(x)$ for every $x \in A$. It is clear that T is a positive linear map of $A/R^{(*)}_A$ into B such that $\|\widehat{T}\|_0 \leq 1$. Therefore we have $T(a^2) - (T(a))^2 = \widehat{T}(\pi(a^2)) - (\widehat{T}(\pi(a)))^2$ $\in B^+$ which completes the proof.

LEMMA 3. 4. Let A and B be complex *-Banach algebras and T be a positive linear map of A into B such that $||T||_0 \leq 1$. If B is symmetric, $T(a^2) - (T(a))^2$ is contained in the norm closure of B⁺ for every $a \in H_A$.

PROOF. Let π be any *-representation of B on a complex Hilbert space H. Then $\pi \circ T$

is a positive linear map of A into B(H) (the C*-algebra of all bounded linear operators on H) such that $\|\pi \circ T\|_0 \leq 1$. From lemma 3. 2, we have

$$\pi(T(a^2) - (T(a))^2) = (\pi \circ T) (a^2) - ((\pi \circ T) (a))^2 \in (B(H))^+.$$

Now let f be any positive linear functional on B. We denote the *-representation and the cyclic vector associated to f by π_f and ξ_f respectively. Then we have

$$f(T(a^2) - (T(a))^2) = (\pi_f(T(a^2) - (Ta)^2) \xi_f | \xi_f) \ge 0.$$

Therefore $T(a^2) - (T(a))^2$ has a non-negative real spectrum. This implies that $T(a^2) - (T(a))^2 \in H^+{}_B = B^+$ and so completes the proof.

DEFINITION 3.5. Let A and B be eomplex *-Banach algebras. By a C*-homomorphism we mean a positive linear map T such that $T(a^2)=(T(a))^2$ whenever a is an element of H_A. Of course any multiplicative element of P (A, B) is C*-homomorphism.

We have the following

THEOREM 3. 6. Let A and B be complex *-Banach algebras. If B is symmetric and semi-simple, all C*-homomorphisms in $P_0(A, B)$ are extreme points of $P_0(A, B)$.

Since the proof is almost the same as that of Theorem 3.4 in [7], we omit.

REMARK. We can replace the symmetricity and semi-simplicity on B by *-semisimplicity. Indeed, for any irreducible *-representation π of B on a complex Hilbert space $H, \pi \circ T$ is C*-homomorphism in $P_0(A, B(H))$. From lemma 3.3 and the argument used in the proof of the theorem 3.4 in [7] applying to the map $\pi \circ T$, the desired conclusion follows.

We call that $P_1(A, B)$ is the set of all positive limear maps of A into B which preserve the identity.

In the following, let A and B be C*-algebras with an identity. We denote the conjugate space of A and B by A^* and B^* respectively, and the canonical injection of a Banach space into the second conjugate space by J. We may define a certain convex set similar to $P_1(A, B)$ in $L(B^*, A^*)$ which is the set of all bounded linear maps of B^* into A^* . In the remainder of this section, we obtain some results on the connection between the extreme point in $P_1(A, B)$ and the extremality of its adjoint in the certain convex set.

We define the set $Q_1(B^*, A^*)$ of linear maps of B^* into A^* as follows:

$$Q_1(B^*, A^*)$$

= {S:B* \rightarrow A*: linear, bounded with respect to the functional norm and S(E_B) \subset E_A}

where E_A and E_B are the sets of all states of A and B respectively. It is clear that $Q_1(B^*, A^*)$ is convex and $T \in P_1(A, B)$ if and only if $T^* \in Q_1(B^*, A^*)$.

PROPOSITION 3. 7. If T^* is an extreme point in $Q_1(B^*, A^*)$, T is an extreme point of P_1 (A, B).

PROOF. Suppose that there exist T_1 , $T_2 \in P_1(A, B)$ such that $T = \frac{1}{2}(T_1 + T_2)$. Then $T^* = \frac{1}{2}(T_1^* + T_2^*)$ with T_1^* , $T_2^* \in Q_1(B^*, A^*)$. The extremality of T^* implies $T^* = T_1^* = T_2^*$. Therefore we have $T = T_1 = T_2$ which completes the proof.

Next, we consider the converse statement, that is, if $T \in P_1(A, B)$ is an extreme point, is T^* the extreme point of $Q_1(B^*, A^*)$? we shall show that, for any C*-homomorphism $T \in P_1(A, B)$ (of course such a map is an extreme point of $P_1(A, B)$), T^* is an extreme point in $Q_1(B^*, A^*)$.

We need the following lemma.

LEMMA 3.8. Suppose that A is a C*-algebra and B is a von Neuman algebra acting on a comlex Hilbert space. Let B_* be the predual (the set of all ultra-weakly continuous linear functionals on B). If T is an extreme point in $P_1(A, B)$, the restriction of T^* on B_* is an extreme point of $Q_1(B_*, A^*)$.

PROOF. It is clear that $T^*|B_*$ (the restriction of T^* on B_*) is contained in Q_1 (B_* , A^*). Suppose that there exist $S_1, S_2 \in Q_1$ (B_*, A^*) such that $T^*|B^* = \frac{1}{2}(S_1 + S_2)$. Since the conjugate Banach space of the predual B_* is B, we define two linear maps T_1, T_2 of A into B in the following manner:

$$J(T_1(a)) = S_1^*(J(a)), J(T_2(a)) = S_2^*(J(a))$$
 for every $a \in A$.

It is clear that T_1 , $T_2 \in P_1(A, B)$. For every $f \in B_*$ and $a \in A$, we have

$$S_1(f)(a) = S_1^*(J(a))(f) = J(T_1(a))(f) = f(T_1(a)) = T_1^*(f)(a).$$

Therefore, we have $S_1 = T_1^* | B_*$. Similarly we have $S_2 = T_2^* | B_*$. Now, since $(T^* | B_*)^* = \frac{1}{2}(S_1^* + S_2^*)$, we have, for every $f \in B$ and $a \in A$,

$$(T^*|_{B_*})^*(Ja)(f) = \frac{1}{2}(S_1^*(Ja)(f) + S_2^*(Ja)(f))$$

$$T^*(f)(a) = \frac{1}{2}(J(J(T_1(a))(f) + J(T_2(a)(f))),$$

$$f(Ta - \frac{1}{2}(T_1a + T_2a)) = 0.$$

Since f is an arbitrary element of B_* , we have $Ta = \frac{1}{2}(T_1a + T_2a)$. Hence we have $T = \frac{1}{2}(T_1 + T_2a)$. From the extremality of T, we have $T = T_1 = T_2$ and therefore $T^*|_{B_*} = S_1 = S_2$ which implies the extremality of $T^*|_{B_*}$ in $Q_1(B_*, A^*)$. The proof is completed.

From the above argument, if B is a finite dimensional C*-algebra, T is extreme if and only if T^* is extreme.

PROPOSITION 3.9. Let A and B be C*-algebras and T be a C*-homomorphism in $P_1(A, B)$. Then T* is an extreme point of $Q_1(B^*, A^*)$.

PROOF. Let π and C be the universal representation of B and the enveloped von

Neumann algebra of *B*. Since π is non-degenerate, $\pi(e_B)$ is the identity operator on *H* (the representation space of π). Thus $\pi \circ T$ is a C*-homomorphism in $P_1(A, C)$ and therefore $T^* \circ \pi^* | C_* = (\pi \circ T)^* | C_*$ is an point of $Q_1(C_*, A^*)$. If $T^* = \frac{1}{2}(S_1 + S_2)$ with S_1 , $S_2 \in Q_1(B^*, A^*)$, we have

$$T^* \circ \pi^* |_{C_*} = \frac{1}{2} (S_1 \circ \pi^* |_{C_*} + S_2 \circ \pi^* |_{C_*}).$$

From the extremality of $(\pi \circ T)^*_{C_*}$, we have

$$T^* \circ \pi|_{C_*} = S_1 \circ \pi^*|_{C_*} = S_2 \circ \pi^*|_{C_*}.$$

Consequently, we have $T^*=S_1=S_2$ which implies the extremality of T^* in $Q_1(B^*, A^*)$.

NIIGATA UNIVERSITY

References

- 1 J DIXMIER: Les C*-algè bres et leurs représentations, Gauthier-villars, Paris, 1964.
- 2. R. V. KADISON: A generalized Schwartz inequality and algebraic invariants for operator algebras, Ann. of Math., 56 (1952), 494–503.
- 3. C. E. RICKART: General theory of Banach algebras, D. Van Nostrand, New York, 1960.
- 4. B. Russo and H. A. Dye: A note on unitary operators in C*-algebras, Duke J. Math. 33 (1966) 413-416.
- 5. W. F. STEINSPRING: Positive functions on C*-Algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216
- 6 E. STØRMER: Positive linear maps of operator algebras, Acta Math., 110 (1963), 233-278.
- 7. S WATANABE: Note on positive linear maps of Banach algebras with an iinvolution, Sci. Rep. Niigata Univ., Ser. A, No. 7(1969), 17-21.