# Positive linear maps of Banach algebras with an involution 

By<br>Seiji Watanabe

(Received Nov. 30, 1970)

## 1. Introduction

A linear $\operatorname{map} T: A \rightarrow B$ is called a positive linear map if $T\left(A^{+}\right) \subset B^{+}$, where $A$ and $B$ are complex Banach *-algebras, and, $A^{+}$and $B^{+}$are the sets of all finite sums of the form $x^{*} x(x \in A$ or $x \in B$.) In [7], we investigated some properties of positive linear maps of Banach *-algebras. In this paper, we shall also consider some properties of positive linear maps of complex *-Banach algebras with an identity (namely, Banach *-algebras with an isometric involution and an identity of norm one)

Let $A$ be a complex *-Banach algebra with an identity $e_{A}$. By $\|x\|$, we denote the norm of $x \in A$. Moreover, we denote the well known pseud-norms on $A$ as follows:
$\|x\|_{1, A}=\sup \left\{|f(x)| ; f\right.$ is positive linear functional on $A$ such that $\left.f\left(e_{A}\right) \leqq 1\right\}$,
$\|x\|_{2}, A=\sup \left\{\left(f\left(x^{*} x\right)\right)^{\frac{1}{2}} ; f\right.$ is positive linear functional on $A$ such that $\left.f\left(e_{A}\right) \leqq 1\right\}$.
Then we have $\|x\|_{1}, A \leqq\|x\|_{2}, A \leqq\|x\|$. If $A$ is a C*-algebra, we have $\|x\|_{1}, A=\|x\|_{2}$, $A=\|x\|$ for every hermitian element $x$ of $A$. Moreover $\left\{x \in A ;\|x\|_{1}, A=0\right\}$ and $\{x \in A$; $\left.\|x\|_{2}, A=0\right\}$ coincide with the *-radical $R^{(*)_{A}}$ of $A$. We recall that, if $A$ has an identity, any positive linear map is self-adjoint (namely, $T\left(x^{*}\right)=(T(x))^{*}$ ). The notations given in [7] will be quoted without notice.

## 2. Operator norm of positive linear map

In [7], we discussed the continuity of positive linear maps of Banach *-algebras. In this section, we consider the operator norm of positive linear map of *-Banach algebras with an identity.

We need the following definition.
Definition 2.1. Let $A$ and $B$ be $a^{*-B a n a c h ~ a l g e b r a ~ a n d ~ a ~} C^{*}$-algebra respectively, and $T$ be a positive linear map of $A$ into $B$. Then $T$ is said to satisfy the stronger form of generalized Schwarz inequality provided $T\left(x^{*}\right) T(x) \leqq\|T\| T\left(x^{*} x\right)$ for every $x \in A$.

If $T(x)$ is of the form $V^{*} \rho(x) V$ for every $x \in A$, where $\rho$ is a *-representation of $A$ on a complex Hilbert space $K$, and $H$ is a complex Hilbert space on which $B$ acts, and $V$ is a
bounded linear operator of $H$ into $K$, then T satisfies the stronger form of generalized Schwarz inequality. Indeed, let $e_{A}$ be the identity element of $A$, then $\left\|T e_{A}\right\| \leqq\|T\|, \|(\rho$ $\left.\left(e_{A}\right) V\right)^{*}\left(\rho\left(e_{A}\right) V\|\leqq\| T \|\right.$. Then, we have $\left\|\left(\rho\left(e_{A}\right) V\right)\left(\rho\left(e_{A}\right) V\right)^{*}\right\| \leqq\|T\|$. Thus, we have $\left(\rho\left(e_{A}\right) V\right)\left(\rho\left(e_{A}\right) V\right)^{*} \leqq\|T\| \cdot I$, where $I$ is the identity operator on $K$. Then, we have

$$
\begin{aligned}
T\left(x^{*}\right) T(x) & =V^{*} \rho(x)^{*} V V^{*} \rho(x) V \\
& =V^{*} \rho(x)^{*}\left(\rho\left(e_{A}\right) V\right)\left(\rho\left(e_{A}\right) V\right)^{*} \rho(x) V \\
& \leqq V^{*} \rho(x)^{*}\|T\| \cdot I \rho(x) V \\
& =\|T\| V^{*} \rho\left(x^{*} x\right) V=\|T\| T\left(x^{*} x\right)
\end{aligned}
$$

Proposition 2.2. Let $A$ and $B$ be complex *-Banach algebras with an identity $e_{A}$ and $e_{B}$ respectively, and $T$ be a positive linear map of $A$ into $B$. If $B$ is *-semi-simple, then the operator bound of $T$ with respect to the norm $\left\|\|_{1, B}\right.$ coincides with the norm $\| T\left(e_{A}\right) \|_{1, B}$. In particular, if $B$ is $a C^{*}$-algebra and $T$ satisfies the stronger form of generalized Schwarz inequality, then the operator norm $\|T\|$ of $T$ coincides with $\left\|T\left(e_{A}\right)\right\|$.

Proof. It is clear that we have, for every $x \in A$,

$$
\|T x\|_{1, B} \leqq\left\|T e_{A}\right\|_{1, B}\|x\| .
$$

Since $\left\|e_{A}\right\|=1$, the first part of proposition follows.
Next, suppose $B$ is a $C^{*}$-algebra, and $T$ satisfies the stronger form of generalized Schwarz inequality. Since $T\left(H_{A}\right) \subset H_{B}\left(H_{A}\right.$ and $H_{B}$ mean the sets of all hermitian elements of $A$ and $B$ respectively), it follows, for every $x \in H_{A}$,

$$
\|T x\|=\|T x\|_{1, B} \leqq\left\|T e_{A}\right\|_{1, B} B x\|=\| T e_{A}\|\cdot\| x \| .
$$

Then, for every $x \in A$, we have

$$
\|T x\|^{2}=\left\|(T x)^{*}(T x)\right\| \leqq\|T\|\left\|T x^{*} x\right\| \leqq\|T\|\left\|T e_{A}\right\|\|x\|^{2}
$$

Thus we have $\|T\| \leqq\left\|T e_{A}\right\|$ which implies that $\|T\|=\left\|T e_{A}\right\|$ and completes the proof.
If $A$ and $B$ be $C^{*}$-algebras, any positive linear map $T$ satisfy the stronger form of Generalized Schwarz inequality for unitary operators. Hence we have $\|T\|=\left\|T e_{A}\right\|$. (see. [4], [5])

## 3. Extreme positive linear maps

In this section, we investigate the extreme points of a certain convex set consisting of positive linear maps. We define $P_{0}(A, B)$ as follows:

$$
P_{0}(A, B)=\left\{T: A \rightarrow B: \text { positive linear map such that }\|T\|_{0} \leqq 1\right\}
$$

where $\|T\|_{0}$ is the operator bound with respect to the pseud-norm $\left\|\|_{2}, A\right.$. We shall show that if $B$ is symmetric and semi-simple, any multiplicative positive linear map in $P_{0}(A, B)$
is the extreme point of $P_{0}(A, B) \quad$ A useful tool in the proof is the generalized Schwarz inequality due to R. V. Kadison.

We need the following lemmas.
Lemma 3. 1. Let $A$ and $B$ be complex *-Banach algebras with an identity $e_{A}$ and $e_{B}$ respectively and $T$ be a positive linear map of $A$ into $B$. Then we have $\left.T\left(R^{(*)} A\right) \subset R^{(*)}\right)_{B}$.

Proof. For every $x \in A$, we have

$$
\begin{aligned}
& \|T(x)\|_{1, B} \\
& \quad=\sup \left\{|f(T(x))| ; f \text { is positive linear functional on B such that } f\left(e_{B}\right) \leqq 1\right\} \\
& \leqq\left\|T\left(e_{A}\right)\right\|_{1, B} \cdot \sup \left\{|g(x)| ; g \text { is positive linear functional on } A \text { such that } g\left(e_{A}\right) \leqq 1\right\} \\
& =\left\|T\left(e_{A}\right)\right\|_{1, B}\|x\|_{1, A} . \quad \text { Therefore we have } T\left(R^{\left.(*)_{A}\right) \subset R^{(*)}}{ }_{B} . \quad\right. \text { q. e. d. }
\end{aligned}
$$

In his paper [2], Kadison has proved the following tool in study of positive linear maps.

Lemma 3.2. (Generalized Schwarz inequality) Let $A$ be a $C^{*}$-algebra, and $T$ be a linear order-preserving map of $A$ into the algebra of all bounded operators on some Hilbert space such that $\|T\| \leqq 1$. Then we have $T\left(a^{2}\right) \leqq(T(a))^{2}$ for every $a \in H_{A}$.

Now we have the following two lemmas.
Lemma 3. 3. Suppose that $A$ is $a^{*}$-Banach algebra and Bis $a C^{*}$-algebra. Let $T$ be $a$ positive linear map of $A$ into $B$ suchthat $\|T\|_{0} \leqq 1$. Then $T\left(a^{2}\right)-(T(a))^{2}$ is contained in $B^{+}$ for every $a \in H_{A}$.

Proof. Suppose that $A$ is ${ }^{*}$-semi-simple. Let $\left\|\|_{2, A}\right.$ be the $\mathrm{C}^{*}$-norm of $A$ and $C^{*}$ $(A)$ be the completed $\mathrm{C}^{*}$-algebra of $A$ with respect to $\left\|\|_{2}, A\right.$, that is, the enveloping $\mathrm{C}^{*}$-algebra of $A$. Since $T$ is continuous on $A$ with respect to the $\mathrm{C}^{*}$-norm $\left\|\|_{2}, A, T\right.$ may be extended to a positive linear map $\widetilde{T}$ of the $\mathrm{C}^{*}$-algebra $C^{*}(A)$ into the $\mathrm{C}^{*}$-algebra $B$ such that $\|\widetilde{T}\|_{0} \leqq 1$. From lemma 3. 2, we have $T\left(a^{2}\right)-(T(a))^{2} \in B^{+}$for every $a \in H_{A}$.

Next suppose that $A$ is non ${ }^{*}$-semi-simple. Let $R^{(*)} A$ be the ${ }^{*}$-radical of $A$. Then the quotient *-Banach algebra $A / R^{\left({ }^{*}\right)_{A}}$ is *-semi-simple. Let $\pi$ be the canonical ${ }^{*}$-homomorphism of A onto $A / R^{(*)} A$. Since $\mathrm{C}^{*}$-algebra is *-semi-simple, T vanishes on $R^{(*)} A$ from lemma 3.1. Thus we may define a linear map $\widehat{T}$ of $A / R^{(*)} A$ into $B$ by $\widehat{T}(\pi(x))=\widehat{T}(x)$ for every $x \in A$. It is clear that $T$ is a positive linear map of $A / R^{(*)} A$ into $B$ such that $\|\widehat{T}\|_{0} \leqq 1$. Therefore we have $\left.T\left(a^{2}\right)-(T(a))^{2}=\widehat{T} \pi\left(a^{2}\right)\right)-(\widehat{T}(\pi(a)))^{2}$ $\in B^{+}$which completes the proof.

Lemma 3. 4. Let $A$ and $B$ be complex *-Banach algebras and $T$ be a positive linear map of $A$ into $B$ such that $\|T\|_{0} \leqq 1$. If $B$ is symmetric, $T\left(a^{2}\right)-(T(a))^{2}$ is contained in the norm closure of $B^{+}$for every $a \in H_{A}$.

Proof. Let $\pi$ be any *-representation of $B$ on a complex Hilbert spae $H$. Then $\pi \circ T$
is a positive linear map of $A$ into $B(H)$ (the $C^{*}$-algebra of all bounded linear operators on $H$ ) such that $\|\pi \circ T\|_{0} \leqq 1$. From lemma 3. 2, we have

$$
\pi\left(T\left(a^{2}\right)-(T(a))^{2}\right)=(\pi \circ T)\left(a^{2}\right)-((\pi \circ T)(a))^{2} \in(B(H))^{+}
$$

Now let $f$ be any positive linear functional on $B$. We denote the *-representation and the cyclic vector associated to $f$ by $\pi_{f}$ and $\xi_{f}$ respectively. Then we have

$$
f\left(T\left(a^{2}\right)-(T(a))^{2}\right)=\left(\pi_{f}\left(T\left(a^{2}\right)-(T a)^{2}\right) \xi_{f} \mid \xi_{f}\right) \geqq 0
$$

Therefore $T\left(a^{2}\right)-(T(a))^{2}$ has a non-negative real spectrum. This implies that $T\left(a^{2}\right)$ $-(T(a))^{2} \in H^{+}{ }_{B}=B^{+}$and so completes the proof.

Definition 3. 5. Let $A$ and $B$ be eomplex *-Banach algebras. By a C*-homomorphism we mean a positive linear map $T$ such that $T\left(a^{2}\right)=(T(a))^{2}$ whenever $a$ is an element of $H_{A}$. Of course any multiplicative element of $\mathrm{P}(\mathrm{A}, \mathrm{B})$ is $\mathrm{C}^{*}$-homomorphism.

We have the following
Theorem 3.6. Let $A$ and $B$ be complex *-Banach algebras. If $B$ is symmetric and semi-simple, all $C^{*}$-homomorphisms in $P_{0}(A, B)$ are extreme points of $P_{0}(A, B)$.

Since the proof is almost the same as that of Theorem 3.4 in [7], we omit.
Remark. We can replace the symmetricity and semi-simplicity on $B$ by ${ }^{*}$-semisimplicity. Indeed, for any irreducible *-representation $\pi$ of $B$ on a complex Hilbert space $H, \pi \circ T$ is $\mathrm{C}^{*}$-homomorphism in $P_{0}(A, B(H))$. From lemma 3.3 and the argument used in the proof of the theorem 3.4 in [7] applying to the map $\pi \circ T$, the desired conclusion follows.

We call that $P_{1}(A, B)$ is the set of all positive limear maps of $A$ into $B$ which preserve the identity.

In the following, let $A$ and $B$ be $C^{*}$-algebras with an identity. We denote the conjugate space of $A$ and $B$ by $A^{*}$ and $B^{*}$ respectively, and the canonical injection of a Banach space into the second conjugate space by $J$. We may define a certain convex set similar to $P_{1}(A, B)$ in $L\left(B^{*}, A^{*}\right)$ which is the set of all bounded linear maps of $B^{*}$ into $A^{*}$. In the remainder of this section, we obtain some results on the connection between the extreme point in $P_{1}(A . B)$ and the extremality of its adjoint in the certain convex set.

We define the set $Q_{1}\left(B^{*}, A^{*}\right)$ of linear maps of $B^{*}$ into $A^{*}$ as follows:

$$
\begin{aligned}
& Q_{1}\left(B^{*}, A^{*}\right) \\
& \quad=\left\{S: B^{*} \rightarrow A^{*}: \text { linear, bounded with respect to the functional norm and } S\left(E_{B}\right) \subset E_{A}\right\}
\end{aligned}
$$

where $E_{A}$ and $E_{B}$ are the sets of all states of $A$ and $B$ respectively. It is clear that $Q_{1}\left(B^{*}\right.$, $\left.A^{*}\right)$ is convex and $T \in P_{1}(A, B)$ if and only if $T^{*} \in Q_{1}\left(B^{*}, A^{*}\right)$.

Proposition 3. 7. If $T^{*}$ is an extreme point in $Q_{1}\left(B^{*}, A^{*}\right), T$ is an extreme point of $P_{1}$ ( $A, B$ ).

Proof. Suppose that there exist $T_{1}, T_{2} \in P_{1}(A, B)$ such that $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$. Then $T^{*}=\frac{1}{2}\left(T_{1}{ }^{*}+T_{2}{ }^{*}\right)$ with $T_{1}{ }^{*}, T_{2}{ }^{*} \in Q_{1}\left(B^{*}, A^{*}\right)$. The extremality of $T^{*}$ implies $T^{*}=T_{1}{ }^{*}$ $=T_{2}{ }^{*}$. Therefore we have $T=T_{1}=T_{2}$ which completes the proof.

Next, we consider the converse statement, that is, if $T \in P_{1}(A, B)$ is an extreme point, is $T^{*}$ the extreme point of $Q_{1}\left(B^{*}, A^{*}\right)$ ? we shall show that, for any $\mathrm{C}^{*}$-homomorphism $T \in P_{1}(A, B)$ (of course such a map is an extreme point of $P_{1}(A, B)$ ), $T^{*}$ is an extreme point in $Q_{1}\left(B^{*}, A^{*}\right)$.

We need the following lemma.
Lemma 3.8. Suppose that $A$ is a $C^{*}$-algebra and $B$ is a von Neummn algebra acting on a comlex Hilbert space. Let $B_{*}$ be the predual (the set of all ultra-weakly continuous linear functionals on B ). If $T$ is an extreme point in $P_{1}(A, B)$, the restriction of $T^{*}$ on $B_{*}$ is an extreme point of $Q_{1}\left(B_{*}, A^{*}\right)$.

Proof. It is clear that $T^{*} \mid B_{*}$ (the restriction of $T^{*}$ on $B_{*}$ ) is contained in $Q_{1}$ ( $B_{*}$, $\left.A^{*}\right)$. Suppose that there exist $S_{1}, S_{2} \in Q_{1}\left(B_{*}, A^{*}\right)$ such that $T^{*} \left\lvert\, B^{*}=\frac{1}{2}\left(S_{1}+S_{2}\right)\right.$. Since the conjugate Banach space of the predual $B_{*}$ is $B$, we define two linear maps $T_{1}, T_{2}$ of $A$ into $B$ in the following manner:

$$
J\left(T_{1}(a)\right)=S_{1}^{*}(J(a)), J\left(T_{2}(a)\right)=S_{2}^{*}(J(a)) \text { for every } a \in A
$$

It is clear that $T_{1}, T_{2} \in P_{1}(A, B)$. For every $f \in B_{*}$ and $a \in A$, we have

$$
S_{1}(f)(a)=S_{1}^{*}(J(a))(f)=J\left(T_{1}(a)\right)(f)=f\left(T_{1}(a)\right)=T_{1}^{*}(f)(a) .
$$

Therefore, we have $S_{1}=T_{1}{ }^{*} \mid B_{*}$. Similarly we have $S_{2}=T_{2}{ }^{*} \mid B_{*}$.
Now, since $\left(\left.T^{*}\right|_{B_{*}}\right)^{*}=\frac{1}{2}\left(S_{1}{ }^{*}+S_{2}{ }^{*}\right)$, we have, for every $f \in B$ and $a \in A$,

$$
\begin{aligned}
& \left(\left.T^{*}\right|_{B_{*}}\right)^{*}(J a)(f)=\frac{1}{2}\left(S_{1}^{*}(J a)(f)+S_{2}{ }^{*}(J a)(f)\right) \\
& T^{*}(f)(a)=\frac{1}{2}\left(J \left(J\left(T_{1}(a)\right)(f)+J\left(T_{2}(a)(f)\right)\right.\right. \\
& f\left(T a-\frac{1}{2}\left(T_{1} a+T_{2} a\right)\right)=0
\end{aligned}
$$

Since $f$ is an arbitrary element of $B_{*}$, we have $T a=\frac{1}{2}\left(T_{1} a+T_{2} a\right)$. Hence we have $T=\frac{1}{2}$ $\left(T_{1}+T_{2}\right)$. From the extremality of $T$, we have $T=T_{1}=T_{2}$ and therefore $\left.T^{*}\right|_{B_{*}}=S_{1}=S_{2}$ which implies the extremality of $\left.T^{*}\right|_{B_{*}}$ in $Q_{1}\left(B_{*}, A^{*}\right)$. The proof is completed.

From the above argument, if $B$ is a finite dimensional $\mathrm{C}^{*}$-algebra, $T$ is extreme if and only if $T^{*}$ is extreme.

Proposition 3.9. Let $A$ and $B$ be $C^{*}$-algebras and $T$ be a $C^{*}$-homomorphism in $P_{1}(A$, $B)$. Then $T^{*}$ is an extreme point of $Q_{1}\left(B^{*}, A^{*}\right)$.

Proof. Let $\pi$ and $C$ be the universal representation of $B$ and the enveloped von

Neumann algebra of $B$. Since $\pi$ is non-degenerate, $\pi\left(e_{B}\right)$ is the identity operator on $H$ (the representation space of $\pi$ ). Thus $\pi \circ T$ is a $C^{*}$-homomorphism in $P_{1}(A, C)$ and therefore $T^{*} \circ \pi^{*}\left|C_{*}=(\pi \circ T)^{*}\right| C_{*}$ is an point of $Q_{1}\left(C_{*}, A^{*}\right)$. If $T^{*}=\frac{1}{2}\left(S_{1}+S_{2}\right)$ with $S_{1}$, $S_{2} \in Q_{1}\left(B^{*}, A^{*}\right)$, we have

$$
\left.T^{*} \circ \pi^{*}\right|_{c_{*}}=\frac{1}{2}\left(S_{1} \circ \pi^{*}\left|c_{*}+S_{2} \circ \pi^{*}\right| c_{*}\right)
$$

From the extremality of $(\pi \circ T)^{*} C_{*}$, we have

$$
\left.T^{*} \circ \pi\right|_{C_{*}}=\left.S_{1} \circ \pi^{*}\right|_{C_{*}}=S_{2} \circ \pi^{*} \mid c_{*} .
$$

Consequently, we have $T^{*}=S_{1}=S_{2}$ which implies the extremality of $\mathrm{T}^{*}$ in $Q_{1}\left(B^{*}, A^{*}\right)$.
Niggata University

## References

1 J Dixmier: Les C*-algè bres et leurs représentations, Gauthier-villars, Paris, 1964.
2. R. V. Kadison: A generalized Schwartz inequality and algebraic invariants for operator algebras, Ann. of Math., 56 (1952), 494-503.
3. C. E. Rickart: General theory of Banach algebras, D. Van Nostrand, New York, 1960.
4. B. Russo and H. A. Dye: A note on unitary operators in C*-algebras, Duke J. Math. 33 (1966) 413-416.
5. W. F. Steinspring: Positive functions on C*-Algebras, Proc. Amer. Math. Soc. 6 (1955), 211216
6 E. Størmer: Positive linear maps ofoperator algebras, Acta Math., 110 (1963), 233-278.
7. S Watanabe: Note on positive linear maps of Banach algebras with an iinvolution, Sci. Rep. Niigata Univ., Ser. A, No. 7(1969), 17-21.

