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1. Introduction

A linear map $T:A\rightarrow B$ is called a positive linear map if $T(A^{+})\subset B^{+}$ . where $A$ and $B$

are complex Banach *-algebras, and, $A^{+}$ and $B^{+}$ are the sets of all finite sums of the
form $x^{*}x$ ($x\in A$ or $x\in B.$) In [7], we investigated some properties of positive linear maps
of Banach *-algebras. In this paper, we shall also consider some properties of positive
linear maps of complex *-Banach algebras with an identity (namely, Banach-algebras
with an isometric involution and an identity of norm one)

Let $A$ be a complex *-Banach algebra with an identity $eA$ By $\Vert x\Vert$ , we denote the
norm of $x\in A$ . Moreover, we denote the well known pseud-norms on $A$ as follows:

$\Vert x\Vert_{1},A=\sup$ { $|f(x)|$ ; $f$ is positive linear functional on $A$ such that $f(eA)\leqq 1$},
$\Vert x\Vert_{2},$ $ A=\sup$ {$(f(x^{*}x))^{b}$ ; $f$ is positive linear functional on $A$ such that $f(eA)\leqq 1$}.

Then we have $\Vert x\Vert_{1},$ $A\leqq\Vert x\Vert_{2},$ $ A\leqq\Vert x\Vert$ . If $A$ is a $C^{*}$ -algebra, we have $\Vert x\Vert_{1},$ $A=\Vert x\Vert_{2}$ .
$ A=\Vert x\Vert$ for every hermitian element $x$ of $A$ . Moreover {$x\in A;\Vert x\Vert_{1},$ $A^{=0\}}$ and {$x\in A$ ;
$\Vert x\Vert 2,$ $A=0$} coincide with the $*$ -radical $R^{(*})_{A}$ of $A$ . We recall that, if $A$ has an ide-
ntity, any positive linear map is self-adjoint (namely, $T(x^{*})=(T(x))^{*}$). The notations
given in [7] will be quoted without notice.

2. Operator norm of positive linear map

In [7], we discussed the continuity of positive linear maps of Banach $*$ -algebras.
In this section, we consider the operator norm of positive linear map of $*$ -Banach al-
gebras with an identity.

We need the following definition.

DEFINITION 2. 1. Let $A$ and $B$ be $a^{*}$-Banach algebra and a $C^{*}$-algebra respectively, and
$T$ be a positive linear map of $A$ into B. Then $Tis$ said to satisfy the stronger form of generali-

zed Schwarz inequality provided $T(x^{*})T(x)\leqq\Vert T\Vert T(x^{*}x)$ for every $x\in A$ .

If $T(x)$ is of the form $V^{*}\rho(x)V$ for every $x\in A$ , where $\rho$ is $a^{*}$-representation of $A$ on a
complex Hilbert space $K$, and $H$ is a complex Hilbert space on which $B$ acts, and $V$ is a
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bounded linear operator of $H$ into $K$, then $T$ satisfies the stronger form of generalized
Schwar $z$ inequality. Indeed, let $eA$ be the identity element of $A$ , then $\Vert TeA\Vert\leqq\Vert T\Vert,$ $\Vert(\rho$

$(eA)V)^{*}(\rho(eA)V\Vert\leqq\Vert T\Vert$ . Then, we have $\Vert(\rho(eA)V)(\rho(eA)V)^{*}\Vert\leqq\Vert T\Vert$ . Thus, we
have $(\rho(eA)V)(\rho(eA)V)^{*}\leqq\Vert T\Vert\cdot I$, where $I$ is the identity operator on $K$ Then, we
have

$T(x^{*})T(x)=V^{*}\rho(x)^{*}VV^{*}\rho(x)V$

$=V^{*}\rho(x)^{*}(\rho(eA)V)(\rho(eA)V)^{*}\rho(x)V$

$\leqq V^{*}\rho(x)^{*}\Vert T\Vert\cdot I\rho(x)V$

$=\Vert T\Vert V^{*}\rho(x^{*}x)V=\Vert T\Vert T(x^{*}x)$ .

PROPOSITION 2. 2. Let $A$ and $B$ be complex *-Banach algebras with an identity $eA$ and
$eB$ respectively, and $T$ be a positive linear map of $A$ into B. If $B$ is $*$-semi-simple, then the
operator bound of $T$ with respect to the norm $\Vert\Vert_{1}.B$ coincides with the norm $\Vert T(eA)\Vert_{1,B}$ . In
particular, if $B$ is a $C^{*}$-algebra and $T$ satisfies the stronger form of $g\dot{en}eralized$ Schwarz
inequality, then the operator norm $\Vert T\Vert$ of $T$ coincides with $\Vert T(eA)\Vert$ .

PROOF. It is clear that we have, for every $x\in A$ ,

$\Vert Tx\Vert_{1^{B}}.\leqq\Vert Te_{A}\Vert_{1^{B}}.\Vert x\Vert$ .
Since $\Vert eA\Vert=1$ , the first part of proposition follows.
Next, suppose $B$ is a $c*$-algebra, and $T$ satisfies the stronger form of generalized Sch-
war$z$ inequality. Since $T(HA)\subset HB(HA$ and HB mean the sets of all hermitian elements
of $A$ and $B$ respectively), it follows, for every $x\in HA$,

$\Vert Tx\Vert=\Vert Tx\Vert_{1.B}\leqq\Vert TeA\Vert_{1}$ . $ B\Vert x\Vert=\Vert TeA\Vert\Vert x\Vert$ .
Then, for every $x\in A$ , we have

$\Vert Tx\Vert^{2}=\Vert(Tx)^{*}(Tx)\Vert\leqq\Vert T\Vert\Vert Tx^{*}x\Vert\leqq\Vert T\Vert\Vert TeA\Vert\Vert x\Vert^{2}$.
Thus we have $\Vert T\Vert\leqq\Vert TeA\Vert$ which implies that $\Vert T\Vert=\Vert TeA\Vert$ and completes the proof.

If A and $B$ be $C^{*}$-algebras, any positive linear map $T$ satisfy the stronger form of
Generalized Schwarz inequality for unitary operators. Hence we have $\Vert T\Vert=\Vert Te_{A}\Vert$ .
(see. [4], [5])

3. Extreme positive linear maps

In this section, we investigate the extreme points of a certain convex set consisting
of positive linear maps. We define $P_{0}(A, B)$ as follows:

$P_{0}(A, B)=$ { $TA\rightarrow B$ : positive linear map such that $\Vert T\Vert_{0}\leqq 1$ },

where $\Vert T\Vert_{0}$ is the operator bound with respect to the pseud-norm $\Vert\Vert_{2}.A$ . We shall show that
if $B$ is symmetric and semi-simple, any multiplicative positive linear map in $P_{0}(A,B)$
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is the extreme point of $P_{0}(A, B)$ Auseful tool in the proof is the generalized Schwarz
inequality due to R. V. Kadison.

We need the following lemmas.

LEMMA 3. 1. Let $A$ and $B$ be complex *-Banach algebras with an identity $eA$ and $eB$ res-
pectively and $T$ be a positive linear map of $A$ into B. Then we have $T(R^{()}**A)\subset R^{()}B$ .

PROOF. For dvery $x\in A$ , we have

$\Vert T(x)\Vert_{1},$ $B$

$=\sup$ { $|f(T(x))|$ ; $f$ is positive linear functional on $B$ such that $f(eB)\leqq 1$ }
$\leqq\Vert T(eA)\Vert_{1^{B}}.\cdot\sup$ { $|g(x)|;g$ is positive linear functional on $A$ such that $g(eA)\leqq 1$}
$=\Vert T(eA)\Vert_{1},B\Vert x\Vert_{1}.A$. Therefore we have $T(R(*)A)\subset R^{(*})B$ . $q$. $e$ . $d$ .

In his paper [2], Kadison has proved the following tool in study of positive linear
maps.

LEMMA 3. 2. (Generalized Schwar $z$ inequality) Let $A$ be a $C^{*}$ -algebra, and $T$ be a
linear order-preserving map $\phi$ $A$ into the algebra of all bounded operators on some Hilbert
space such that $\Vert T\Vert\leqq 1$ . Then we have $T(a^{2})\leqq(T(a))^{2}$ for every $a\in HA$

Now we have the following two lemmas.

LEMMA 3. 3. Suppose that $A$ is $a^{*}$ -Banach algebra and $B$ is a $C^{*}$ -algebra. Let $T$ be a
positive linear map of $A$ into $B$ suchthat $\Vert T\Vert_{0}\leqq 1$ . Then $T(a^{2})-(T(a))^{2}$ is contained in $B+$

for every $a\in HA$

PROOF. Suppose that $A$ is $*$ -semi-simple. Let $\Vert\Vert_{2},A$ be the $C^{*}$ -norm of $A$ and $C^{*}$

$(A)$ be the completed $C^{*}$ -algebra of $A$ with respect to $\Vert\Vert_{2}$ . $A$, that is, the enveloping
$C^{*}$ -algebra of $A$ . Since $T$ is continuous on $A$ with respect to the $C^{*}$ -norm $\Vert\Vert_{2}$ . $A,$ $T$ may
be extended to a positive linear map $ T\sim$ of the $C^{*}$ -algebra $C^{*}(A)$ into the $C^{*}$ -algebra $B$

such that $\Vert T\Vert_{0}\leqq 1\sim$ . From lemma 3. 2, we have $T(a^{2})-(T(a))^{2}\in B^{+}$ for every $a\in H_{A}$ .
Next suppose that $A$ is non-semi-simple. Let $R^{()}*A$ be the $*$-radical of $A$ . Then

the quotient $*$ -Banach algebra $A/R^{()}*A$ is $*$ -semi-simple. Let $\pi$ be the canonical $*$ -ho-
momorphism of A onto $A/R^{(*)}A$ . Since $C^{*}$ -algebra is $*$-semi-simple, $T$ vanishes on
$R^{(*})A$ from lemma 3. 1. Thus we may dePne a linear map $\wedge T$ of $A/R^{(*}$ ) $A$ into $B$ by
$\wedge\wedge T(\pi(x))=T(x)$ for every $x\in A$ . It is clear that $T$ is a positive linear map of $A/R(*)_{A}$

into $B$ such that $\Vert T\Vert_{0}\leqq 1\wedge$ . Therefore we have $ T(a^{2})-(T(a))^{2}=T(\pi(a^{2}))-(T(\pi(a)))^{2}\wedge\wedge$

$\in B^{+}$ which completes the proof.

LEMMA 3. 4. Let $A$ and $B$ be complex *-Banach algebras and $T$ be a positive linear map
of $A$ into $B$ such that $\Vert T\Vert_{0}\leqq 1$ . If $B$ is symmetric, $T(a^{2})-(T(a))^{2}$ is contained in the norm
closure of $B^{+}for$ every $a\in HA$

PROOF. Let $\pi$ be any *-representation of $B$ on a complex Hilbert spae $H$ Then $\pi\circ T$
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is a positive linear map of $A$ into $B(H)$ (the $C^{*}$-algebra of all bounded linear operators
on $H$) such that $\Vert\pi\circ T\Vert_{0}\leqq 1$ . From lemma 3. 2, we have

$\pi(T(a^{2})-(T(a))^{2})=(\pi\circ T)(a^{2})-((\pi\circ T)(a))^{2}\in(B(H))^{+}$ .

Now let $f$ be any positive linear functional on $B$. We denote the $*$-representation and
the cyclic vector associated to $f$ by $\pi f$ and $\xi_{f}$ respectively. Then we have

$f(T(a^{2})-(T(a))^{2})=(\pi f(T(a^{2})-(Ta)^{2})\xi f|\xi f)\geqq 0$ .
Therefore $T(a^{2})-(T(a))^{2}$ has a non-negative real spectrum. This implies that $T(a^{2})$

$-(T(a))^{2}\in H^{+}B=B^{+}$ and so completes the proof.

DEFINITION 3. 5. Let $A$ and $B$ be eomplex $*$ -Banach algebras. By a $C^{*}$ -homomorphism

we mean a positive linear map $T$ such that $T(a^{2})=(T(a))^{2}$ whenever $a$ is an element of $HA$

Of course any multiplicative element of $P(A, B)$ is $c*$-homomorphism.

We have the following

THEOREM 3. 6. Let $A$ and $B$ be complex $*$-Banach algebras. If $B$ is symmetric and
semi-simple, all $C^{*}$ -homomorphisms in $P_{0}(A, B)$ are extreme points of $P_{0}(A, B)$ .

Since the proof is almost the same as that of Theorem3.4in [7], we omit.
REMARK. We can replace the symmetricity and semi-simplicity on $B$ by $*$-semi-

simplicity. Indeed, for any irreducible $*$-representation $\pi$ of $B$ on a complex Hilbert
space $H,$ $\pi\circ T$ is $C^{*}$-homomorphism in $P_{0}(A, B(H))$ . From lemma 3.3 and the argument
used in the proof of the theorem 3.4 in [7] applying to the map $\pi\circ T$, the desired conclu-
sion follows.

We call that $P_{1}(A, B)$ is the set of all positive limear maps of $A$ into $B$ which
preserve the identity.

In the following, let $A$ and $B$ be $C^{*}$ -algebras with an identity. We denote the conju-
gate space of $A$ and $B$ by $A^{*}andB^{*}$ respectively, and the canonical injection of a Banach
space into the second conjugate space by $I$ We may define a certain convex set similar
to $P_{1}(A, B)$ in $L(B^{*}, A^{*})$ which is the set of all bounded linear maps of $B^{*}$ into $A^{*}$ . In
the remainder of this section, we obtain some results on the connection between the ext-
reme point in $P_{1}(A.B)$ and the extremality of its adjoint in the certain convex set.

We define the set $Q_{1}(B^{*},A^{*})$ of linear maps of $B^{*}$ into $A^{*}$ as follows:

$Q_{1}(B^{*}, A^{*})$

$=$ {$S:B^{*}\rightarrow A^{*}:$ linear. bounded with respect to the functional norm and $S(EB)\subset EA$}

where EA and EB are the sets of all states of $A$ and $B$ respectively. It is clear that $Q_{1}(B^{*}$,
$A^{*})$ is convex and $T\in P_{1}(A, B)$ if and only if $T^{*}\in Q_{1}(B^{*}, A^{*})$ .

PROPOSITION 3. 7. If $T^{*}is$ an extreme point in $Q_{1}(B^{*}, A^{*}),$ $T$ is an extreme point of $P_{1}$

$(A, B)$ .
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PROOF. Suppose that there exist $T_{1},$ $T_{2}\in P_{1}(A, B)$ such that $T=\frac{1}{2}(T_{1}+T_{2})$ . Then

$T^{*}=\frac{1}{2}(T_{1^{*}}+T_{2^{*}})$ with $T_{1}^{*},$ $T_{2^{*}}\in Q_{1}(B^{*}, A^{*})$ . The extremality of $T^{*}$ implies $T^{*}=T_{1^{*}}$

$=T_{2^{*}}$ . Therefore we have $T=T_{1}=T_{2}$ which completes the proof.

Next, we consider the converse statement, that is, if $T\in P_{1}(A, B)$ is an extreme
point, is $T^{*}$ the extreme point of $Q_{1}(B^{*}, A^{*})$ ? we shall show that, for any $C^{*}$ -homomor-
phism $T\in P_{1}(A, B)$ (of course such a map is an extreme point of $P_{1}(A,$ $B)$), $T^{*}$ is an
extreme point in $Q_{1}(B^{*}, A^{*})$ .

We need the following lemma.

LEMMA 3. 8. Suppose that $A$ is a $C^{*}$ -algebra and $B$ is a von Neummn algebra acting on a
comlex Hilbert space. Let $B_{*}be$ the predual (the set of all ultra.weakly continuous linear
functionals on B). If $T$ is an extreme point in $P_{1}(A, B)$ , the restriction of $T^{*}$ on $B_{*}is$ an
extreme point of $Q_{1}(B_{*}, A^{*})$ .

PROOF. It is clear that $T^{*}|B_{*}$ (the restriction of $T^{*}$ on $B_{*}$) is contained in $Q_{1}(B_{*}$ ,
$A^{*})$ . Suppose that there exist $S_{1},$ $S_{2}\in Q_{1}(B_{*}, A^{*})$ such that $T^{*}|B^{*}=\frac{1}{2}(S_{1}+S_{2})$ . Since

the conjugate Banach space of the predual $B_{*}$ is $B$, we define two linear maps $T_{1},$ $T_{2}$ of
$A$ into $B$ in the following manner:

$J(T_{1}(a))=S_{1^{*}}(J(a)),$ $J(T_{2}(a))=S_{2}^{*}(J(a))$ for every $a\in A$ .
It is clear that $T_{1},$ $T_{2}\in P_{1}(A, B)$ . For every $f\in B_{*}$ and $a\in A$ , we have

$S_{1}(f)(a)=S_{1^{*}}(J(a))(f)=J(T_{1}(a))(f)=f(T_{1}(a))=\tau_{1}*\omega(a)$ .
Therefore, we have $S_{1}=T_{1^{*}}|B_{*}$ . Similarly we have $S_{2}=T_{2^{*}}|B_{*}$ .
Now, since $(T^{*}|B_{*})^{*}=\frac{1}{2}(S_{1^{*}}+S_{2^{*}})$ , we have, for every $f\in B$ and $a\in A$ ,

$(T^{*}|B_{*})^{*}(Ja)Ct)=\frac{1}{2}(S_{1^{*}}(Ja)(f)+S_{2^{*}}(Ja)(f))$,

$T^{*}(f)(a)=\frac{1}{2}(J(J(T_{1}(a))(f)+J(T_{2}(a)(f))$,

$f(Ta-\frac{1}{2}(T_{1}a+T_{2}a))=0$ .

Since $f$ is an arbitrary element of $B_{*}$ , we have $Ta=\frac{1}{2}(T_{1}a+T_{2}a)$ . Hence we have $T=\frac{1}{2}$

$(T_{1}+T_{2})$ . From the extremality of $T$, we have $T=T_{1}=T_{2}$ and therefore $T^{*}|B*=S_{1}=S_{2}$

which implies the extremality of $T^{*}|B_{*}$ in $Q_{1}(B_{*}, A^{*})$ . The proof is completed.
From the above argument. if $B$ is a finite dimensional $C^{*}$ -algebra, $T$ is extreme if

and only if $T^{*}$ is extreme.

PROPOSITION 3. 9. Let $A$ and $B$ be $C^{*}$ -algebras and $T$ be a $C^{*}$ -homomorphism in $P_{1}(A$ ,
$B)$ . Then $T^{*}is$ an extreme point of $Q_{1}(B^{*}, A^{*})$ .

PROOF. Let $\pi$ and $C$ be the universal representation of $B$ and the enveloped von
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Neumann algebra of $B$. Since $\pi$ is non-degenerate, $\pi(e_{B})$ is the identity operator on $H$

(the representation space of $\pi$). Thus $\pi\circ T$ is a $C^{*}$-homomorphism in $P_{1}(A, C)$ and
therefore $T^{*}\circ\pi^{*}|C_{*}=(\pi\circ T)^{*}|C_{*}$ is an point of $Q_{1}(C_{*}, A^{*})$ . If $T^{*}=21(S_{1}+S_{2})$ with $S_{1}$,

$S_{2}\in Q_{1}(B^{*}, A^{*})$ , we have

$T^{*}\circ\pi^{*}|_{C*}=\frac{1}{2}(S_{1}\circ\pi^{*}|_{C*}+S_{2}\circ\pi^{*}|_{C*})$ .

From the extremality of $(\pi\circ T)_{C*}^{*}$ , we have

$ T^{*}\circ\pi|_{C*}=S_{1}\circ\pi^{*}|_{C*}=S_{2}\circ\pi^{*}|c*\cdot$

Consequently, we have $T^{*}=S_{1}=S_{2}$ which implies the extremality of $T^{*}$ in $Q_{1}(B^{*}, A^{*})$ .
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