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ON THE SOLUTION OF A FUNCTIONAL EQUATION*
HELENE AIRAULT

0. Introduction. The quantum-mechanical problems of n mass points
on the line interacting pairwise under the influence of a potential pro-
portional to the inverse square of the distance or to the square of the
distance were solved explicitly by F. Calogero [1]. This led him to con-
jecture that the classical problems would be integrable. This was estab-
lished in [2] for the three-body problem. Then J. Moser [3] introduced
matrices L and B, and writing the equations in P. Lax’s form [4], he
solved the classical n-particle system on the line with the inverse square
potential. He successfully applied the method to the potential sin~2x
and to the Toda lattice. This method was further extended by M. Adler
[5] to potentials of the form x~2 + ax?. The question arose, to which
potentials could this method be applied. In the case of the classical n-

body problem characterized by the Hamiltonian
H = 2 Vix; — x),

n
i>k=1

1 2
2’_1P,-+

F. Calogero [6] considered potentials of the form V(x) =
a(x)a(—x) + const. Writing P. Lax’s condition with
Ly = 8;p; + (1 — 8;) alx; — %)

and

N

By, = 8 121 Blx; — x,)
I
— (1 = 8;) &'(x; — x;)

he was led to solve the equation (related equations appear in {7, 8)).

1) «(y)a(z) — a(y)a'(z) = a(y + 2)[BY) — L&)

Functions such that «,(x) = bdn(ax)/sn(ax) and a,(x) = ben(ax)/sn(ax)
are solutions of (1) and they yield the same potential V(x) = AP(x) + p,
where A and p are two constants and P is the Weierstrass P-function. In
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particular, when the two periods of P are infinite, one recovers the x=2
potential, and when one of the periods is finite and the other infinite,
one finds the sin—2x or the sh~2x potential.

In the following, we prove that if & and B are two meromorphic
functions which satisfy (1), then a(x)a(—x) must be equal to AP(x) + p.
[When this proof was shown to F. Calogero at the Mathematical Con-
gress on Solitons (Tucson, January 1976), he said that he had a different
proof and he pointed out the work by P. P. Kulish [9] and mentioned
that another proof was going to appear in Doklady.] In fact (1) is sim-
ply an addition formula for Weierstrassian functions. If one defines a,
by a,%(z) = Pz) — e, where ¢, = P(w,) and {w,} is an irreducible set
of zeros of P'(z) (A = 1,2, 3), then «a, is a solution of (1) and B is com-
puted to be equal to —P(y) + const.

Now the special form of L and B considered above seems related to
the motion of three particles. In the case of three mass points inter-
acting by means of potentials related by the addition formula

1 Viy) Vi'(y)
) ( 1 Vyu) Vy'(u) > =0
1 Vyu+y  =Viw+y
the equations of motion
2 = = V33 — 2) — Vy(3y — 23)
— Vi(z, — %)
2= Vylz — 25) + V{2, — 2y)
may be written dL/dt = [L, B]. (The L and B defined in this case are
slightly different from the ones defined in [6]). This permits us to in-

clude the case of the exponential potential with nearest neighbor inter-
action (Toda lattice).

2, = Vii(z, — 2)

1. The solutions of (1). Assume that a« and B are two meromorphic
functions which satisfy the equation (1). Consider two points x and y
and write

Bly) — B(—x — y) + B(—x — y) — B(x) = Bly) — B(x).
Multiplying by a(—x)a(—y)a(x + y), one obtains
[@(y)a(—x — y) — a(y)a’(—x — yla(-y)a(x + y)
+ [ (=x = y)a(x) — a(—x — y)a'K)]a(—x)a(x + y)
= [(yla(x) — a(y)e’(@]a(—x)a(—y).
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Using the fact that V(x) = a(x)a(—x), gives
Vix + y)la'(y)a(—y) — o' (R)a(—x)]
— Vy)le'(—x — ylalx + y) — o (x)a(—x)]
+ Vo' (—x — ylalx + y) — «(y)a(—y)] = 0.

Rewriting the same relation with —y instead of y and —x instead of x,
and subtracting the second relation from the first, one obtains

1 Vi) V()
) ( 1 V) Vi(y) > =0.
1 Vie+y —Vi+y)

The functions V(x) = AP(x) + p, where P is the Weierstrass function and
A and p are two constants, are solutions of (2)(see [11]) and they are the
only meromorphic ones. A proof of this last fact follows.

If V has no pole at 0, and verifies (2), one may suppose V(0) = 0 and
write

x)a

1 Vi) V'(x)
< 1 0 V/(0) > =0
1 V) — V(@)

which implies 2V(x)V'(x) = 0 which means V is identically zero. So, if
V is not a constant, it must have a pole at zero. Writing
V(z) = az~" + V,(z) one sees that the pole has to be of order 2 and V
has to be even. One may suppose V,(0) =0 and @ = 1. Then, write
V(e) = €2 4 V,(¢) and make ¢ tend to zero in the following equation

1 V(u) V/(u)

< 1 1/€ + Vo) —2/€ + V,/(e) ) =0
1 Viu + ¢ —V'(u + ¢

or

1 V() V'(u)

< 0 1/ —2/€
1 Viu + € — Viu + ¢
1 V(u) Vi)

+ < 1 V,(e) v, (0 = 0.

1 V(u + ¢ —V'(u+¢

One obtains
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1 V(u) V'(u)

V(W) V() = — 1in3€—12 < 0 1 iy )
) 1 Viu+e¢ —Viu+e
— _é_ V/”(u)'

This is the differential equation for the Weierstrass P function.

Consider the case where V(z) = P(z) — e, (A = 1,2, 3) where P is the
Weierstrass function, and as usual, e, = P(w,) where w, (A = 1,2, 3) is
an irreducible set of zeros of P'(z). One can compute 8 in (1) using the
additional theorems for the Weierstrass sigma-functions [10; 11].

Let P(z) — e, = a)\%(z) where a,(z) = 0,(2)/0(z) A\ =1, 2, 3). Recall
that 6,(2) = o(z + w,)/0(w,) exp (—sn ,) where

M = $(wy)-
Rewrite (1),

) IO Yy I e ol I
aly)  alm) - PW)— REI= e

Using [10, p. 29],
a\'(y) d o\(y)

o) dy C oy
_1_ Py oY)y
2 Py) — e, o\(y)a(y)

where {p, », A} = {1, 2, 3}. Then

a)\/(y) _ a)\,(z) - _ ou(y)ov(y) Ou(Z)O',,(Z)
ay) @) o\(y)o(y) 0,(2)o(z)

Now reduce to the same denominator and use [10, D-7, p. 51]

—0,(4)0,(y)0\(2)0(2) + 0,(x)0,(2)05(y) = o\(y + 2)o(y — 2).

So, one has to prove

oly +2)oly —2) _ _
T = [By) — B@)].
Use [10, D-I, p. 51],

o(z + ylo(y — 2) = 0%(Yy)0,%(z) — 6,%(y)0*(2).
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Dividing by ¢%(y)o?(z), one gets

oY) _ '@ _
)" o =~ B+ AR

then
Bly) = —ay*(y) A=1,2,3)

As B is determined up to an additive constant, one may take

Bly) = —Py).

2. The case of three mass points. Consider now the motion of three
particles, under the action of three potentials. Denote by z,, z,, z; the
positions and by p,, p,, p; the momenta. Between z, and z,;, the poten-
tial V; acts, where i+#j+#k and {i,j,k} = {1,2,3}. Let V,/(2),
k = 1,2, 3, denote the derivative of V,. The equations of motion are

Z = = V33 — 2) — Vo'(z — %)
£y = V3’2, — %) — V(2 — %)
23 = Vy(2; — ) + Vi'(32 — %3)-
The potential function is
Ulzy, 23 23) = Vs(z; — 25) + Vy(z, — 25)
+ Valzy — %)

One defines a,, a, a; by V,(2) = a;%(z) + A where A is a constant,
k=123 Let

P1 iag(z) — 2,) ioy(z) — 23)
= < —iag(z) — 2,) P2 ioy(2y — 23) >
—ioy(z; — z5)  —ioy(zy — 23) Ps
and
K, iag'(z) — 2) iay'(z — z3)
B= < iag'(z) — 2,) K, ioy'(25 — 23) >
iy (z) — 2,) iay'(2, — 2,) K

THEOREM. The condition dL/dt = [L, B] is equivalent to the equations
of motion if and only if the three potentials V., V,, V, satisfy the fol-
lowing identity:
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1 Vi(y) Vi'(y)
3) ( 1 Vyu) Vy'(u) > =0
for all u and y.

aPly) +b. (2) V=V, =V, and V, =0 which implies V(x) = Ae™:
This case corresponds to a small Toda lattice. (3) V,(y) = aP(y) + b and
Vo,=V,=aPy + d) + c.

Proor. Call a3 = ay(z; — 2,); ay = ay(2; — 23) and a; = a,(z, — 25).
The condition dL/dt = [L, B] is equivalent to

ParticuLarR Cases: (1) V.=V, = V, = V; which gives V(y) =

i(Ky, — Kyag — aa,” — aja’ =0
4) Ky — K)o, + ay05" — aga,” =0
(K3 — Kpa; + aas’ + ay/ag = 0.

Multiply each line of (4) respectively by a,a, —a,a; and a,a; and
add. Then

(—ayey + azag)a,? — (@, + azaz)a,?
+ (ay'a; + ay/ay)a? = 0

and this is (3).
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