LATTICE-VALUED BOREL MEASURES

S. S. KHURANA

ABSTRACT. A Riesz representation type theorem is proved for measures on locally compact spaces, taking values in some ordered vector spaces.

In a series of papers ([4], [5], [6]), J. M. Maitland Wright has established, among other things, some Riesz representation type theorems for positive linear mappings from C(X) to E, X being a compact Hausdorff space and E a complete (or σ -complete) vector-lattice. In this paper we prove these results (Theorem 4) by using the properties of order convergence in vector lattices.

We shall use the notations of ([2], [3]). For a compact Hausdorff space X, we denote by C(X) the vector space of all continuous real-valued functions on X with sup norm, by L(X) and M(X) the dual and bidual of C(X), respectively, and by $\beta(X)$ and $\beta_1(X)$ the sets of all bounded Borel and Baire measurable real-valued functions on X, respectively. In the natural order C(X) is a vector lattice and $\beta(X)$ and $\beta_1(X)$ are boundedly σ -complete lattices. Also L(X) and M(X) are boundedly complete vector lattices and C(X) is a sublattice of M(X). Let S(X) be the subspace of M(X) generated by those elements of M(X) which are suprema of bounded subsets of C(X).

Let E be a vector lattice (always assumed to be over the field of real numbers). Order convergence, order closure (\sigma-closure), order continuity (σ -continuity) in vector lattices are taken in the usual sense ([1], [2], [3]). If A is a subset of E, let A_1 be the set of order limits, in E, of sequences in A, A₂ be the set of order limits of sequences in $A \cup A_1$ (= A_1), and so on. Continuing this process transfinitely, if necessary, and taking the union of all these subsets, we get the order σ -closure of the set A. A vector subspace B of E we shall call monotone order closed (σ -closed), if for any net (sequence) $\{x_{\alpha}\}$, such that $x_{\alpha} \uparrow x$ in $E, x \in B$ $(x_{\alpha} \uparrow x \text{ means } \{x_{\alpha}\} \text{ is increasing and its sup is } x)$. Now if A is a vector sublattice of a boundedly σ -complete vector lattice E, E_1 a monotone order σ -closed vector subspace of E, and $E_1 \supset A$, then $E_1 \supset A_1$ (A₁ as defined above); since A_1 is also a vector sublattice of E, $E_1 \supset A_2$, and so continuing this (transfinitely if necessary) we get $E_1 \supset \text{ order } \sigma\text{-closure of } A$. This result will be needed later. Monotone order continuity (σ -continuity) can be defined between ordered

vector spaces in a similar way. For any real-valued function on a topological space Z, sup $f = \text{closure of } \{z \in Z : f(z) \neq 0\}$ in Z.

The order σ -closure of S(X) (C(X)), in M(X), will be denoted by Bo(X) (Ba(X)). We denote by B(X) the set of all bounded real-valued functions on X with the natural point-wise order. $\beta_1(X)$ is the order σ -closure of C(X) in B(X), and $\beta(X)$ is the order σ -closure of the vector space generated by bounded lower semicontinuous functions on X. If X is Stonian (σ -Stonian), C(X) is a boundedly complete (σ -complete) vector lattice, and in this case $H = \{f \in B(X) : \exists g \in C(X) \text{ such that } f = g \text{ except on a meagre subset of } X\} \supset \beta(X)$ ($\beta_1(X)$); this gives a mapping $\psi: \beta(X) \to C(X)$ ($\psi_1: \beta_1(X) \to C(X)$). We prove first the following simple lemmas.

Lemma 1. There exists a 1-1, onto, linear, both way positive, mapping $\varphi : Bo(X) \to \beta(X)$ ($\varphi_1 : Ba(X) \to \beta_1(X)$), such that

- (i) $\varphi(f) = f(\varphi_1(f) = f), \forall f \in C(X);$
- (ii) $\varphi, \varphi^{-1}, \varphi_1, \varphi_1^{-1}$ are all order σ -continuous;
- (iii) for any increasing net $\{f_{\alpha}\}\$ in C(X), $\varphi(\sup f_{\alpha}) = \sup \varphi(f_{\alpha})$, and $\varphi^{-1}(\sup f_{\alpha}) = \sup \varphi^{-1}(f_{\alpha})$.

PROOF. On B(X), the space of all bounded, real-valued functions on X, we take the topology of point-wise convergence. Since the identity map $i: (C(X), \| \circ \|) \to B(X)$ is a weakly compact linear operator, its second adjoint $i'': (M(X), \sigma(M(X), L(X))) \rightarrow \hat{B}(X)$ is continuous, and so is order continuous, since order convergence in M(X) implies $\sigma(M(X), L(X))$ -convergence. This means that for an increasing net $\{f_a\}$ in C(X), $\varphi(\sup\{f_a\}-\inf M(X))=\sup\{f_a\}-\inf B(X)$. This proves that $i''^{-1}(\beta(X)) \supset S(X)$ and is order σ -closed, and so $i''^{-1}(\beta(X)) \supset S(X)$ Bo(X); similar results hold for $\beta_1(X)$. Let $\varphi = i'' \mid \text{Bo}(X) \mid (\varphi_1 = i'' \mid \varphi_1 = \varphi_$ $\operatorname{Ba}(X)$). Then $\varphi : \operatorname{Bo}(X) \to \beta(X)$ $(\varphi_1 : \operatorname{Ba}(X) \to \beta_1(X))$. If $f \in \operatorname{Bo}(X)$ and $f \ge 0$, then there exists a net $\{f_a\} \subset C(X)$ such that $f_a \stackrel{\circ}{\to} f$ (i.e., order converges to f in M(X) [2]. This means $f_{\alpha}^{+} \stackrel{o}{\longrightarrow} f$, and so $f_{\alpha}^{+} \xrightarrow{\circ} \varphi(f)$ which means that $\varphi(f) \geq 0$. Now suppose that for some $f \in Bo(X)$ $\varphi(f) = 0$. Take $\{f_a\} \subset C(X)$ such that $f_a \stackrel{\circ}{\to} f$ and so $f_{\alpha} \xrightarrow{\circ} \varphi(f) = 0$. This means $f_{\alpha}(x) \to 0$, $\forall x \in X$, and so $\langle f, \epsilon_x \rangle = 0$, \forall point measure ϵ_x in L(x), which proves that f = 0 ([2], p. 83), and thus φ is 1-1. To prove that φ^{-1} is positive, take $f \in Bo(X)$, such that $\varphi(f) \ge 0$. There exists a net $\{f_a\} \subset C(X)$ such that $f_a \xrightarrow{o} f$ in M, which means that $f_{\alpha}^{+} \xrightarrow{\circ} f^{+}$ and $f_{\alpha}^{-} \xrightarrow{\circ} f^{-}$. This gives that $\lim_{\alpha} f_{\alpha}^{-}(x) =$ 0, $\forall x \in X$, and so $\langle f^-, \epsilon_x \rangle = 0$ for any point measure ϵ_x in L(X)which means $f^- = 0$ ([2], p. 83). This proves φ^{-1} is positive. To prove that φ is onto, take a lower semi-continuous function f in B(X). Then there exists an increasing net $\{f_a\}$ in C(X) such that $f_a \uparrow f$. Taking $g=\sup\{f_{\alpha}^{-}\}\$ in M(X), we get $f=\varphi(g)$. Also if an increasing sequence $h_n\uparrow h$ in B(X), by positivity of φ^{-1} , $g_n=\varphi^{-1}(h_n)$ is increasing in M(X); and so $\varphi(g)=h$, where $g=\sup\{g_n\cdot \text{ in }M(X)\}$. This proves φ is onto. The order σ -continuity and other properties of φ^{-1} are easily verified. Similar arguments prove the corresponding results for φ_1 . This completes the proof.

Lemma 2. If X is Stonian (σ -Stonian), the mapping $\psi: \beta(X) \to C(X)$ ($\psi_1: \beta_1(X) \to C(X)$) is a positive order σ -continuous linear mapping. Also if $\{f_\alpha\}$ is an increasing net in C(X) such that $\sup f_\alpha = f$ in $\beta(X)$, then $\psi(f) = \sup \psi(f_\alpha)$, if X is Stonian.

Proof. The linearity and positivity of ψ are obvious. Also if $\{f_{\alpha}\}$ is an increasing net in C(X), then pointwise $\sup\{f_{\alpha}\}=f$ and $\sup\{f_{\alpha}\}=h^-$ in C(X) are equal except on a meagre subset of X [4], and so $\psi(f)=h=\sup\psi(f_{\alpha})$. If $\{h_n\}$ is an increasing sequence in $\beta(X)$ such that $h_n=f_n\in C(X)$ on $X\backslash A_n$, A_n being meagre for every n, and $h_n\uparrow h$ in $\beta(X)$, then $f=\sup f_n^-$ in C(X), and g= pointwise $\sup\{f_n\}$ are equal on $X\backslash A$, A being a meagre subset of X. This proves $\psi(h_n)\uparrow\psi(h)$, and so ψ is order σ -continuous. The corresponding results for ψ_1 can be proved in a similar way.

Lemma 3. Let X and S be compact Hausdorff spaces with S also a Stonian (σ -Stonian) space, and $\mu: C(X) \to C(S)$ a positive linear mapping. Then μ can be uniquely extended to a positive linear mapping $\bar{\mu}: \beta(X) \to C(S)$ ($\bar{\mu}: \beta_1(X) \to C(S)$), satisfying the following conditions.

- (i) $\bar{\mu}$ is order σ -continuous;
- (ii) for any increasing net $\{f_{\alpha}\}\subset C(X)$, with $\sup f_{\alpha}=f$ in $\beta(X)$, $\overline{\mu}(f)=\sup \overline{\mu}(f_{\alpha})$, in case X is Stonian.

Proof. Assume first that S is Stonian. The second adjoint of $\mu: C(X) \to C(S), \ \mu'': M(X) \to M(S), \$ is an order-continuous positive linear mapping ([3], p. 525), and so μ''^{-1} (Bo(S)) \supset Bo(X). Using Lemmas 2 and 3 we get a mapping $\bar{\mu}: \beta(X) \to C(S),$ satisfying the conditions of the lemma. If ν is another extension satisfying the conditions of the theorem, then $\bar{\mu}$ and ν are equal on the subspace generated by l.s.c. bounded functions on X, and so by order σ -continuity, they are equal on $\beta(X)$. The σ -Stonian case can be dealt with in a similar way.

Let Y be a locally compact Hausdorff space, $\beta'(Y)$ ($\beta_1'(Y)$) all bounded Borel (Baire) measurable functions with compact supports, B'(Y) all bounded real-valued functions on Y with compact supports, and K(Y) all continuous real-valued functions on Y with compact supports. For any open (open F_{σ}) relatively compact subset $V \subseteq Y$, let

 $\beta'(Y, V) = \{f \in \beta'(Y) : f \equiv 0 \text{ on } Y \setminus V\} (\beta_1'(Y, V) = \{f \in \beta_1'(Y), f \equiv 0 \text{ on } Y \setminus V\}).$ If $K(Y, V) = \{f \in K(Y), \sup f \subset V\}$ and S'(Y, V) is the subspace of B'(Y) generated by $\{f \in B'(Y) : \exists \text{ an increasing net } \{f_{\alpha}\} \subset K(Y, V), \text{ with } \sup f_{\alpha} = f\}$, then $\beta'(Y, V) = \text{order } \sigma\text{-closure of } S'(Y, V) (\beta_1'(Y, V) = \text{order } \sigma\text{-closure of } K(Y, V)).$ Also $\beta'(Y) = \bigcup \{\beta'(Y, V) : V \text{ open relatively compact in } Y\}$ ($\beta_1'(Y, V) = \bigcup \{\beta_1'(Y, V) : V \text{ open } F_{\sigma}, \text{ relatively compact in } Y\}$).

Theorem 4. Let E be a boundedly monotone complete (σ -complete) ordered vector and $\mu: K(Y) \to E$ a positive linear map. Then μ can be uniquely extended to $\bar{\mu}: \beta'(Y) \to E$ ($\bar{\mu}: \beta_1'(Y) \to E$) with the properties that (i) $\bar{\mu}$ is monotone order σ -continuous, (ii) for any increasing net $\{f_\alpha\}$ in K(Y) with $\sup f_\alpha = f$ in $\beta'(Y)$, $\bar{\mu}(f) = \sup \mu(f_\alpha)$, in case E is boundedly monotone complete.

PROOF. Let V be an open relatively compact subset of Y. Take $\{g_{\alpha}\}\ (\alpha \in I)$, an increasing net in K(Y), with $\sup g_{\alpha} \subset V$, $0 \leq g_{\alpha} \leq 1$, $\forall \alpha$, and $\sup \{g_{\alpha}\} = \chi_{V}$. Also take $g \in K(Y)$, $0 \leq g \leq 1$, and g = 1 on V. Assuming E to be boundedly monotone complete, let $e = \sup\{\mu(g_{\alpha}): \alpha \in I\}$ (note $\mu(g_{\alpha})$ is increasing and $\mu(g_{\alpha}) \leq \mu(g)$, $\forall \alpha$). For any $f \in K(Y)$, with $\sup f \subset V$, and $f \leq \chi_{V}$ (= $\sup g_{\alpha}$), we first prove that $\mu(f) \leq e$. Let $C = \sup f \subset V$, n any positive integer and $V_{\alpha} = \{x \in V: f(x) < g_{\alpha}(x) + 1/n\}$. Using the facts that $\{V_{\alpha}\}$ is increasing and $\bigcup V_{\alpha} \supset C$, a compact set, we get $V_{\alpha(n)} \supset C$, for some $\alpha(n) \in I$. Thus $f < g_{\alpha(n)} + (1/n)g$ and so $\mu(f) \leq e + (1/n) \mu(g)$, $\forall n$, which gives $\mu(f) \leq e$, since $\inf \{(1/n)\mu(g): n$, a positive integer $\} = 0$, (note $\mu(g) \geq 0$).

Let $E_0 = \{ p \in E : -\lambda e \le p \le \lambda e, \text{ for some real } \lambda > 0 \}$. Then E_0 is a boundedly monotone complete, directed, integrally closed, ordered vector subspace of E ([1], p. 290; to prove the integral closedness of E_0 , we need the boundedly monotone σ -completeness of E). Thus the completion by non-void cuts of E_0 , say E_1 , will be a boundedly complete vector lattice ([1], Theorem 9, p. 357). Let $E_2 =$ $\{p \in E_1: -\lambda e \le p \le \lambda e, \text{ for some } \lambda > 0\}$. This means E_2 is a boundedly complete vector lattice with a strong unit e and so there exists a compact Hausdorff Stonian space S, such that E_2 and C(S) are vector lattice isomorphic (i.e., there exists a 1-1, onto, both-way positive linear map from E_2 to C(S) which preserves arbitrary suprema and infima). Let $V' = V \cup \{x_0\}$ be the Alexandroff one point compactification of the locally compact space V (if V is compact, we take V' = V), and A the subspace of C(V') generated by constant functions and K(Y, V). Any element of A can be uniquely written in the form $\lambda + f$, where $\lambda \in R$, $f \in K(Y, V)$. Define a linear mapping $\mu_0: A \to C(S)$ as $\mu_0(\lambda + f) =$ $\lambda e + \mu(f)$. We first prove that μ_0 is positive. Suppose first that $\lambda > 0$ and $\lambda + f \ge 0$ on V'. This gives $1 + (1/\lambda)f \ge 0$, and so $-(1/\lambda)f \le 0$ sup g_{α} . From what is proved above it follows that $-(1/\lambda)\mu(f) \leq e$, and so $\lambda e + \mu(f) \ge 0$. If $\lambda = 0$, there is nothing to prove. If $\lambda < 0$ and V is not compact, take $x \in V \setminus \sup f$. Then f(x) = 0 and $\lambda + f(x) < 0$ 0, a contradiction. If $\lambda < 0$ and V is compact, then $X_V \in K(Y, V)$, $\chi_V \ge g_{\alpha}$, $\forall \alpha$, and $\chi_V \le \sup g_{\alpha}$. So from what is proved above it follows that $\mu(X_V) = e$. Now $\lambda + f \ge 0$ on V = V' implies that $\lambda X_V + f \ge 0$, and so $\mu(\lambda X_v + f) \ge 0$, which gives $\lambda e + \mu(f) \ge 0$. This proves μ_0 is positive. Also considering A as a subspace of C(V'), with sup norm topology, μ_0 is also continuous and as such has a unique extension $\mu_V: C(V') \to C(S)$, since, by the Stone-Weierstrass approximation theorem, A is dense in C(V'). It is easy to verify that this extension is also a positive linear operator. By Lemma 3, μ_V can be uniquely extended to $\bar{\mu}_V: \beta(V') \to E_1$ which is order σ -continuous, and if $\{f_{\alpha}\}$ is an increasing net in C(V') with $\sup f_{\alpha} = f \in \beta(V')$, then $\bar{\mu}_{V}(f) =$ $\sup \mu_V(f_\alpha)$. It immediately follows that $\bar{\mu}_V(\chi_{\{x_0\}} = 0, \text{ i.e., } \bar{\mu}_V(f_1) =$ $\bar{\mu}_V(f_2)$ if $f_i \in \beta(V')$ (i = 1, 2) and $f_{1|V} = f_{2|V}$. We define $\bar{\mu}_V : \beta'(Y, V)$ $\rightarrow E_1$ as: for any $f \in \beta'(Y, V)$, $\bar{\mu}_V(f) = \bar{\mu}_V(f')$, where f = f' on V, and $f'(x_0) = 0$: this mapping is positive, linear and order σ -continuous and has the property that for any increasing net $\{f_{\alpha}\} \subset K(Y, V)$ with $\sup f_{\alpha} = \hat{f} \in \beta'(Y, V), \ \bar{\mu}_{V}(f) = \sup \bar{\mu}_{V}(f_{\alpha}). \ \text{Now} \ \bar{\bar{\mu}}_{V}^{-1}(E_{0}) \supset K(Y, V),$ and so, by bounded monotone completeness at E_0 , $\overline{\mu}_V^{-1}(E_0) \supset S(Y, V)$: Since $\bar{\bar{\mu}}_{V}^{-1}(E_0)$ is a boundedly monotone order σ -closed (since $\bar{\bar{\mu}}_{V}$ is order σ -continuous) subspace of B'(Y), and S(Y, V) is a vector sublattice of B'(Y), $\overline{\mu}^{-1}(E_0) \supset \text{ order } \sigma\text{-closure of } S'(Y, Y) = \beta'(Y, V)$. Thus $\bar{\mu}_V : \beta'(Y, V) \to E \ (E \supset E_0)$ is a positive, linear, and monotone order σ -continuous map, and for any increasing net $\{f_{\alpha}\} \subset K(Y, V)$ with $\sup f_{\alpha} = f \in \beta'(Y, V), \overline{\mu}_{V}(f) = \sup \overline{\mu}_{V}(f_{\alpha}). \text{ Now define } \overline{\mu} : \beta'(Y) \to Eas:$ For any $f \in \beta'(Y)$, $f \in \beta'(Y, V)$ for some open relatively compact subset V of Y. We define $\bar{\mu}(f) = \bar{\bar{\mu}}_{V}(f)$. To see that this mapping is welldefined, let $f \in \beta'(Y, V_i)$ (i = 1, 2); this means $f \in \beta'(Y, V_1 \cap V_2)$. Since $\overline{\mu}_{V_1} = \overline{\mu}_{V_2}$ on $K(Y, V_1 \cap V_2)$, they are equal on $S'(Y, V_1 \cap V_2)$ and so are equal on $\beta'(Y, V_1 \cap V_2) = \beta'(Y, V_1) \cap \beta'(Y, V_2)$ (using σ continuity of these measures). This proves $\bar{\mu}$ is well-defined. Also it is easily verified that μ is linear, positive, monotone order σ -continuous, and for any increasing net $\{f_{\alpha}\}$ in K(Y) with sup $f_{\alpha} = f$ in $\beta'(Y)$, $\bar{\mu}(f) =$ ^{sup} $\bar{\mu}(f_{\alpha})$. Uniqueness of $\bar{\mu}$ is easily verified. Also the case when E is boundedly monotone σ -complete can be proved in a similar way. This completes the proof.

REMARK. For compact Y, this result is proved in [6] by an entirely different method.

REFERENCES

- 1. G. Birkoff, Lattice Theory, Amer. Math. Soc. Coll. publications, v. 25 (1967).
- 2. S. Kaplan, The second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86(1957), 70-90.
- 3. S. Kaplan, The second dual of the space of continuous functions IV, Trans. Amer. Math. Soc. 113(1964), 517-546.
- 4. J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19(1969), 107-122.
- 5. —, Vector lattice measures on locally compact spaces, Math. Zeit. 120 (1971), 193-203.
- 6. ——, Measures with values in partially ordered vector spaces, Proc. London Math. Soc. 25(1972), 675-688.

University of Iowa, Iowa City, Iowa 52242