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LATTICE-VALUED BOREL MEASURES 
S. S. KHURANA 

ABSTRACT. A Riesz representation type theorem is proved 
for measures on locally compact spaces, taking values in some 
ordered vector spaces. 

In a series of papers ([4], [5], [6]), J. M. Maitland Wright has es­
tablished, among other things, some Riesz representation type theo­
rems for positive linear mappings from C(X) to £, X being a compact 
Hausdorff space and £ a complete (or a-complete) vector-lattice. In 
this paper we prove these results (Theorem 4) by using the properties 
of order convergence in vector lattices. 

We shall use the notations of ([2], [3]). For a compact Hausdorff 
space X, we denote by C(X) the vector space of all continuous real-
valued functions on X with sup norm, by L(X) and M(X) the dual and 
bidual of C(X), respectively, and by p(X) and p{(X) the sets of all 
bounded Borel and Baire measurable real-valued functions on X, 
respectively. In the natural order C(X) is a vector lattice and p(X) 
and px(X) are boundedly a-complete lattices. Also L(X) and M(X) 
a r e boundedly complete vector lattices and C(X) is a sublattice of 
M(X). Let S(X) be the subspace of M(X) generated by those elements 
°f M(X) which are suprema of bounded subsets of C(X). 

Let £ be a vector lattice (always assumed to be over the field of real 
lumbers). Order convergence, order closure (a-closure), order con­
tinuity (a-continuity) in vector lattices are taken in the usual sense 
v|l], [2], [3]). If A is a subset of £, let A{ be the set of order limits, in 
£> of sequences in A, A2 be the set of order limits of sequences in 
A U Ai (= AO, and so on. Continuing this process transfinitely, if 
necessary, and taking the union of all these subsets, we get the order 
^-closure of the set A. A vector subspace B of £ we shall call mono­
tone order closed (a-closed), if for any net (sequence) {xa}, such that 
K t x in £, x 6 B (xa f x means {xa} is increasing and its sup is x). Now 
" A is a vector sublattice of a boundedly a-complete vector lattice £, 
^i a monotone order a-closed vector subspace of £, and E{D A, then 
^i D Ax (Ax as defined above); since A2 is also a vector sublattice of 
£> £i D A2, and so continuing this (transfinitely if necessary) we get 
^i 3 order a-closure of A. This result will be needed later. Mono­
tone order continuity (a-continuity) can be defined between ordered 
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vector spaces in a similar way. For any real-valued function on a 
topological space Z, s u p / = closure of {z E Z :f(z) / 0} in Z. 

The order a-closure of S(X) (C(X)), in M(X), will be denoted by 
Bo(X) (Ba(X)). We denote by B(X) the set of all bounded real-valued 
functions on X with the natural point-wise order. )8i(X) is the order 
a-closure of C(X) in B(X), and /3(X) is the order a-closure of the 
vector space generated by bounded lower semicontinuous functions 
on X. If X is Stonian (cr-Stonian), C(X) is a boundedly complete (a-
complete) vector lattice, and in this case H = { /E B(X): 3 g E C(X) 
such t h a t / = g except on a meagre subset of X} D j8(X) (fii(X)); this 
gives a mapping i// : j8(X) -» C(X) O t : p{(X) - • C(X)). We prove first 
the following simple lemmas. 

LEMMA 1. There exists a 1-1, onto, linear, both way positive, map­
ping if : Bo(X) ->0(X) (ip{ : Ba(X) - ^ ( X ) ) , swc/i tfwz* 

( ^ ( / ) = / W / ) = i ) , V / G C ( X ) ; 

(ii) >̂, ^~ l , <pb (pY~l are all order (j-continuous-, 

(iii) /or ant/ increasing net {fa} in C(X), <p(sup/) = sup (p(fa), and 
^ _ 1 (sup/ a ) = s u p ^ - ^ / J . 

PROOF. On B(X), the space of all bounded, real-valued functions on 
X, we take the topology of point-wise convergence. Since the identity 
map t : (C(X), || ° ||) —> B(X) is a weakly compact linear operator, its 
second adjoint i" : (M(X),<r(M(X), L(X))) -> B(X) is continuous, and 
so is order continuous, since order convergence in M(X) implies 
a(M(X), L(X))-convergence. This means that for an increasing net 
{fa} in C(X), *>(sup{/a}-in M(X)) = sup{/ a }- in B(X). This proves 
that i""1 (0(X))D S(X) and is order a-closed, and so i"~l ( 0 ( X ) p 
Bo(X); similar results hold for /^(X). Let <p = i" | Bo(X) (<px = i" I 
Ba(X)). Then <p : Bo(X) ->j8(X) (<?!: Ba(X) -*0i(X)). If / E Bo(X) 
a n d / ^ 0 , then there exists a net {/„} C C(X) such that / a A / (i.e., 
order converges to / in M(X)) [2]. This means f^-^f, and so 
JoT -^ ¥>(/) which means that <p(/) ^ 0. Now suppose that for some 
/ E B o ( X ) <p(f) = 0. Take {/a}CC(X) such that /a A / and so 
fa^tif) = °- T h i s m e a n s /«(*) ->°> Vx E X, and so </,ex> = 0, 
V point measure ex in L(x), which proves t h a t / = 0 ([2], p. 83), and 
thus (p is 1-1. To prove that <p~l is positive, t ake /EBo(X) , such 
that <p(f) ^ 0. There exists a net {fa} C C(X) such t h a t / a - ^ / i n M, 
which means t h a t £ -^ f+ and/a~ A / - . This gives that lim/a

_ (x) = 
0, V x E X, and so (f~,ex) = 0 for any point measure ex in L(X) 
which means / " = 0 ([2], p. 83). This proves <p~l is positive. To 
prove that <p is onto, take a lower semi-continuous function fin B(X)-
Then there exists an increasing net {/Q} in C(X) such that/a | / Taking 
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g = sup{^~} in M(X), we get / = <p(g). Also if an increasing se­
quence hn | h in B(X), by positivity of <p~], gn = <p~l (hn) is increasing 
in M(X; and so <p(g) = h, where g = sup{gn. in M(X). This proves 
fpis onto. The order a-continuity and other properties of <p~l are easily 
verified. Similar arguments prove the corresponding results for <p{. 
This completes the proof. 

LEMMA 2. IfX is Stonian (a-Stonian), the mapping ip :/3(X) —> C(X) 
(0i -fii(X) —» C(X)) w a positive order a-continuous linear mapping. 
Also if {fa} is an increasing net in C(X) such that supfa = f in /3(X), 
then \\t(f) = sup \lf(fa), ifX is Stonian. 

PROOF. The linearity and positivity of i// are obvious. Also if {fQ} 
is an increasing net in C(X), then pointwise sup{/} = / a n d sup{£} = 
n in C(X) are equal except on a meagre subset of X [4], and so \j/(f) = 
^ = sup{p(fa). If {hn} is an increasing sequence in /3(X) such that 
nn = fn E C(X) on X\A„, An being meagre for every n, and /in t ^ in 
£(X), t h e n / = supf^ in C(X), and g = pointwise sup{/n} are equal 
°n X\A, A being a meagre subset of X. This proves 0(/in) t 0 W , and 
So 0 is order a-continuous. The corresponding results for i/^ can be 
proved in a similar way. 

LEMMA 3. Let X and S be compact Hausdorff spaces with S also a 
Stonian (a-Stonian) space, and \L : C(X) —» C(S) a positive linear 
tnapping. Then /x can be uniquely extended to a positive linear map­
ping ji : p(X)-+C(S) (JL:pl(X)-»C(S)), satisfying the following 
c°nditions. 

(i) fl is order a-continuous; 
(ii) for any increasing net {fa} C C(X), with supfa = fin@(X), fi(f) 

^ SUP P'ifJyln case X ^ Stonian. 

PROOF. Assume first that S is Stonian. The second adjoint of 
M-: C(X) —> C(S), fi" : M(X) —» M(S), is an order-continuous positive 
lir*ear mapping ([3], p. 525), and so n"1 (Bo(S)) D Bo(X). Using 
Lemmas 2 and 3 we get a mapping /Z:j3(X) -> C(S), satisfying the 
conditions of the lemma. If v is another extension satisfying the con­
ations of the theorem, then fl and v are equal on the subspace gen­
erated by l.s.c. bounded functions on X, and so by order c-continuity, 
they are equal on )3(X). The (7-Stonian case can be dealt with in a 
similar way. 

Let Y be a locally compact Hausdorff space, fi'(Y) (^/(Y)) all 
bounded Borel (Baire) measurable functions with compact supports, 
^'(Y) all bounded real-valued functions on Y with compact supports, 
a n d K(Y) all continuous real-valued functions on Y with compact sup-
Ports. For any open (open FJ relatively compact subset V C Y, let 
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j 3 ' ( Y , V ) = { / G / 3 ' ( Y ) : / = O o n A V } 0 1 ' ( Y , V ) = { / e / 3 1 ' ( Y ) , / s O 
on Y\V}). If K(Y, V) = { /E K(Y), s u p / C V} and S'(Y, V) is the sub-
space of B'(Y) generated by {fE B'(Y) : 3 an increasing net {fa} C 
K(Y, V), with sup/a = / } , then 0 '(Y, V) = order a-closure of S '(Y, V) 
(ft '(Y, V) = order a-closure of K(Y, V)). Also 0 '(Y) = U \P '(Y, V): V 
open relatively compact in Y} (fix '(Y, V) = U ^ '(Y, V): V open Fa, 
relatively compact in Y}). 

THEOREM 4. Let Ebe a boundedly monotone complete (a-complete) 
ordered vector and /JL: K(Y) —> £ a positive linear map. Then \i can 
be uniquely extended to /X:j3'(Y) - • £ ( £ : /V(Y) -> E) with the 
properties that (i) jut is monotone order a-continuous, (ii) for any in­
creasing net {fa} in K(Y) with sup/a = fin /3'(Y), jx(/) = sup /u,(/a), in 
case E is boundedly monotone complete. 

PROOF. Let V be an open relatively compact subset of Y. Take 
{ga} (aE /), an increasing net in K(Y), with sup ^ C V , O ^ ^ ^ l , 
V a, and supf^} = Xv. Also take g E K(Y), 0 g g g 1, and g = 1 on 
V. Assuming £ to be boundedly monotone complete, let e = 
s u P ( M ( g a ) : « ^ 0 (note / i(gj is increasing and /*(&) S/ i (g) , V a). 
For any / E K(Y), with s u p p / C V, and /=§ Xv ( = s u p g j , we first 
prove that fi(f) ^ e. Let C = s u p / C V, n any positive integer and 
Va = {x EV:f(x) < ga(x) + 1/n}. Using the facts that {Va} is in­
creasing and U V a D C, a compact set, we get Va(n) D C, for some 
a(n) E Z. Thus / < g ^ + (l/n)g and so M(/) ^ e + (1/n) /x(g), V n, 
which gives ft(/) ^ e, since inf{(l/n)/ut(g): n, a positive integer} = 0, 
(noteji(g)^O). 

Let £ 0 = {p E £ : — Xe ^ p ^ Xe, for some real A > 0}. Then £o 
is a boundedly monotone complete, directed, integrally closed, 
ordered vector subspace of £ ([1], p. 290; to prove the integral closed-
ness of £0, we need the boundedly monotone a-completeness of £)• 
Thus the completion by non-void cuts of £0, say £ b will be a bound­
edly complete vector lattice ([1], Theorem 9, p. 357). Let £2 == 
{p E £ t : — ke = p = Xe, for some X > 0}. This means £2 is a 
boundedly complete vector lattice with a strong unit e and so 
there exists a compact Hausdorff Stonian space S, such that 
£ 2 and C(S) are vector lattice isomorphic (i.e., there exists a 
1-1, onto, both-way positive linear map from £ 2 to C(S) which 
preserves arbitrary suprema and infima). Let V = V U {*o} 
be the AlexandrofT one point compactification of the locally com­
pact space V (if V is compact, we take V = V), and A the sub-
space of C(V') generated by constant functions and K(Y, V). Any ele­
ment of A can be uniquely written in the form X + / , where X E & 
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/ E K(Y, V). Define a linear mapping y^ : A —> C(S) as /^(X + / ) = 
Xe + /x(/). We first prove that /XQ is positive. Suppose first that X > 0 
and X + / g 0 on V . This gives 1 + (1/X)/^ 0, and so - ( 1 / X ) / ^ 
suPga« From what is proved above it follows that — (l/A)/x(/) = e, 
and so \e + /*(/) i§ 0. If X = 0, there is nothing to prove. If X < 0 
and V is not compact, take x E V\sup/ Then/(x) = 0 and X + f(x) < 
0, a contradiction. If X < 0 and V is compact, then Xv E K(Y, V), 
*v = ga, V a, and Xv ^ sup g,. So from what is proved above it follows 
that fi(xv) = e. Now \ + / ^ 0 o n V = V implies that XXv + / ^ 0, 
and so ji(XXv + / ) = 0, which gives \e + it(/) ^ 0. This proves t^ is 
positive. Also considering A as a subspace of C(V"), with sup norm 
topology, tio is also continuous and as such has a unique extension 
Mv : C(V') —» C(S), since, by the Stone-Weierstrass approximation 
theorem, A is dense in C(V'). It is easy to verify that this extension is 
also a positive linear operator. By Lemma 3, }iv can be uniquely ex­
tended to jiy : j3(V) -» Ej which is order a-continuous, and if (fa) is 
an increasing net in C(V') with sup/a = / E 0 ( V ) , then fiv(f) = 
suPMv(/a). It immediately follows that £v{X{x0} = 0> i.e., /Xv(/i) = 
Mv(f2) tftf E /3(V) (i = 1, 2) and/1 | V = / 2 | V . We define £ v :0'(Y, V) 
-* £2 as: for any fEp '(Y, V), / lv(/) = /Zv(/'), where / = / ' on V, and 
/'(*o) = 0: this mapping is posifive, linear and ordercr-continuous and 
has the property that for any increasing net {fa} C K(Y, V) with 
sup/„ = / G / 3 ' ( Y , V), Mf) = sup^vOT). Now /lv->(Eo) 3 K(Y, V), 
and so, by bounded monotone completeness at E0, fiv ~ l(E0) D S( Y, V): 
Since fiv~

l(E0) is a boundedly monotone order cr-closed (since p,v is 
order a-continuous) subspace of B'(Y), and S(Y, V) is a vector sub-
lattice of B'(Y), p,~l(E0)D orderor-closureofS'(Y, Y) = 0'(Y, V). Thus 
My :)8 '(Y, V) -» E (E D £0) i s a positive, linear, and monotone order 
^-continuous map, and for any increasing net {fa} C K(Yf V) with 
SuP/« = / E / 3 ' ( Y , V),Av(/) = s u p ^ v ( f j . Nowdefine/Z:/8'(Y)-> Eas: 
For a n y / E / T ( Y ) , / E / 3 ' ( Y , V) for some open relatively compact sub­
set V of Y. We define jZ(/) = jiy(f). To see that this mapping is well-
defined, let /E j8 ' (Y, V,) (t = 1,2); this means / 6 j 8 ' ( Y , ^ fl V2). 
Since £ V j = ^ on K(Y, V! H V2), they are equal on S'(Y, Vi fl V2) 
and so are equal on 0'(Y, Vi fl V2) = j3'(Y, Vj) 0/3'(Y, V2) (usingcr-
eontinuity of these measures). This proves /Z is well-defined. Also it is 
easily verified that /A is linear, positive, monotone order <7-continuous, 
and for any increasing net {/Q} in K(Y) with s u p ^ = fin (3 '(Y), jL{f) = 
SuP P(fa)' Uniqueness of fl is easily verified. Also the case when E is 
boundedly monotone <7-complete can be proved in a similar way. 
This completes the proof. 
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REMARK. For compact Y, this result is proved in [6] by an entirely 

different method. 
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