ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 6, Number 2, Spring 1976

LATTICE-VALUED BOREL MEASURES

S. S. KHURANA

AsstrRacT. A Riesz representation type theorem is proved
for measures on locally compact spaces, taking values in some
ordered vector spaces.

In a series of papers ([4], [5], [6]), J. M. Maitland Wright has es-
tablished, among other things, some Riesz representation type theo-
rems for positive linear mappings from C(X) to E, X being a compact
Hausdorff space and E a complete (or o-complete) vector-lattice. In
this paper we prove these results (Theorem 4) by using the properties
of order convergence in vector lattices.

We shall use the notations of ([2], [3]). For a compact Hausdorff
Space X, we denote by C(X) the vector space of all continuous real-
valued functions on X with sup norm, by L(X) and M(X) the dual and
bidual of C(X), respectively, and by B(X) and B,(X) the sets of all
bounded Borel and Baire measurable real-valued functions on X,
Tespectively. In the natural order C(X) is a vector lattice and B(X)
and B,(X) are boundedly o-complete lattices. Also L(X) and M(X)
are boundedly complete vector lattices and C(X) is a sublattice of
M(X). Let S(X) be the subspace of M(X) generated by those elements
of M(X) which are suprema of bounded subsets of C(X).

Let E be a vector lattice (always assumed to be over the field of real
Numbers). Order convergence, order closure (o-closure), order con-
tinuity (0-continuity) in vector lattices are taken in the usual sense
(1], [2], [3]). If Ais a subset of E, let A, be the set of order limits, in

, of sequences in A, A, be the set of order limits of sequences in
AU A, (= 4,), and so on. Continuing this process transfinitely, if
Necessary, and taking the union of all these subsets, we get the order
9-closure of the set A. A vector subspace B of E we shall call mono-
tone order closed (@-closed), if for any net (sequence) {x,}, such that
%, Txin E, x € B (x, 1 x means {x,} is increasing and its sup is x). Now
if A is a vector sublattice of a boundedly o-complete vector lattice E,

1 @ monotone order g-closed vector subspace of E, and E| D A, then
E > Ay (A, as defined above); since A, is also a vector sublattice of
E ED A,, and so continuing this (transfinitely if necessary) we get
E\ D order o-closure of A. This result will be needed later. Mono-
tone order continuity (o-continuity) can be defined between ordered
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vector spaces in a similar way. For any real-valued function on a
topological space Z, sup f = closure of {z € Z: f(z) # 0} in Z.

The order g-closure of S(X) (C(X)), in M(X), will be denoted by
Bo(X) (Ba(X)). We denote by B(X) the set of all bounded real-valued
functions on X with the natural point-wise order. 8,(X) is the order
o-closure of C(X) in B(X), and B(X) is the order o-closure of the
vector space generated by bounded lower semicontinuous functions
on X. If X is Stonian (o-Stonian), C(X) is a boundedly complete (o-
complete) vector lattice, and in this case H = {f € B(X):1g € C(X)
such that f= g except on a meagre subset of X} D B(X) (8,(X)); this
gives a mapping ¢ : B(X) — C(X) (¥, : B,(X) — C(X)). We prove first

the following simple lemmas.

LemMa 1. There exists a 1-1, onto, linear, both way positive, map-
ping ¢ : Bo(X) — B(X) (¢, : Ba(X) — B,(X)), such that
(1) e(f) = flei(f) =), VfE CX)

(i) @, @Y ¢, ¢, "'areall ordera-continuous;,

(iii) for any tncreasmg net {f,} in C(X), g(sup f,) = sup ¢(f,), and
¢ !(supf,) = sup o' (f.).

Proor. On B(X), the space of all bounded, real-valued functions on
X, we take the topology of pomt-wise convergence. Since the identity
map i: (C(X), | ° || — B(X) is a weakly compact linear operator, its
second ad]omt i (M(X), (M(X), L(X))) = B(X) is continuous, and
so is order continuous, since order convergence in M(X) implies
a(M(X), L(X))-convergence This means that for an increasing net
{f.} in C(X sup{f}-—m M(X)) = sup{f,} —in B(X). This proves
that i"-! (B( )) S(X) and is order o-closed, and ) i"“‘ (ﬂ(X)) 3
Bo(X); similar results hold for 8,(X ). Let ¢ =i |Bo (¢, =1"
Ba(X)). Then ¢ :Bo(X) — B(X) (¢, : Ba(X) = B(X)). IffE Bo(X
and f= 0, then there exists a net {f,} C C(X) such that f, % f ( 1e,
order converges to f in M(X)) [2]. This means f} % f, and s0
A f) which means that ¢(f) = 0. Now suppose that for some
fEBo(X) ¢(f)=0. Take {f,} C C(X) such that f,->f and so
f.> ¢(f) = 0. This means f(x) >0, Yx €X, and so (fe,) =0,
V point measure €, in L(x), which proves that f= 0 ([2], p. 83), and
thus ¢ is 1-1. To prove that ¢~! is positive, take f €& Bo(X), such
that o(f) = 0. There exists a net {f,} C C(X) such that f, fin M,
which means that f; < f* and f; % f-. This gives that limf,” (x) =
0, VxEX, and so (f~,¢,) =0 for any point measure €, in L(X)
which means f~ =0 ([2], p. 83). This proves ¢! is positive. T0
prove that ¢ is onto, take a lower semi-continuous function f in B(X)
Then there exists an increasing net {f,} in C(X) such that f, 1 f. Taking
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g =sup{f,”} in M(X), we get f=¢(g). Also if an increasing se-
Quence h, 1 h in B(X), by positivity of ¢ =1, g, = ¢! (h,) is increasing
in M(X; and so ¢(g) = h, where g = sup{g, in M(X). This proves
¢is onto. The order g-continuity and other properties of ¢ ~! are easily
verified. Similar arguments prove the corresponding results for ¢,.
This completes the proof.

Lemma 2. If X is Stonian (@-Stonian), the mapping ¢ : B(X) — C(X)
(¥, :8,(X) > C(X)) is a positive order a-continuous linear mapping.
Also if {f.} is an increasing net in C(X) such that sup f, = f in B(X),
then y(f) = sup ¥(f,), if X is Stonian.

Proor. The linearity and positivity of ¢ are obvious. Also if {f,}
is an increasing net in C(X), then pointwise sup{f,} = fand sup{f,} =
h™ in C(X) are equal except on a meagre subset of X [4], and so Y (f) =
h= sup §(f,). If {h,} is an increasing sequence in B(X) such that
h,, = f. € C(X) on X\A,, A, being meagre for every n, and h, T h in
B(X), then f=supf,” in C(X), and g = pointwise sup{f, } are equal
on X\A, A being a meagre subset of X. This proves y(h,) 1 ¢(h), and
S0 ¥ is order g-continuous. The corresponding results for ¢, can be
Proved in a similar way.

Lemma 3. Let X and S be compact Hausdorff spaces with S also a
Stonian (0-Stonian) space, and w:C(X) — C(S) a positive linear
Mapping. Then p can be uniquely extended to a positive linear map-
Ping u:B(X) = C(S) (m:B,(X) = C(S)), satisfying the following
conditions.

(i) @ is order a-continuous;

(ii) for any increasing net {f,} C C(X), with sup f, = fin B(X), u(f)
= sup fi(f,), in case X is Stonian.

Proor. Assume first that S is Stonian. The second adjoint of
K2 C(X) — C(S), u" : M(X) — M(S), is an order-continuous positive
linear mapping ([3], p. 525), and so u"~! (Bo(S)) D Bo(X). Using

€mmas 2 and 3 we get a mapping i :B(X) — C(S), satisfying the
C?nditions of the lemma. If v is another extension satisfying the con-
ltions of the theorem, then @ and v are equal on the subspace gen-
€rated by 1.s.c. bounded functions on X, and so by order g-continuity,
t‘ey are equal on B(X). The o-Stonian case can be dealt with in a
Similar way,

Let Y be a locally compact Hausdorff space, B'(Y) (8,'(Y)) all

Ounded Borel (Baire) measurable functions with compact supports,
B'(¥) all bounded real-valued functions on Y with compact supports,
and K(Y) all continuous real-valued functions on Y with compact sup-
Ports. For any open (open F,) relatively compact subset V. C Y, let
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B'(Y,V)={fE€R'(Y):f= ()onY\V}(ﬁ1 (Y,v)= {fEﬁl’(Y),fEO
on Y\V}) IfK(Y,V)= {fEKY supr V}and S'(Y, V) is the sub-

space of B'(Y) generated by {f € B'(Y): 3 an increasing net {f,} C
K(Y, V), with sup f, = f}, then B'(Y, V) = order o-closure of S'(Y, V)
(8,'(Y, V) = order o-closure of K(Y, V)). Alsog’(Y)=U{B'(Y,V):V
open relatively compact in Y} (8,'(Y, V)= U{Bl Y,V):V open F,
relatively compact in Y}).

TueoreM 4. Let E be a boundedly monotone complete (@-complete)
ordered vector and n: K(Y) — E a positive linear map. Then u can
be uniquely extended to g :B'(Y) > E (&:B,'(Y) = E) with the
properties that (i) [ is monotone order a-continuous, (ii) for any in-
creasing net {f,} in K(Y) with sup f, = fin B'(Y), B(f) = sup u(f,), in

case E is boundedly monotone complete.

Proor. Let V be an open relatively compact subset of Y. Take
{g.} (@ € I), an increasing net in K(Y), with supg, CV,0=g =1,
Va, and sup{g,} = Xy. Alsotake gE K(Y),0=g=1,andg=1on
V. Assuming E to be boundedly monotone complete let e=
sup{u(g,): @« € I} (note u(g,) is increasing and p.(ga) w(g), ¥ a).
For any f € K(Y), with supp fC V, and f= Xy (= supg,), we first
prove that u(f) = e. Let C=supfC V, n any positive intéger and

= {x EV:f(x) < g(lx) + ln}. Using the facts that {V,} is in-
creasing and UV, D C, a compact set, we get V,,, D C, for some
ofn) €E1 Thus f< g, + (lin)g and so u(f) = e+ (1in) u(g), Yn
which gives u(f) = e, since inf{(1/n)u(g) : n, a positive integer} = 0,
(note u(g) Z 0). ‘

Let Ey= {p € E: —Ae = p = Ae, for some real A > 0}. Then Eo
is a boundedly monotone complete, directed, integrally closed,
ordered vector subspace of E ([1], p. 290; to prove the integral closed-
ness of E;, we need the boundedly monotone a-completeness of E).
Thus the completion by non-void cuts of E,, say E,, will be a bound-
edly complete vector lattice ([1], Theorem 9, p. 357). Let E;, =
{pEE,:—Ae=p=e, for some A>0}. This means E, is 2
boundedly complete vector lattice with a strong unit e and so
there exists a compact Hausdorff Stonian space S, such that
E, and C(S) are vector lattice isomorphic (i.e., there exists 2
1-1, onto, both-way positive linear map from E, to C(S) which
preserves arbitrary suprema and infima). Let V' = VU {x}
be the Alexandroff one point compactification of the locally com-
pact space V (if V is compact, we take V' = V), and A the sub-
space of C(V") generated by constant functions and K(Y, V). Any ele-
ment of A can be uniquely written in the form A + f, where A € R
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fEK(Y, V). Detine a linear mapping po: A = C(S) as po(A + f) =
Ae + u(f). We first prove that g is positive. Suppose first that A > 0
and A + f= 0 on V'. This gives 1 + (IA\)f= 0, and so —(IA)f=
sup g,. From what is proved above it follows that —(I\)u(f) = e,
and so he + u(f) = 0. If A = 0, there is nothing to prove. If A <0
and V is not compact, take x € V\sup f. Then f(x) = Oand A + f(x) <
0, a contradiction. If A< 0 and V is compact, then Xy € K(Y, V),
Xy = g, V& and Xy = sup g,. So from what is proved above it follows
that u(xy) = e. Now A + f= 0 on V=V’ implies that XXy + f= 0,
and so u(My + f) = 0, which gives Ae + u(f) = 0. This proves pq is
positive. Also considering A as a subspace of C(V'), with sup norm
topology, p is also continuous and as such has a unique extension
Ry :C(V') = C(S), since, by the Stone-Weierstrass approximation
theorem, A is dense in C(V’). It is easy to verify that this extension is
also a positive linear operator. By Lemma 3, py can be uniquely ex-
tended to @iy : B(V') — E, which is order o-continuous, and if {f,} is
an increasing net in C(V') with supf, = fEB(V'), then @y(f) =
Sup uy(f,). It immediately follows that @y {X,,, =0, ie, @y(f;) =
Ry(fy) if , €EB(V') (i=1, 2) and fyy = foy. We define jiy:B'(Y, V)
= E,as: forany fEB'(Y, V), gy(f) = mv(f'), where f= f’ on V, and
f'(xo) = 0: this mapping is positive, linear and order g-continuous and
has the property that for any increasing net {f,} C K(Y,V) with
Supf; = fEB'(Y, V)’ ﬁ'V(f) = sup ﬁV(f;x) Now ﬁV_ 1(E0> ) K(Y’ V)7
and so, by bounded monotone completeness at Eq, fiy ~(Ey) D S(Y, V) :
Since iy~ !(E,) is a boundedly monotone order o-closed (since fy is
order g-continuous) subspace of B'(Y), and S(Y, V) is a vector sub-
]'ilttice of B'(Y), ik~ (Eo) D order o-closureof $'(Y, Y) = 8'(Y, V). Thus
By:B'(Y,V) > E (ED E,) is a positive, linear, and monotone order
o-continuous map, and for any increasing net {f,} C K(Y, V) with
Sup f, = fEB'(Y, V), @v(f) = sup Ev(f,). Nowdefine i :B'(Y)— Eas:
For any fER'(Y), fER'(Y, V) for some open relatively compact sub-
Set Vof Y. We define (f) = fiy(f). To see that this mapping is well-
defined, let fEB'(Y,V;) (i=1,2); this means fEB'(Y,V, NV,).
Since ﬁvl = fiy, on K(Y, V; N V,), they are equal on S'(Y, V, N Vy)
and so are equal on B8'(Y, V, N V,) = B'(Y, V;) NB'(Y, V;) (using o-
Continuity of these measures). This proves fi is well-defined. Also it is
easily verified that y is linear, positive, monotone order g-continuous,
and for any increasing net {f,} in K(Y) with sup f, = fin8'(Y), A(f) =
Sup (f,). Uniqueness of jz is easily verified. Also the case when E is
bOundedly monotone o-complete can be proved in a similar way.
This completes the proof,
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Remark. For compact Y, this result is proved in [6] by an entirely
different method.
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