April 2024 DOUBLY WEIGHTED SHARP WIRTINGER INEQUALITIES ON +
Huang Rong, Yu Xiaochen, Ma Mengjin, Xu Guiqiao
Rocky Mountain J. Math. 54(2): 541-553 (April 2024). DOI: 10.1216/rmj.2024.54.541

Abstract

We consider the ρ-weighted p-norm of functions f:+ with finite q-norm f(n)ψq,1q+. A sharp Wirtinger type inequality

fρpCn,p,qf(n)ψq for all1p,q+

is established for functions f such that f(j)(xi)=0 for all 0jαi1, i=1,,r, n=i=1rαi, where ψ, ρ and ω=ρψ are nonincreasing on +, and ω1α is integrable for α=n1q+1p. Using Hermite interpolation, we express Cn,p,q in terms of the norm of a certain integral type operator. Then we calculate Cn,1,1 and Cn,, in two specific cases.

Citation

Download Citation

Huang Rong. Yu Xiaochen. Ma Mengjin. Xu Guiqiao. "DOUBLY WEIGHTED SHARP WIRTINGER INEQUALITIES ON +." Rocky Mountain J. Math. 54 (2) 541 - 553, April 2024. https://doi.org/10.1216/rmj.2024.54.541

Information

Received: 14 October 2022; Revised: 14 January 2023; Accepted: 17 January 2023; Published: April 2024
First available in Project Euclid: 7 May 2024

Digital Object Identifier: 10.1216/rmj.2024.54.541

Subjects:
Primary: 41A05 , 41A880

Keywords: Hermite interpolation , weighted Lp-norm , Wirtinger inequality

Rights: Copyright © 2024 Rocky Mountain Mathematics Consortium

Vol.54 • No. 2 • April 2024
Back to Top