Translator Disclaimer
2019 Wolff's ideal theorem on $Q_p$ spaces
Debendra P. Banjade
Rocky Mountain J. Math. 49(7): 2121-2133 (2019). DOI: 10.1216/RMJ-2019-49-7-2121

Abstract

For $p\in (0,1)$, let $Q_p$ space be the space of all analytic functions on the unit disk $\mathbb {D}$ such that $\vert f'(z) \vert ^2 (1-\vert z\vert ^2)^p\, dA(z)$ is a $p$-Carleson measure. We prove that Wolff's ideal theorem on $H^\infty {(\mathbb {D})}$ can be extended to the Banach algebra $H^{\infty }(\mathbb {D})\cap Q_{p}$, and also to the multiplier algebra on $Q_p$ spaces.

Citation

Download Citation

Debendra P. Banjade. "Wolff's ideal theorem on $Q_p$ spaces." Rocky Mountain J. Math. 49 (7) 2121 - 2133, 2019. https://doi.org/10.1216/RMJ-2019-49-7-2121

Information

Published: 2019
First available in Project Euclid: 8 December 2019

zbMATH: 07152856
MathSciNet: MR4039961
Digital Object Identifier: 10.1216/RMJ-2019-49-7-2121

Subjects:
Primary: 30H50
Secondary: 32A37, ‎46E15, 46J20

Rights: Copyright © 2019 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.49 • No. 7 • 2019
Back to Top