Translator Disclaimer
2019 Characterization of Lie multiplicative derivation on alternative rings
Bruno Leonardo Macedo Ferreira, Henrique Guzzo Jr
Rocky Mountain J. Math. 49(3): 761-772 (2019). DOI: 10.1216/RMJ-2019-49-3-761

Abstract

In this paper, we generalize the result valid for associative rings Bresar and Martindale III to alternative rings. Let $\mathfrak{R} $ be a unital alternative ring, and $\mathfrak{D} \colon \mathfrak{R} \rightarrow \mathfrak{R} $ is a Lie multiplicative derivation. Then, $\mathfrak{D} $ is the form $\delta + \tau $, where $\delta $ is an additive derivation of $\mathfrak{R} $ and $\tau $ is a map from $\mathfrak{R} $ into its center $\mathcal {\mathfrak{R} }$, which maps commutators into the zero.

Citation

Download Citation

Bruno Leonardo Macedo Ferreira. Henrique Guzzo Jr. "Characterization of Lie multiplicative derivation on alternative rings." Rocky Mountain J. Math. 49 (3) 761 - 772, 2019. https://doi.org/10.1216/RMJ-2019-49-3-761

Information

Published: 2019
First available in Project Euclid: 23 July 2019

MathSciNet: MR3983299
Digital Object Identifier: 10.1216/RMJ-2019-49-3-761

Subjects:
Primary: 17A36, 17D05

Rights: Copyright © 2019 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.49 • No. 3 • 2019
Back to Top