Translator Disclaimer
2018 Elliptic problems involving natural growth in the gradient and general absorption terms
Haydar Abdelhamid
Rocky Mountain J. Math. 48(5): 1385-1397 (2018). DOI: 10.1216/RMJ-2018-48-5-1385

Abstract

In this paper, we treat the existence of solutions for a class of general elliptic problems whose prototype is the following: \begin{equation} \begin{cases}-\Delta _{p}u+h(x)|u|^{q-1}u=\beta |\nabla u|^{p}+\lambda f(x) &\mbox {in } \Omega , \\ u=0 &\mbox {on } \partial \Omega ,\end{cases} \end{equation} where $\Omega $ is a bounded open subset of $\mathbb {R}^{N}$ with $N>1$, $1\lt p\lt N$, $q\geq 1$, $\lambda \in \mathbb {R}$, $\beta \in \mathbb {R}$, $h\in L^{1}(\Omega )$ with $h\geq 0$ and $f\in L^{1}(\Omega )$. Assuming that the source term $f$ satisfies $$\lambda _{1}(f)=\inf \bigg \{ \frac {\int _{\Omega }\vert \nabla w\vert ^{p}dx}{\int _{\Omega }|f|\vert w\vert ^{p}dx}:w\in W_{0}^{1,p} (\Omega )\setminus \{ 0\} \bigg \}>0,$$ we obtain the existence of a solution $u\in W_{0}^{1,p}(\Omega )$ when $|\lambda |$ is sufficiently small.

Citation

Download Citation

Haydar Abdelhamid. "Elliptic problems involving natural growth in the gradient and general absorption terms." Rocky Mountain J. Math. 48 (5) 1385 - 1397, 2018. https://doi.org/10.1216/RMJ-2018-48-5-1385

Information

Published: 2018
First available in Project Euclid: 19 October 2018

zbMATH: 06958784
MathSciNet: MR3866551
Digital Object Identifier: 10.1216/RMJ-2018-48-5-1385

Subjects:
Primary: 35J60, 35J65

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 5 • 2018
Back to Top