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WELSCHINGER INVARIANTS OF BLOW-UPS
OF SYMPLECTIC 4-MANIFOLDS

YANQIAO DING AND JIANXUN HU

ABSTRACT. Using the degeneration technique, we study
the behavior of Welschinger invariants under the blow-up
and obtain some blow-up formulae of Welschinger invariants.
To analyze the variation of Welschinger invariants when
replacing a pair of real points in the real configuration by
a pair of conjugated points, Welschinger introduced the θ-
invariant. In this paper, we also verify that the θ-invariant
is the Welschinger invariant of the blow-up of the symplectic
4-manifold.

1. Introduction. Traditional enumerative geometry asks certain
questions to which the expected answer is a number: for example, the
number of lines incident with two points in the plane, or the number of
twisted cubic curves on a quintic 3-fold. For the last two decades,
the complex enumerative geometry of curves in algebraic varieties
has taken a new direction with the appearance of Gromov-Witten
invariants and quantum cohomology. The core of Gromov-Witten
invariants is so-called counting the numbers of rational curves. On
the real enumerative geometry side, a real version of Gromov-Witten
invariants has been expected for a long time. In 2005, Welschinger
[36, 37] first discovered such an invariant in dimensions 4 and 6,
which was called the Welschinger invariant and revolutionized real
enumerative geometry. Recently, it was partially extended to higher
dimensions, higher genera and descendant type, see [8, 31, 32] and
the references therein for details. Itenberg, Kharlamov and Shustin
[23] also extended the algebraic definition of Welschinger invariants to
all del Pezzo surfaces and proved the invariance under deformation in
the algebraic setting.
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After the Welschinger invariants were well defined for real sym-
plectic 4-manifolds, the focus of the research on Welschinger invari-
ants turned toward its computation for some manifolds and the un-
derstanding of its global structure. Itenberg, Kharlamov and Shustin
[15, 16, 18, 19, 20, 21] systematically studied the Welschinger in-
variants of del Pezzo surfaces, including the lower bounds of invariants,
the logarithmic equivalence of Welschinger and Gromov-Witten invari-
ants, positivity, and the Caporaso-Harris type formula for Welschinger
invariants. Brugallé and Mikhalkin [4, 5] provided a method for com-
puting Welschinger invariants via a floor diagram. Using their method,
Arroyo, Brugallé and de Medrano [1] computed the Welschinger invari-
ants in the projective plane. Based on the open analogues of Kontsevich
and Manin axioms and the WDVV equation, Horev and Solomon [10]
gave a recursive formula of Welschinger invariants of real blow up of
the projective plane.

Using the degeneration technique, Itenberg, Kharlamov and Shustin
[24] studied the positivity and asymptotics of Welschinger invariants
of real del Pezzo surfaces of degree ≥ 2 and obtained some new
real Caporaso-Harris type formulae as well as real analogues of the
Abramovich-Bertram-Vakil formula. In [6, 7], Brugallé and Puignau
applied the real version of the symplectic sum formula to obtain a real
version of the Abramovich-Bertram-Vakil formula in the symplectic
setting. Combining their formula with a degeneration formula and the
technique of floor diagrams relative to a conic, Brugallé [2] computed
the Gromov-Witten invariants and Welschinger invariants of some del
Pezzo surfaces.

Other important issues in the study of Welschinger invariants are
understanding the behavior of Welschinger invariants under geometric
transformations and applying Welschinger invariants to investigate the
geometry and topology of the underlying manifolds. In [2, 3, 7, 24],
the authors used the degeneration technique to study the properties
of Welschinger invariants. In particular, by locally modifying the real
structure, Brugallé [3] proved very simple relations among Welschinger
invariants of real symplectic 4-manifolds differing by a real surgery
along a real Lagrangian sphere. In fact, his real surgery is a kind of real
symplectic blow-up along a real Lagrangian sphere, see [3, Section 5]
for the details.

From the research of algebraic geometry and Gromov-Witten theory
[26, 27], we know that the invariants obtained from the moduli spaces
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always have a close relationship with the birational transformation.
As is well known, blow-up is the basic birational transformation. The
moduli space of genus zero curves is well behaved under blow-up. The
absolute value of the Welschinger invariant provided a lower bound
for the number of real pseudo-holomorphic curves passing through
a particular real configuration and representing a degree, whereas
an upper bound is given by the corresponding genus zero Gromov-
Witten invariant. Inspired by the works on Gromov-Witten invariants
[3, 11, 12, 13], we will study the behavior of Welschinger invariants
under real symplectic blow-ups in this paper.

A real symplectic 4-manifold (X,ω, τ), denoted by XR, is a symplec-
tic 4-manifold (X,ω) with an involution τ on X such that τ∗ω = −ω.
The fixed point set of τ , denoted by RX, is called the real part of X.
RX is either empty or a smooth Lagrangian submanifold of (X,ω).
An ω-tamed almost complex structure J is called τ -compatible if τ
is J-antiholomorphic. The space of all τ -compatible almost complex
structures on X is denoted by RJω. Let c1(X) be the first Chern class
of the symplectic manifold (X,ω). Let d ∈ H2(X;Z) be a homology
class satisfying c1(X) ·d > 0 and τ∗d = −d. Let L be a connected com-
ponent of RX. Assume that x ⊂ X is a real configuration consisting of
r real points in L and s pairs of τ -conjugated points in X\RX, where
r + 2s = c1(X) · d − 1. Fix a τ -invariant class F ∈ H2(X \ L;Z/2Z).
Denote by WXR,L,F (d, s) the Welschinger invariants. For simplicity of
notation, we assume that RX is connected and F = 0. In this situation,
we denote WXR(d, s) instead of WXR,L,F (d, s).

Let p : Xa,b → X be the real symplectic blow-up of X at a real
points and b pairs of τ -conjugated points. Denote p!d = PDp∗PD(d),
where PD stands for the Poincaré duality.

From the geometric point of view, an intuitive observation is that
we will obtain the same number when we try to count the real rational
pseudo-holomorphic curves in X and its blow-up using Welschinger’s
method if the blown-up points are away from the real configuration.
This implies the following theorems.

Theorem 1.1. Let XR be a compact real symplectic 4-manifold, d ∈
H2(X;Z), such that c1(X) ·d > 0 and τ∗d = −d. Denote by p : X1,0 →
XR the projection of the real symplectic blow-up of XR at x ∈ RX.
Then
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(1.1) WXR(d, s) =WX1,0(p
!d, s),

(1.2) WXR(d, s) =WX1,0(p
!d− [E], s) if c1(X) · d− 2s > 2,

where E denotes the exceptional divisor and p!d = PDp∗PD(d).

Theorem 1.2. Let XR be a compact real symplectic 4-manifold, d ∈
H2(X;Z) such that c1(X) · d > 0 and τ∗d = −d. Suppose that y1,
y2 ∈ X \ RX is a τ -conjugated pair, i.e., τ(y1) = y2. Denote by
p : X0,1 → XR the projection of the real symplectic blow-up of XR at
y1, y2. Then,

(1.3) WXR(d, s) =WX0,1(p
!d, s),

(1.4) WXR(d, s) =WX0,1(p
!d− [E1]− [E2], s− 1) if s > 1,

where E1 and E2 denote the exceptional divisors at y1, y2, respectively.

From Theorems 1.1 and 1.2, it is easy to obtain the following.

Corollary 1.3. Let XR be a compact real symplectic 4-manifold, d ∈
H2(X;Z) such that c1(X) · d > 0 and τ∗d = −d. Suppose that x′ ⊂ X
is a real set consisting of r′ points in RX and s′ pairs of τ -conjugated
points in X\RX with r′ 6 r, s′ 6 s. Denote by p : Xr′,s′ → X the
projection of the real symplectic blow-up of X at x′. Then:

(1.5) WXR(d, s) =WXr′,s′ (p
!d, s),

(1.6) WXR(d, s) =WXr′,s′

(
p!d−

r′∑
i=1

[Ei]−
s′∑

j=1

([E′
j ] + [E′′

j ]), s− s′
)
,

where Ei, E
′
j, E

′′
j denote the exceptional divisors corresponding to the

real set x′, respectively.

Welschinger [36] introduced a new θ-invariant to describe the de-
pendence of Welschinger invariants on the number of real points in the
real configurations and obtained a wall-crossing formula, see [36, The-
orem 3.2]. More precisely, when replacing a pair of real fixed points in
the same component of RX by a pair of imaginary conjugated points,
twice the θ-invariant is the difference of the respective invariants. In
this paper, using the degeneration method, we reprove Welschinger’s
wall-crossing formula and verify that Welschinger’s θ-invariants of XR
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are the Welschinger invariants of the real blow-up X1,0 of the real sym-
plectic manifold at one real point.

Theorem 1.4. Let XR be a compact real symplectic 4-manifold, d ∈
H2(X;Z) such that c1(X) · d > 4 and τ∗d = −d. Denote by p : X1,0 →
X the projection of the real symplectic blow-up of XR at x ∈ RX. If
s ≥ 1, then

(1.7) WXR(d, s− 1) =WXR(d, s) + 2WX1,0(p
!d− 2[E], s− 1),

where E denotes the exceptional divisor and p!d = PDp∗PD(d).

Remark 1.5. The same argument as in the proofs of the previous
theorems generalizes formulae (1.5) and (1.6) to the general case where
RX is disconnected. More precisely, assume that XR is a compact real
symplectic 4-manifold and RX is disconnected. Suppose that x′ ⊂ X
is a real set comprised of r′ points in L and s′ pairs of τ -conjugated

points in X with r′ 6 r, s′ 6 s. Denote by L̃ the connected component
of RXr′,s′ corresponding to L . If only one of the blown-up real points

belongs to L, L̃ = L ♯ RP 2, we assume that the τ -invariant class F has

a τ -invariant compact representative F ⊂ X \ x′ and denote F̃ = p!F .
Denote by p : Xr′,s′ → X the projection of the real symplectic blow-up
of X at x′. Then

(1.8) WXR,L,F (d, s) =WXr′,s′ ,L̃,F̃ (p
!d, s),

(1.9)

WXR,L,F (d, s) =WXr′,s′ ,L̃,F̃

(
p!d−

r′∑
i=1

[Ei]−
s′∑

j=1

([E′
j ] + [E′′

j ]), s− s′
)
,

(1.10) WXR,L,F (d, s−1) =WXR,L,F (d, s)+2WX1,0,L̃,F̃ (p
!d−2[E], s−1),

where Ei, E
′
j , E

′′
j denote the exceptional divisors corresponding to the

real set x′, respectively.

2. Preliminaries.

2.1. Real blow-ups of the projective plane. In this subsection, we
consider how the standard real structure, i.e., the conjugation on CP 2,

induces a real structure on C̃P
2
. For this purpose, we must distinguish

the real points from other points in CP 2 \ RP 2.
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First, we review the blow-up of CP 2 at a point x. Let U be a
neighborhood of x with local coordinate (z1, z2). Denote

π : V := {((z1, z2), [w1 : w2]) ∈ U × CP 1 | ziwj = zjwi} −→ U

the projection to U via the first factor. There is a natural identification
map gl between V \E and U \{x}, where E = π−1(0) is the exceptional
divisor. We obtain the blow-up

C̃P
2
= CP 2 \ {x}

∪
gl

V.

For a real point x ∈ RP 2 ⊂ CP 2, denote by CP 2
1,0 the blow-up of

CP 2 at x. We may choose a conjugation invariant neighborhood U of
x in CP 2 and the local coordinate (z1, z2).

Define an involution τ : V → V as

τ((z1, z2), [w1 : w2]) := ((z1, z2), [w1 : w2]).

It is easy to verify that this involution coincides with that induced on
V \ E by identification with U \ {x}. This implies that the standard
real structure on CP 2 naturally induces a real structure on CP 2

1,0 at a

real point x ∈ RP 2.

Since there is no conjugation-invariant neighborhood for the points
in CP 2 \ RP 2, to obtain a real structure on the blow-up, we need to
simultaneously blow up a pair of conjugated points. Denote by CP 2

0,1

the blow-up of CP 2 at a pair of conjugated points. The real structure
on it can be similarly constructed.

2.2. Symplectic cut. Lerman’s symplectic cutting [25] is a simple
and versatile operation on Hamiltonian S1-manifolds. Suppose that
X0 ⊂ X is an open codimension zero connected submanifold with a
Hamiltonian S1-action. Let H : X0 −→ R be a Hamiltonian function
with 0 as a regular value. If H−1(0) is a separating hypersurface of
X, then we obtain two connected manifolds X±

0 with boundary ∂X±
0 =

H−1(0), where the + side corresponds to H < 0. Suppose fur-
ther that S1 acts freely on H−1(0). Then, the symplectic reduction
Z = H−1(0)/S1 is canonically a symplectic manifold of dimension 2 or
less. Collapsing the S1-action on ∂X± = H−1(0), we obtain smooth



WELSCHINGER INVARIANTS OF BLOW-UPS 1111

closed manifolds X
±

containing, respectively, real codimension 2 sub-

manifolds Z± =Z with opposite normal bundles. Furthermore, X
±

admits a symplectic structure ω± which agrees with the restriction of
ω away from Z, and whose restriction to Z± agrees with the canonical
symplectic structure ωZ on Z from symplectic reduction. The pair of

symplectic manifolds (X
±
, ω±) is called the symplectic cut of X along

H−1(0).

This is neatly shown by considering X0×C equipped with appropri-
ate product symplectic structures and the product S1-action on X0×C
where S1 acts on C by complex multiplication. The extended action is
Hamiltonian if we use the standard symplectic structure

√
−1 dw ∧ dw

or its negative on the C factor, see [25]. Denote by µ : X0 → R the

moment map of the S1-action on X0. Then, X
+
= Xµ≤ϵ, X

−
= Xµ≥ϵ.

The normal connected sum operation [9, 28] or the fiber sum opera-
tion, is the inverse operation of the symplectic cut. Given two symplec-
tic manifolds containing symplectomorphic codimension 2 symplectic
submanifolds with opposite normal bundles, the normal connected sum
operation produces a new symplectic manifold by identifying the tubu-
lar neighborhoods.

Note that we can apply the normal connected sum operation to the
pairs (X

+
, ω+, Z+) and (X

−
, ω−, Z−) to recover (X,ω).

According to McDuff [29], the blow-up operation in symplectic
geometry amounts to removal of an open symplectic ball followed
by collapse of some boundary directions. In fact, we may apply the
symplectic cut to construct the blow-up of the symplectic manifold X
at a point p. By the symplectic neighborhood theorem, take X0 to be
a symplectic ball of radius ϵ0 centered at p with complex coordinates
(z1, . . . , zn), where dimX = 2n. Consider the Hamiltonian S1-action
on X0 by complex multiplication. Fix ϵ with 0 < ϵ < ϵ0, and consider
the moment map

H(u) =
n∑

i=1

|zi|2 − ϵ, u ∈ X0.

Write the hypersurface P = H−1(0) in X corresponding to the sphere
with radius ϵ. We cut X along P to obtain two closed symplectic
manifolds X

+
and X

−
, one of which is CPn. Following the notation

of [11, 26], we denote X
+
= CPn, where X

−
= X̃ is the symplectic

blow-up of X.
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2.3. Real symplectic cut. Let (X,ωX , τX) and (Y, ωY , τY ) be two
real compact symplectic manifolds containing a common real symplec-
tic hypersurface V with e(NV |X) + e(NV |Y ) = 0, where NV |X , NV |Y
are the normal bundles of V in X and Y , respectively. Denote by ωV

the symplectic form ωX |V = ωY |V on V and by τV the real structure
τX |V = τY |V . Denote the normal connected sum of X and Y along V
by X♯V Y . There is a real structure τ♯ on X♯V Y induced by the real
structures τX , τY . In actuality, the symplectic sum operation will pro-
duce a family of symplectic manifolds (Zλ, ωλ) parametrized by a small
complex number λ ∈ ∆. Suppose that π : Z → ∆ is the symplectic
sum of X and Y along V , cf., [9, 14, 28]. Equip the disc ∆ with the
complex conjugation. The real structures τX and τY will induce a real
structure τZ on Z such that the map π : Z → ∆ is real, see [3, 7] for
more details regarding the real symplectic sum in dimension 4.

Let (X,ω, τ) be a real symplectic manifold. Assume thatH : X → R
is a τ -invariant smooth Hamiltonian, i.e., H ◦τ = H. Then, we call H a
real Hamiltonian, cf., [34]. A Hamiltonian circle action on (X,ω, τ) is a
1-parameter subgroup R → Symp(X) : t 7→ ψt of symplectomorphisms
of X, which is 2π-periodic, i.e., ψ2π = id, and which is the integral of
a Hamiltonian vector field XH . The Hamiltonian function H : X → R
in this case is called the moment map of the action. If the Hamiltonian
circle action on (X,ω, τ) satisfies

(2.1) ψ2π−t ◦ τ = τ ◦ ψt

for all t ∈ [0, 2π], we call it a real Hamiltonian circle action. The
moment map of a real Hamiltonian circle action is a real Hamiltonian.

Let (X,ω, τ) be a real symplectic manifold with a real Hamiltonian
circle action. Suppose that µ : X → R is a real moment map. Let
(µ−1(0)/S1, ωµ) be the symplectic reduction. There is a natural real
structure τµ on µ−1(0)/S1 induced by τ on X. Define

τµ : µ−1(0)/S1 −→ µ−1(0)/S1

[x] 7−→ [τ(x)].

Suppose that x, y ∈ µ−1(0) such that [x] = [y]. Then, there is a t ∈
[0, 2π] such that ψt(x) = y. By equation (2.1), ψ2π−t(τ(x)) = τ ◦
ψt(x) = τ(y). Therefore, [τ(x)] = [τ(y)], and τµ is well defined.
Obviously, the reduced space (µ−1(0)/S1, ωµ, τµ) is a real symplectic
manifold.
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Then, we can find that the real symplectic manifold (µ−1(ε)/S1,
ωµ, τµ) is embedded in both Xµ>ε and Xµ6ε as a codimension 2 real
symplectic submanifold but with opposite normal bundles. The pair of
real symplectic manifolds Xµ>ε, Xµ6ε is called the real symplectic cut
of X along µ = ε.

Remark 2.1. Let X0 ⊂ X be an open codimension zero connected
real submanifold equipped with real Hamiltonian S1 action and a real
proper momentum map µ : X0 → R. Suppose that µ achieves its
maximal value c at a single point p ∈ RX. For a sufficiently small ε, p
is the only critical point in the set Xµ>c−ε = {x ∈ X0|c − µ(x) < ε}.
For all 0 < δ < ε, the real symplectic manifold Xµ6c−δ is the real

blow-up of X0 at p by a δ amount. We define X
+
:= Xµ>c−δ and

X
−
:= (X −X0) ∪Xµ6c−δ. We have X

+
= CPn and X

−
= X1,0, where

X1,0 is the real blow-up of X at a real point. The procedure for
obtaining X

+
and X

−
is to perform a real symplectic cut on X at p ∈

RX. Suppose that µ achieves its maximal value c at an exceptional

divisor E. Let ε be small enough. For all 0 < δ < ε, define X
+
:=

Xµ>c−δ andX
−
:= (X−X0)∪Xµ6c−δ. Then, X

+
= CPn

1,0 andX
−∼= X,

where CPn
1,0 is the real blow-up of CPn at a real point. This procedure

is called performing a real symplectic cut on X along the exceptional
divisor E. One can similarly define performing a real symplectic cut at
a pair of τ -conjugated points or conjugated exceptional divisors.

2.4. Welschinger invariants. Let (X,ω, τ) be a compact real sym-
plectic 4-manifold. Denote by Jω the space of almost complex struc-
tures of X tamed by ω and which are of class Cl where l ≫ 1 is a
fixed integer which is large enough. Assume that the first Chern class
c1(X) of the symplectic manifold (X,ω) is not a torsion element, and
let d ∈ H2(X;Z) be a homology class satisfying c1(X) · d > 0 and
τ∗d = −d. Let x = (x1, . . . , xm) be an ordered set of distinct points
of X such that x is globally invariant under τ . Such a set is called a
real configuration of points. Let σ(τ) be the order 2 permutation of
{1, . . . ,m} induced by τ . Let S be an oriented 2-sphere, JS the space
of complex structures of class Cl of S compatible with its orientation,
and let z = (z1, . . . , zm) be m distinct points on S. Denote by

Sd(x) = {u ∈W k,p(S,X)|u∗[S] = d and u(z) = x},
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where 1 ≪ k ≪ l and p > 2. W k,p(S,X) means the space of the
continuous maps from S to X which are in local coordinate charts
represented by functions in W k,p(Ω), where Ω ⊂ R2 is an open set and
W k,p(Ω) is the standard Sobolev space. Let

Pd(x) = {(u, JS , J) ∈ Sd(x)× JS × Jω | du+ J ◦ du ◦ JS = 0}.

Pd(x) is the space of pseudo-holomorphic maps from S to X which
pass through x and represent class d. The triple (u, JS , J) is called
a simple map if u cannot be written as u′ ◦ ϕ, where ϕ : S → S′ is
a holomorphic branched covering with deg(ϕ) > 1 and u′ : S′ → X
is a pseudo-holomorphic map. Let P∗(x) be the subspace of Pd(x)
consisting of simple maps.

Denote by Md(x) the quotient of P∗(x) by the action of Diff+(S, z).
Let π : Md(x) → Jω be the projection.

Proposition 2.2 ([36, Proposition 1.8]). The space Md(x) is a
separable Banach manifold of class Cl−k. The projection π : Md(x) →
Jω is Fredholm of index IndR(π) = 2(c1(X) · d− 1−m).

The manifold Md(x) is equipped with a Z/2Z action. Let RMd(x)
denote the fixed point set of this action. πR : RMd(x) → RJω is the
projection induced by π.

Proposition 2.3. ([36, Proposition 1.9]). The projection

πR : RMd(x) −→ RJω

is Fredholm of index IndR(πR) = c1(X) · d− 1−m.

Suppose that RX is connected. Let c1(X) · d − 1 = r + 2s,
x ⊂ X be a real configuration consisting of r real points in RX and
s pairs of τ -conjugated points in X\RX. In this case, we denote
C(d, x, J) = π−1(J) ⊂ Md(x), RC(d, x, J) = π−1

R (J) ⊂ RMd(x).

Proposition 2.4 ([36]). If J ∈ RJω is generic enough, the set
C(d, x, J) is finite. Moreover, the curves which represent elements of
C(d, x, J) are all irreducible and have only transversal double points as
singularities. The total number of double points of curve C in C(d, x, J)
is equal to

δ =
1

2
(d2 − c1(X) · d+ 2).
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Assume that C ∈ RC(d, x, J). The real double points of C are
of two different kinds: either non-isolated or isolated. A real double
point is called non-isolated if it is the local intersection of two real
branches. The real nodal point, which is the local intersection of two
complex conjugated branches, is called isolated. The mass mX(C) is
defined to be the number of its isolated real nodal points which satisfies
0 6 mX(C) 6 δ. The integer

WXR(d, s) =
∑

C∈RC(d,x,J)

(−1)mX(C)

neither depends upon the choice of J , x, nor upon the deformation class
of XR, cf., [35, 36]. These numbers are called Welschinger invariants
of XR.

When the real part RX is disconnected, let L be a connected
component of RX. Suppose that f : S → X is an immersed real
rational J-holomorphic curve in X such that f(RS) ⊂ L, for a J ∈
RJω. Denoting by S+ a half of S \ RS, f(S+) defines a class [f(S+)]
in H2(X,L;Z/2Z). There exists a well defined pairing

H2(X,L;Z/2Z)×H2(X \ L;Z/2Z) −→ Z/2Z

given by the intersection product modulo 2. Fix a τ -invariant class
F ∈ H2(X \ L;Z/2Z). Define the (L,F )-mass of f as

mL,F (f) = mL(f) + [f(S+)] · F,

where mL(f) is the number of real isolated nodes of f in L. mL,F (f)
does not depend upon the chosen half of S \ RS.

Given J ∈ RJω, the set RC(d, x, J) consists of real rational J-
holomorphic curves f : S → X in X realizing class d, passing through x
and such that f(RS) ⊂ L. Note that, if r > 1, the condition f(RS) ⊂ L
is always satisfied. Itenberg, Kharlamov and Shustin [20] observed that
the integer

WXR,L,F (d, s) =
∑

C∈RC(d,x,J)

(−1)mL,F (C)

neither depends upon the choice of J , x, nor upon the deformation
class of XR. Note that, if F = [RX \ L], WXR,L,F (d, s) is the original
Welschinger invariant. For simplicity of notation, we assume that RX
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is connected and F = 0. In this situation, we denote WXR(d, s) instead
of WXR,L,F (d, s).

2.5. Curves with tangency conditions. When we use the degener-
ation technique to study the behavior of curves under blow-up, we need
to deal with curves with tangency conditions. In this subsection, we
review some basics on curves with tangency conditions. The applicable
reference is [7, subsection 2.1].

Two J-holomorphic maps

f1 : C1 −→ X and f2 : C2 −→ X

are said to be isomorphic if there is a biholomorphism ϕ : C1 → C2

such that f1 = f2 ◦ ϕ. In the following, maps are always considered
up to isomorphism. Given a vector α = (αi)16i<∞ ∈ Z∞

>0, we use the
notation:

|α| =
+∞∑
i=1

αi, Iα =
+∞∑
i=1

iαi.

For k ∈ Z≥0 and α = (αi)1≤i<∞, denote kα := (kαi)1≤i<∞. Let δi
denote the vector in Z∞

>0, all of whose coordinates are equal to 0 except
the ith one which is equal to 1.

Let (X,ω) be a compact and connected four-dimensional symplectic
manifold, and let V ⊂ X be an embedded symplectic curve in X. Let
d ∈ H2(X;Z) and α, β ∈ Z∞

>0 be such that

Iα+ Iβ = d · [V ].

Choose a configuration x = x◦ ⊔ xV of points in X, with x◦ a
configuration of c1(X) · d − 1 − d · [V ] + |β| points in X \ V , and
xV = {pi,j}0<j6αi,i>1 a configuration of |α| points in V . Given an
ω-tamed almost complex structure J on X such that V is J-holo-
morphic, denote by Cα,β(d, x, J) the set of rational J-holomorphic maps
f : CP 1 → X such that

• f∗[CP 1] = d;

• x ⊂ f(CP 1);

• V does not contain f(CP 1);

• f(CP 1) has an order of contact i with V at each of the points pi,j ;



WELSCHINGER INVARIANTS OF BLOW-UPS 1117

• f(CP 1) has an order of contact i with V at exactly βi distinct
points on V \ xV .

The set of simple maps in Cα,β(d, x, J) is zero-dimensional if the al-
most complex structure J is chosen to be generic. However, Cα,β(d, x, J)
might contain components of positive dimension corresponding to non-
simple maps.

Lemma 2.5 ([7, Lemma 11]). Suppose that β = (d · [V ], 0, . . .) and
α = 0, or β = (d · [V ]−1, 0, . . .) and α = (1, 0, . . .). Then, for a generic
choice of J , the set Cα,β(d, x, J) contains only simple maps.

Proposition 2.6 ([7, Proposition 13]). Suppose that V is an embedded
symplectic sphere with [V ]2 = −1 and that |β| > d · [V ]−1. Then, for a
generic choice of J , the set Cα,β(d, x, J) contains finitely many simple
maps. As a consequence, the set

Cα,β
∗ (d, x, J) = {f(CP 1) | (f : CP 1 → X) ∈ Cα,β(d, x, J)}

is also finite.

In particular, suppose that X = CP 2, V = H ⊂ CP 2 is the
hyperplane in CP 2, and |x0| = 1. The set Cα,β(d, x, J) is always finite
and comprised of simple maps.

Lemma 2.7. Suppose that X = CP 2 and V = H ⊂ CP 2 is the
hyperplane in CP 2. Then, the set Cα,β(d, x, J) with |x0| = 1 is empty
for a generic choice of J , except Cδ1,0([H], {p} ∪ xV , J) which contains
a unique element. Moreover, this unique element is an embedding.

Proof. Suppose that d = a[H], a ≥ 0. Since c1(X) = 3[H], we have

c1(X) · (a[H])− 1− (a[H]) · [H] + |β| = 2a− 1 + |β|.

Suppose that 2a − 1 + |β| = 1 and Cα,β(a[H], x, J) ̸= ∅, where
|x0| = 1. From Iα + Iβ = d · [V ] = a[H] · [V ] = a, we can obtain
a[H] · [H] = a > |β|. The intersection number a of the J-holomorphic
curve f ∈ Cα,β(a[H], x, J) with V must satisfy a > 0. Thus, this yields
a = 1, |β| = 0.

If CP 2 is equipped with the symplectic form ωFS and its standard
complex structure Jst, it is well known that Cδ1,0([H], {p} ∪ xV , Jst)
consists of a unique element. When ω and J are both varied, the corre-
sponding set still contains at least one element. If there are two distinct
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curves C1 and C2 in Cδ1,0([H], {p} ∪ xV , J), then both C1 and C2 pass
through {p}

∪
xV , which contains at least two points. Therefore, by

the positivity of intersections, C1 · C2 = 2. This is impossible since

C1 · C2 = [H] · [H] = 1.

This contradiction implies that Cδ1,0(H, {p}∪ xV , J) also consists of
a unique element. Due to the adjunction formula, this J-holomorphic
curve is an embedding curve. �

Let C̃P
2
be the blow-up of CP 2 at a point and E the exceptional

divisor. It is easy to see that C̃P
2 ∼= PE(O(−1)⊕O). Let E0 := PE(0⊕

O) and E∞ := PE(O(−1) ⊕ 0). E0 and E∞ are two distinguished non-
intersecting sections of PE(O(−1) ⊕ O). The following may easily be
computed:

[E∞]2 = −[E0]
2 = 1.

The group H2(C̃P
2
,Z) is the free abelian group generated by [E∞] and

[F ], where F is a fiber of PE(O(−1)⊕O) → E. The first Chern class

of C̃P
2
is given by

c1(C̃P
2
) = 3[E∞]− [E0] = 2[E∞] + [F ].

In X = C̃P
2 ∼= PE(O(−1) ⊕ O), if V = E∞ and |x0| = 0, the set

Cα,β(d, x, J) is always finite and comprised of simple maps.

Lemma 2.8. Suppose that X = C̃P
2
and V = E∞. Then, the set

Cα,β(d, x, J) with |x0| = 0 is empty for a generic choice of J , ex-
cept Cδ1,0([F ], xV , J) which contains a unique element. Moreover, the
unique element is an embedding.

Proof. Suppose that d = a[E∞] + b[F ]. Since c1(C̃P
2
) = 2[E∞] +

[F ], we obtain

c1(X) · d− 1− d · [E∞] + |β| = 2a+ b− 1 + |β|.

Suppose that 2a + b − 1 + |β| = 0 and Cα,β(a[E∞] + b[F ], xV , J) ̸= ∅.
Since |β| 6 a + b and |β| > 0, we have a + b > 0. By the positivity of
intersection, we obtain

d · [E0] = (a[E∞] + b[F ]) · ([E0]) = b > 0

d · [F ] = (a[E∞] + b[F ]) · [F ] = a > 0.

We may deduce that a = |β| = 0, b = |α| = 1.
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The proof of the remainder of this lemma is similar to that in the
proof of Lemma 2.7. �

3. Blow-up formula of Welschinger invariants.

3.1. Blow-up formula at a real point. In this subsection, we
consider the behavior of Welschinger invariants under the blow-up of
the symplectic 4-manifold at a real point.

Let X be a compact real symplectic 4-manifold. Perform a real
symplectic cut onX at the real point x ∈ RX (see Remark 2.1). We can
obtain two real symplectic 4-manifolds X

+∼= P2 and X
−∼= X1,0 which

contain a common real symplectic submanifold V . In X
+
, V ∼= H is

the hyperplane in P2. In X
−
, V ∼= E is the exceptional divisor in X1,0.

Let π : Z → ∆ be the real symplectic sum ofX
+
andX

−
along V (see

subsection 2.3), d ∈ H2(Zλ;Z). Choose x(λ) as a set of c1(X) · d − 1
real symplectic sections ∆ → Z such that x(0) ∩ V = ∅. Choose an
almost complex structure J on Z tamed by ωZ , which restricts to an
almost structure Jλ tamed by ωλ on each fiber Zλ, and is generic with
respect to all choices made.

LetX♯ = X
+∪V X

−
. Denote C(d, x(0), J0) to be the set {f :C→X♯}

of limits, stable maps, of maps in C(d, x(λ), Jλ) as λ goes to 0, where
C(d, x(λ), Jλ) is the set of all irreducible rational J-holomorphic curves
in (Zλ, ωλ, Jλ) passing through all points in x(λ) and realizing the
class d. From [14, Section 3], we know C is a connected nodal rational
curve such that:

• x(0) ⊂ f(C);

• any point p ∈ f
−1

(V ) is a node of C which is the intersection
of two irreducible components C

′
and C

′′
of C, with f(C

′
) ⊂ X

+
and

f(C
′′
) ⊂ X

−
;

• if, in addition, neither f(C
′
) nor f(C

′′
) is entirely mapped into V ,

then the multiplicities of intersection of both f(C
′
) and f(C

′′
) with V

are equal.

Given an element
f : C −→ X♯

of C(d, x(0), J0), denote by C∗, ∗ = +,−, the union of the irreducible

components of C mapped into X
∗
.
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Proposition 3.1. Assume that x(0)∩X+
contains at most one point,

x(0) ∩X− ̸= ∅ if x(0) ∩X+ ̸= ∅. Then, for a generic J0, the set C(d,
x(0), J0) is finite and only depends upon x(0) and J0. Given an element
f : C → X♯ of C(d, x(0), J0), the restriction of f to any component of C

is a simple map, and no irreducible component of C is entirely mapped
into V . Moreover, the following are true:

(1) if x(0)∩X+
= ∅, then C+ is empty. The curve C− is irreducible,

and f |C− is an element of C0,0(p!d, x(0) ∩X−
, J0). The map f is the

limit of a unique element of C(d, x(λ), Jλ) as λ goes to 0.

(2) If x(0) ∩ X+
= {p}, then C+ is irreducible, and f(C+) realizes

class [H]. The curve C− is irreducible, and f |C− is an element of
C0,δ1(p!d− [E], x(0) ∩X−

, J0). The map f is the limit of a unique
element of C(d, x(λ), Jλ) as λ goes to 0.

Proof. From [14, Example 11.4, Lemma 14.6], we know that no
component of C is entirely mapped into V , also see [7].

Note that [E]2 = −1 in the real blow-upX
−
= X1,0, and c1(X

−
) · [E]

= 1. Suppose that f∗[C+] = a[H], a ≥ 0, f∗[C−] = p!d − b[E], b ≥ 0.
Then, we have

a = f∗[C+] · [H] = (p!d− b[E]) · [E] = b.

Since x(0)∩X+
contains at most one point, we will consider the two

cases separately.

(1) x(0)∩X+
= ∅. In this case, we know that f(C−) passes through

all of the c1(X)·d−1 points in x(0)∩X−
and realizes the class p!d−b[E]

in H2(X
−
;Z). Suppose that C− consists of irreducible components

{C−i}mi=1 and there are 0 6 k 6 m irreducible components {C−i}ki=1

such that the restriction f |C−i , i = 1, . . . , k, is non-simple, which factors
through a non-trivial ramified covering of degree δi > 2 of a simple map
fi : P1 → X

−
. Assume that (fi)∗[P1] = di, i = 1, . . . , k, and f∗[C−j ] =

dj , j = k + 1, . . . ,m. Then,
∑k

i=1 δidi +
∑m

j=k+1 dj = p!d− b[E].

c1(X
−
)·
( k∑

i=1

di

)
− k + c1(X

−
) ·
( m∑

j=k+1

dj

)
− (m− k) ≥ c1(X) · d−1

= c1(X
−
) ·

( k∑
i=1

δidi +

m∑
j=k+1

dj

)
+ b− 1.
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Therefore,

(3.1)

k∑
i=1

(1− δi)c1(X
−
) · di > m+ b− 1.

Since c1(X
−
) · di > 0, b > 0, δi > 2, so (3.1) only holds when m = 1,

k = 0 and b = 0. This implies that C− is irreducible and f |C− is simple.

b = 0 also implies f∗[C+] = 0. Therefore, C+ = ∅.
The previous argument implies that f |C− is an element of C0,0(p!d,

x(0)∩X−
, J0). Moreover, the finiteness of C0,0(p!d, x(0) ∩X−

, J0) im-
plies that C(d, x(0), J0) is finite.

(2) x(0) ∩X+
= {p}. In this case, the fact that the image of f(C+)

must pass {p} implies a = b > 1. f(C−) passes through all of the
c1(X) · d − 2 points in x(0) ∩ X− and realizes the class p!d − b[E] in

H2(X
−
;Z). Similar to Case I, we know that C− is irreducible. Next, we

prove that f |C− is simple. For this, we assume that f |C− is non-simple.

Then, f |C− factors through a non-trivial ramified covering of degree
δ > 2 of a simple map f0 : P1 → X

−
, and (f0)∗[P1] = (1/δ)(p!d− b[E]).

Therefore,

1

δ
c1(X

−
) · (p!d− b[E])− 1 > c1(X) · d− 2.

Thus, we have

(3.2) c1(X) · d+ δ − δc1(X) · d > b.

Since δ > 2, c1(X) · d > 2, (3.2) implies b ≤ 0. This is in contradiction
with b ≥ 1. Therefore, f |C− is simple.

From

c1(X
−
) · (p!d− b[E])− 1 = c1(X) · d− 1− b

> c1(X) · d− 2,

we obtain b ≤ 1. Thus, we have b = 1, and f∗[C+] = [H].

The previous argument implies that f |C− is an element of C0,δ1(p!d−
[E], x(0) ∩X−

, J0). The finiteness of C0,δ1(p!d− [E], x(0) ∩X−
, J0)

implies that C(d, x(0), J0) is finite.
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The number of elements of C(d, x(λ), Jλ) converging to f as λ goes
to 0 follows from [14]. Now, we review the behavior of the elements
fλ : Cλ → Zλ of C(d, x(λ), Jλ) converging to f close to the smoothing
of the intersection point p of C− and C+. In local coordinates (λ, x, y)
at f(p), the manifold Z is given by the equation xy = λ. Locally,

X
+
= {λ = 0 and y = 0},

X
−
= {λ = 0 and x = 0}.

Since the order of intersection of fC+
and V at f(p) is 1, the maps fC+

and fC−
have expansions

x(z) = mz + o(z) and y(w) = nw + o(w),

where z and w are local coordinates at p of C+ and C−, respectively.

For 0 < |λ| ≪ 1, there exists a solution µ(λ) ∈ C∗ of

µ(λ) =
λ

mn

such that the smoothing of C at p is locally given by zw = µ(λ), and
the map fλ is approximated by the map

{zw = µ(λ)} ⊂ C2 7−→ (λ,mz, nw)

close to the smoothing of p. Furthermore, such maps fλ ∈ C(d, x(λ), Jλ)
converging to f are in one-to-one correspondence with the choice of such
a µ(λ) for each point of C+ ∩ C−. �

Applying Proposition 3.1, we can obtain a comparison theorem of
the Welschinger invariants. Let RCαr+αc,βr+βc

(d, x, J) be the subset of
real rational curves in Cα,β(d, x, J), α = αr +αc and β = βr +βc, such
that the α (or β) “point(s)” consists of an αr (or βr) real “point(s)”
and (1/2)αc (or (1/2)βc) pairs of τ -conjugated “points.”

Proposition 3.2. Let XR be a compact real symplectic 4-manifold,
d ∈ H2(X;Z) such that c1(X) · d > 0 and τ∗d = −d. Denote by
p : X1,0 → X the projection of the real symplectic blow-up of X at
x ∈ RX. Let x(λ), X

+
, X

−
and J0 be as before. Then:
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• if x(0) ∩X+
= {p}, x(0) ∩X−̸= ∅,

(3.3) WXR(d, s) =
∑

C−∈RC0,δr1 (p!d−[E],x(0)∩X
−
,J0)

(−1)mX1,0
(C−),

• if x(0) ∩X+
= ∅,

(3.4) WXR(d, s) =
∑

C−∈RC0,0(p!d,x(0)∩X
−
,J0)

(−1)mX1,0
(C−),

where E is the exceptional divisor.

Proof. Equip the small disc ∆ with the standard complex conjuga-
tion. From subsection 2.3, we know that the symplectic sum π : Z → ∆
can be equipped with a real structure τZ , which is induced by the real
structures τ−, τ+ on the real symplectic cuts X

−
and X

+
such that the

map π : Z → ∆ is real. Choose a set of real sections x : ∆ → Z . Let
f : C → X♯ be a real element in RC(d, x(0), J0).

For the case x(0) ∩ X
+
= {p} and x(0) ∩ X

− ̸= ∅, from Proposi-
tion 3.1 and Lemma 2.7, we know that f∗[C+] = [H] and f |C+ is an
embedded simple curve. f(C+) has no self-intersection point; thus,
f(C+) has no node. Therefore, there is only one possibility for f |C+

to recover a real curve f(C) when f |C− is fixed, in other words, the
number of real curves f ∈ RC(d, x(0), J0) is equal to the number of the
real curves f |C− ∈ RC0,δr1 (p!d− [E], x(0) ∩X−

, J0). Hence, we have

(3.5) mX♯
(f(C)) = m

X
−(f |C−

) +m
X

+(f |C+) = m
X

−(f |C−
).

By Proposition 3.1, an element f of C(d, x(0), J0) is the limit of a
unique element of C(d, x(λ), Jλ); thus, the latter must be real when f
is real and λ ∈ C∗ is small. The description at the end of the proof
of Proposition 3.1 of the local deformation of f shows that no node
appears in a neighborhood of V ∩ f(C) when deforming f . Combining
with (3.5), this implies (3.3).

For the case x(0)∩X+
= ∅, we know that f∗[C+] = 0 from Proposi-

tion 3.1. The real curve f(C) is determined by the part f |C− , in other
words, the number of real curves f ∈ RC(d, x(0), J0) is equal to the
number of the real curves f |C− ∈ RC0,0(p!d, x(0) ∩X−

, J0). Then, we
have

mX♯
(f(C)) = mX−(f |C−

)
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The remainder of Proposition 3.2 may be proven similarly to the
previous case. �

Remark 3.3. Proposition 3.2 gives that the sum∑
C−∈RC0,δr1 (p!d−[E],x(0)∩X

−
,J0)

(−1)mX1,0
(C−)

on the right side of formula (3.3) is not dependent upon x(0)∩X−
and

J0. It may be seen as a particular case of the relative Welschinger in-
variants. See [3, 22] for more details regarding relative Welschinger
invariants.

Now, we perform a real symplectic cut along the exceptional divisor

E, see Remark 2.1, of the real symplectic blow-up manifold X̃ = X1,0.
This yields two real symplectic cuts:

X
+

1,0
∼= P(NE|X1,0

⊕OE) ∼= PE(O(−1)⊕O)

and
X

−
1,0

∼= X1,0,

which contain a common real symplectic submanifold V . In X
+

1,0,
V ∼= E∞ is the infinity section of PE(O(−1)⊕O) → E. InX

−
1,0

∼= X1,0,
V ∼= E is the exceptional divisor.

Let Z̃ be the real symplectic sum of X
+

1,0 and X
−
1,0 along V , see sub-

section 2.3. Let p!d− [E] ∈ H2(Z̃λ;Z), where d ∈ H2(X;Z). Choose

x̃1(λ) as a set of c1(X) · d − 1 real symplectic sections ∆ → Z̃
such that x̃1(0) ∩ V = ∅, x̃1(0) ∩X

+

1,0= ∅. Choose x̃2(λ) as a set of
c1(X) · d− 2 real symplectic sections ∆ → Z̃ such that x̃2(0)∩ V = ∅,
x̃2(0) ∩X

+

1,0 = ∅. Choose a generic almost complex structure J̃ on Z̃
as above.

Let X̃♯=X
+

1,0 ∪V X
−
1,0. Define C(p!d, x̃1(0), J̃0), C(p!d−[E], x̃2(0), J̃0)

to be the set {f : C → X̃♯} of limits, as stable maps, of maps in
C(p!d, x̃1(λ), J̃λ), C(p!d− [E], x̃2(λ), J̃λ) as λ goes to 0, respectively.

Given an element f : C → X̃♯ of C(p!d, x̃1(0), J̃0) or C(p!d −
[E], x̃2(0), J̃0), denote by C∗, ∗ = +,−, the union of the irreducible

components of C mapped to X
∗
1,0.
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Proposition 3.4. Under the above assumptions, we have the following :

(1) For a generic J̃0, the set C(p!d, x̃1(0), J̃0) is finite and only

depends upon x̃1(0) and J̃0. Given an element f : C → X̃♯ of C(p!d,
x̃1(0), J̃0), the restriction of f to any component of C is a simple
map, and no irreducible component of C is entirely mapped into V .
Moreover, the curve C− is irreducible and f |C− is an element of

C0,0(p!d, x̃1(0) ∩X
−
1,0, J̃0). The map f is the limit of a unique element

of C(p!d, x̃1(λ), J̃λ) as λ goes to 0.

(2) For a generic J̃0, the set C(p!d − [E], x̃2(0), J̃0) is finite and
only depends upon x̃2(0) and J̃0. Given an element f : C → X̃♯ of

C(p!d − [E], x̃2(0), J̃0), the restriction of f to any component of C is
a simple map, and no irreducible component of C is entirely mapped
into V . Moreover, the curve C− is irreducible, and f |C− is an element
of C0,δ1(p!d− [E], x̃2(0) ∩X

−
1,0, J̃0). The map f is the limit of a unique

element of C(p!d− [E], x̃2(λ), J̃λ) as λ goes to 0.

Proof. The fact that no component of C is entirely mapped into V
follows from [7], [14, Example 11.4, Lemma 14.6].

(1) Suppose that f∗[C+] = a[F ] + b[E∞], f∗[C−] = p!d − k[E],
k ≥ 0, where F is a fiber of PE(O(−1) ⊕ O) → E with F · [E0] = 1
and F · [E∞] = 1. Then

a+ b = (a[F ] + b[E∞]) · [E∞] = (p!d− k[E]) · [E] = k,

a = (a[F ] + b[E∞]) · [E0] = (p!d) · [E] = 0.

In X
−
1,0, we know that f |C− passes through

|x̃1(0)| = c1(X) · d− 1 = c1(X
−
1,0) · (p!d)− 1

distinct points in X
−
1,0. The same argument as in the proof of Propo-

sition 3.1 shows that C− is irreducible.

Next, we prove that f |C− is simple. For this, we assume that f |C−

is non-simple. Then, f |C− factors through a non-trivial ramified cover-

ing of degree δ > 2 of a simple map f0 : P1 → X
−
1,0 and (f0)∗[P1]

= (1/δ)(p!d− k[E]). Therefore,
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(3.6)

1

δ
c1(X

−
1,0) · (p!d− k[E])− 1 > c1(X

−
1,0) · (p!d)− 1

(1− δ)c1(X
−
1,0) · (p!d) > k.

Since c1(X) · d > 1, δ > 2, k > 0, so (3.6) is impossible. Therefore,
f |C− can only be simple.

On the other hand, we have

c1(X
−
1,0) · (p!d− k[E])− 1 = c1(X

−
1,0) · p!d− k − 1

> c1(X
−
1,0) · (p!d)− 1.

This implies k = 0 and b = 0. Therefore, C+ = ∅, and f |C− is an

element of C0,0(p!d, x̃1(0) ∩X
−
1,0, J̃0), which also is a simple map.

(2) Suppose that f∗[C+] = a[F ] + b[E∞], f∗[C−] = p!d − k[E],
k > 1, where F is a fiber of PE(O(−1)⊕O) → E with F · [E0] = 1 and
F · [E∞] = 1. Then

a+ b = (a[F ] + b[E∞]) · [E∞] = (p!d− k[E]) · [E] = k,

a = (a[F ] + b[E∞]) · [E0] = (p!d− [E]) · [E] = 1.

In X
−
1,0, we know that f |C− passes through

c1(X) · d− 2 = c1(X
−
1,0) · (p!d− [E])− 1

distinct points. The same argument as in the proof of Proposition 3.1
shows that C− is irreducible.

By a similar analysis of the dimension condition as in the proof
of Proposition 3.4 (1), we obtain that f∗[C+] = [F ], C+ must have
exactly one component, and the image of it must be realized in the
class [F ]. f |C− is an element of C0,δ1(p!d− [E], x̃2(0) ∩X

−
1,0, J̃0), which

is a simple map.

The proofs of the other parts are the same as those of Proposition
3.1. We omit them here. �

Proposition 3.5. Let XR be a compact real symplectic 4-manifold,
d ∈ H2(X;Z) such that c1(X) · d − 1 = r + 2s > 0 and τ∗d = −d.
Denote by p : X1,0 → X the projection of the real symplectic blow-up
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of X at x ∈ RX. Let x̃1(λ), x̃2(λ), J̃0, X
+

1,0 and X
−
1,0 be as previously

defined. Then:

WX1,0(p
!(d), s) =

∑
C−∈RC0,0(p!d,x̃1(0)∩X

−
1,0,J̃0)

(−1)mX1,0 (C−),

WX1,0(p
!(d)− [E], s)

=
∑

C−∈RC0,δr1 (p!d−[E],x̃2(0)∩X
−
1,0,J̃0)

(−1)mX1,0
(C−),

where E is the exceptional divisor.

Remark 3.6. Similar to Proposition 3.2, by Proposition 3.4, one
can prove Proposition 3.5. Moreover, Propositions 3.2 and 3.5 imply
Theorem 1.1.

3.2. Blow-up formula at a conjugated pair. Let (X,ω) be a
compact connected real symplectic 4-manifold, and let V1,V2 ⊂ X be
two disjoint embedded symplectic curves in X. Let d ∈ H2(X;Z) and
α1, α2, β1, β2 ∈ Z∞

>0 be such that

Iα1 + Iβ1 = d · [V1], Iα2 + Iβ2 = d · [V2].

Choose a configuration x = x◦ ⊔ xV1
⊔ xV2

of points in X, with x◦

a configuration of c1(X) · d − 1 − d · ([V1] + [V2]) + |β1| + |β2| points
in X \ (V1 ∪ V2), xV1

= {pi,j}0<j6α1
i ,i>1 a configuration of |α1| points

in V1, and xV2
= {qi,j}0<j6α2

i ,i>1 a configuration of |α2| points in V2.
Given an ω-tamed almost-complex structure J on X such that V1 and

V2 are J-holomorphic, denote by Cα1,β1,α2,β2

(d, x, J) the set of rational
J-holomorphic maps f : CP 1 → X such that

• f∗[CP 1] = d;

• x ⊂ f(CP 1);

• V1 ∪ V2 does not contain f(CP 1);

• f(CP 1) has order of contact i with V1 at each of the points pi,j
and has order of contact i with V2 at each of the points qi,j ;

• f(CP 1) has order of contact i with V1 at exactly β1
i distinct points

on V1 \ xV1
and has order of contact i with V2 at exactly β2

i distinct
points on V2 \ xV2

.
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Note that Cα1,β1,α2,β2

(d, x, J) may contain components of positive
dimension corresponding to non-simple maps. However, for the generic

J , the set of simple maps in Cα1,β1,α2,β2

(d, x, J) is zero-dimensional.

Lemma 3.7. Let (X,ω) be a compact connected real symplectic 4-
manifold. Suppose that V1 and V2 are two embedded symplectic spheres
in X with V1 · V2 = 0, [Vi]

2 = −1, i = 1, 2, and assume that
|βi| = d · [Vi], i = 1, 2. Then, for a generic choice of J , the set

Cα1,β1,α2,β2

(d, x, J) is finite and contains only simple maps which are
all immersions.

Proof. Suppose that Cα1,β1,α2,β2

(d, x, J) contains a non-simple map
which factors through a non-trivial ramified covering of degree δ of
a simple map f0 : CP 1 → X. Let d0 denote the homology class
(f0)∗[CP 1]. Since f0(CP 1) passes through c1(X) · d−1 = δc1(X) · d0−1
points, we have

c1(X) · d0 − 1 > δc1(X) · d0 − 1 > 0,

which is impossible.

Suppose that Cα1,β1,α2,β2

(d, x, J) contains infinitely many simple
maps. From the Gromov compactness theorem, there exists a sequence

(fn)n>0 of simple maps in Cα1,β1,α2,β2

(d, x, J) which converges to some

J-holomorphic map f : C → X. By genericity of J , the set of simple

maps in Cα1,β1,α2,β2

(d, x, J) is discrete; hence, either C is reducible,

or f is non-simple. Let C1, . . . , Cm, C
1

1, . . . , C
1

m1
, C

2

1, . . . , C
2

m2
be the

irreducible components of C, labeled in such a way that

• f(Ci) * V1 ∪ V2;

• f(Cj

i ) ⊂ Vj and (f)∗[C
j

i ] = kji [Vj ], j = 1, 2.

Define kj =
∑mj

i=1 k
j
i , j = 1, 2. The restriction of f to ∪m

i=1Ci is
subject to c1(X) · d− 1− d · ([V1] + [V2]) + |β1|+ |β2| point constraints;
thus, we have

c1(X) · (d− k1[V1]− k2[V2])−m

> c1(X) · d− 1− d · ([V1] + [V2]) + |β1|+ |β2|.

Since both V1 and V2 are embedded symplectic spheres, from the ad-
junction formula, we can obtain c1(X) · [Vi] = 1, i = 1, 2. Hence, we
have
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c1(X) · d− k1 − k2 −m > c1(X) · d− 1− d · ([V1] + [V2]) + |β1|+ |β2|.

From the assumption of Lemma 3.7, we have

0 > m+ k1 + k2 − 1.

Therefore, this yields m = 1, k1 = k2 = 0. The map f must be a
non-simple map which factors through a non-trivial ramified covering
of a simple map f0 : CP 1 → X. However, f0 is subject to more point
constraints, which provides a contradiction. �

Let XR be a compact real symplectic 4-manifold, and suppose that
y1, y2 ∈ X \ RX is a τ -conjugated pair. Denote by p : X0,1 → X the
projection of the real symplectic blow-up of X at y1, y2. Perform a real
symplectic cut of X at the τ -conjugated pair y1, y2, see Remark 2.1.
We obtain

X
+
= X

+1 ⊔X+2 ∼= P2 ⊔ P2, X
−∼= X0,1.

Both X
+

and X
−

contain a common real symplectic submanifold
V = V1 ⊔ V2 of real codimension 2. In X

+
, V1 ∼= H1, V2 ∼= H2, where

Hi is the hyperplane of X
+i
, i = 1, 2. V1 ∼= E1 and V2 ∼= E2 are the

associated exceptional divisors in X
−
at yi, i = 1, 2, respectively.

Let Z be the real symplectic sum of the two real symplectic manifolds
X

+
and X

−
along V , see subsection 2.3, and let d ∈ H2(Zλ;Z). Denote

x(λ), J , X♯ = X
+∪V X

−
, C(d, x(0), J0), C+i, i = 1, 2, as in subsection

3.1. Similar to the proof of Proposition 3.1, we can prove the following.

Proposition 3.8. Assume that x(0)∩X+i
contains at most one point,

x(0) ∩X− ̸= ∅ if x(0) ∩X+ ̸= ∅. Let x(0), d and J be given as above.
Then, for a generic J0, the set C(d, x(0), J0) is finite and only depends
upon x(0) and J0. Given an element f : C → X♯ of C(d, x(0), J0),
the restriction of f to any component of C is a simple map, and no
irreducible component of C is entirely mapped into V . Moreover, the
following are true:

(1) if x(0) ∩ X+i
= {pi}, i = 1, 2, the curve C− is irreducible and

f |C− is an element of C0,δ1,0,δ1(p!d− [E1]− [E2], x(0) ∩X
−
, J0). The

curves C+i, i = 1, 2, are irreducible, and the image of C+i represses
[Hi] and passes {pi}, respectively. The map f is the limit of a unique
element of C(d, x(λ), Jλ) as λ goes to 0.
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(2) If x(0) ∩ X+i
= ∅, i = 1, 2, then C+i = ∅, the curve C− is ir-

reducible and f |C− is an element of C0,0,0,0(p!d, x(0) ∩X−
, J0). The

map f is the limit of a unique element of C(d, x(λ), Jλ) as λ goes to 0.

Based on Proposition 3.8, similar to the proof of Proposition 3.2, we
can prove the following.

Proposition 3.9. Let XR be a compact real symplectic 4-manifold,
d ∈ H2(X;Z) such that c1(X) · d > 0 and τ∗d = −d. Suppose that y1,
y2 ∈ (X \ RX) is a τ -conjugated pair. Denote by p : X0,1 → X the
projection of the real symplectic blow-up of X at y1, y2. Then:

(1) If x(0) ∩X+i
= ∅, i = 1, 2,

WXR(d, s) =
∑

C−∈RC0,0,0,0(p!d,x(0)∩X
−
,J0)

(−1)mX0,1 (C−).

(2) If x(0) ∩X+i
= {pi}, i = 1, 2, x(0) ∩X− ̸= ∅,

WXR(d, s) =
∑

C−∈RC0,δc1,0,δc1 (p!d−[E1]−[E2],x(0)∩X
−
,J0)

(−1)mX0,1 (C−),

where E1 and E2 are the exceptional divisors.

Next, perform the real symplectic cut of X0,1 along E1, E2, where
Ei is the exceptional divisor of the blow-up at yi, i = 1, 2, respectively,
see Remark 2.1. We obtain two real symplectic manifolds

X̃
+

= X̃
+1

⊔ X̃
+2

and X̃
−
as follows:

X̃
+∼= PE1(O(−1)⊕O) ⊔ PE2(O(−1)⊕O), X̃

−∼= X0,1.

Both X̃
+

and X̃
−

contain a common real symplectic submanifold

V = V1 ⊔ V2 of real codimension 2, respectively. In X̃
+

, V1 ∼= E1
∞ and

V2 ∼= E2
∞, where Ei

∞ is the infinity section of PEi
(O(−1) ⊕ O) → Ei,

respectively. V1 ∼= E1 and V2 ∼= E2 are the exceptional divisors in X̃
−
.

Let Z̃ be the symplectic sum of the two real symplectic manifolds X̃
+

and X̃
−
along V , see subsection 2.3. Let p!d− [E1]− [E2] ∈ H2(Z̃λ;Z),

where d ∈ H2(X;Z). Choose x̃1(λ) as a set of c1(X) · d − 3 real
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symplectic sections ∆ → Z̃ such that x̃1(0) ∩ V = ∅ and x̃1(0) ∩ X̃
+

= ∅. Choose x̃2(λ) as a set of c1(X) · d − 1 real symplectic sections

∆ → Z̃ such that x̃2(0) ∩ V = ∅ and x̃2(0) ∩ X̃
+

= ∅. Choose a generic

almost complex structure J̃ on Z̃ as above.

Denote X̃♯ = X̃
+

∪V X̃
−
, C(p!d− [E1]− [E2], x̃1(0), J̃0), C(p!d, x̃2(0),

J̃0), C+i, i = 1, 2 and C− as in subsection 3.1. The same argument as
in the proofs of Propositions 3.1 and 3.2 shows that Propositions 3.10
and 3.11 hold.

Proposition 3.10. Let x̃(0), p!d− [E1]− [E2] and J̃ be given as above.
Then, we have:

(1) For a generic J̃0, the set C(p!d − [E1] − [E2], x̃1(0), J̃0) is finite

and only depends upon x̃1(0) and J̃0. Given an element f : C → X̃♯

of C(p!d− [E1]− [E2], x̃1(0), J̃0), the restriction of f to any component
of C is a simple map, and no irreducible component of C is entirely
mapped into V . Moreover, the curve f |C− is irreducible, and f |C− is an
element of C0,δ1,0,δ1(p!d− [E1]− [E2], x̃1(0) ∩ X̃

−
, J̃0). C+i, i = 1, 2,

are irreducible, and the image of C+i under f represents the fiber class
[Fi] of PEi(O(−1)⊕O) → Ei, respectively. The map f is the limit of

a unique element of C(p!d− [E1]− [E2], x̃1(λ), J̃λ) as λ goes to 0.

(2) For a generic J̃0, the set C(p!d, x̃2(0), J̃0) is finite and only

depends upon x̃2(0) and J̃0. Given an element f : C → X̃♯ of C(p!d,
x̃2(0), J̃0), the restriction of f to any component of C is a simple
map, and no irreducible component of C is entirely mapped into V .
Moreover, the curve f |C− is irreducible, and f |C− is an element of

C0,0,0,0(p!d, x̃2(0)∩ X̃
−
, J̃0). The map f is the limit of a unique element

of C(p!d, x̃2(λ), J̃λ) as λ goes to 0.

Proposition 3.11. Let XR be a compact real symplectic 4-manifold,
d ∈ H2(X;Z) such that c1(X) · d > 0 and τ∗d = −d. Suppose that y1,
y2 ∈ (X \ RX) is a τ -conjugated pair. Denote by p : X0,1 → X the
projection of the real symplectic blow-up of X at y1, y2. Then:

WX0,1
(p!d, s) =

∑
C−∈RC0,0,0,0(p!d,x̃2(0)∩X̃−,J̃0)

(−1)mX0,1 (C−).



1132 YANQIAO DING AND JIANXUN HU

Moreover, if s ≥ 1, then

WX0,1
(p!d− [E1]− [E2], s− 1)

=
∑

C−∈RC0,δc1,0,δc1 (p!d−[E1]−[E2],x̃1(0)∩X̃−,J̃0)

(−1)mX0,1 (C−),

where E1 and E2 are the exceptional divisors.

Remark 3.12. Propositions 3.9 and 3.11 imply Theorem 1.2.

4. Wall-crossing formula of Welschinger invariants.

4.1. Wall-crossing formula. Welschinger [36] introduced a new in-
variant θXR(d, s) to describe the variation of Welschinger invariants
when replacing a pair of real fixed points in the same component of
RX by a pair of τ -conjugated points. Welschinger proved the following
wall-crossing formula, [36, Theorem 3.2].

Theorem 4.1 ([36]). Let (X,ω, τ) be a compact real symplectic 4-
manifold such that RX is connected, d ∈ H2(X;Z) such that c1(X) ·
d − 1 > 0 and τ∗d = −d, and let s be an integer between 1 and
[(c1(X) · d− 1)/2]. Then:

WXR(d, s− 1) =WXR(d, s) + 2θXR(d, s− 1).

In algebraic geometry, Itenberg, Kharlamov and Shustin [16] ob-
served that the invariant θXR(d, s) may be considered as theWelschinger
invariants on the blow-up at the fixed real point. In the following, we
will use the degeneration technique to verify this observation for sym-
plectic 4-manifolds.

Perform the real symplectic cut on X at the real point x ∈ RX (see
Remark 2.1). This yields

X
+∼= P2 and X

−∼= X1,0.

In this section, we assume that d ∈ H2(X,Z) such that c1(X) · d ≥ 4
and τ∗d = −d. Denote π : Z → ∆, x(λ), J , X♯, C(d, x(0), J0), C∗,
∗ = +,−, as in subsection 3.1. First, we have the following.

Proposition 4.2. Assume that x(0)∩X+
= {p1, p2}, and x(0)∩X

−̸= ∅.
Then, for a generic J0, the set C(d, x(0), J0) is finite and only de-
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pends upon x(0) and J0. Given an element f : C → X♯ of C(d, x(0),
J0), the restriction of f to any component of C is a simple map, and
no irreducible component of C is entirely mapped into V . Moreover :

(1) C+ is irreducible, and f(C+) realizes the class [H] passing
through {p1, p2}. The curve C− is irreducible, and f |C− is an element
of Cδ1,0(p!d− [E], x(0) ∩X− ⊔ {q}, J0) for some q ∈ V . The map f is
the limit of a unique element of C(d, x(λ), Jλ) as λ goes to 0.

(2) C+ has exactly two irreducible components, and the image of
each component realizes the class [H] and passes through one point
of {p1, p2}. The curve C− is irreducible, and f |C− is an element of
C0,2δ1(p!d− 2[E], x(0) ∩X−

, J0). The map f is the limit of a unique
element of C(d, x(λ), Jλ) as λ goes to 0.

Proof. Example 11.4 and Lemma 14.6 in [14] imply that no compo-
nent of C is entirely mapped into V . In the real blow-up X

−∼= X1,0,
[E]2 = −1. The adjunction formula implies that c1(X

−
) · [E] = 1. Sup-

pose that f∗[C+] = a[H], f∗[C−] = p!d− b[E]. Thus, by considering a
representative of V in X

+
and another in X

−
, respectively, we have

a = f∗[C+] · [H] = (p!d− b[E]) · [E] = p!d · [E] + b = b.

Since x(0) ∩X+
= {p1, p2}, then f(C+) passes through the two points

p1 and p2. Next, x(0)∩X− ̸= ∅ implies that a = b > 1 and c1(X)·d ≥ 4.
Therefore, f(C−) passes through all of the c1(X) · d − 3 points in

x(0) ∩X−
and realizes the class p!d− b[E] in H2(X

−
;Z).

Suppose that C− consists of irreducible components {C−i}mi=1 with
0 6 k 6 m irreducible components {C−i}ki=1 such that the restriction

f |C−i , i = 1, . . . , k, is non-simple, which factors through a non-trivial
ramified covering of degree δi > 2 of a simple map fi : P1 → X

−
.

Assume that (fi)∗[P1] = di, i = 1, . . . , k, and f∗[C−j ] = dj , j =

k + 1, . . . ,m. Then,
∑k

i=1 δidi +
∑m

j=k+1 dj = p!d− b[E].

c1(X
−
)·
( k∑

i=1

di

)
−k + c1(X

−
)·
( m∑

j=k+1

dj

)
−(m− k) ≥ c1(X)·d−3

= c1(X
−
)·
( k∑

i=1

δidi +
m∑

j=k+1

dj

)
+ b− 3.
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Therefore,

(4.1)
k∑

i=1

(1− δi)c1(X
−
) · di > m+ b− 3.

Since c1(X
−
) · di > 0, we have

m+ b ≤ 3.

First, assume that k ≥ 1. Then (4.1) implies m + b < 3. Thus,
we have m = b = 1. This implies that C− has one component.
Furthermore, assume that f |C− factors through a non-trivial ramified
covering of degree δ ≥ 2 of a simple map f− : P1 −→ X

−
. Then, we

have
1

δ
c1(X

−
) · (p!d− b[E])− 1 > c1(X) · d− 3.

Therefore,
c1(X) · d+ 2δ − δc1(X) · d > b,

since δ > 2 and c1(X) · d > 4, b 6 0. This is in contradiction with
b = 1, which implies that k = 0.

Next, assume that k = 0. Equation (4.1) implies that we need only
consider the following two cases.

Case I. m = 2, b = 1. In this case, f |C+ is constrained by {p1, p2}
and f |C+ ∈ C0,δ1([H], {p1, p2}, J0). Therefore, f |C− must pass the

point of intersection of f |C+
and V , which is distinct from x(0) ∩X−

.

fC−
will pass c1(X) · d − 2 = c1(X) · (p!d − [E]) − 1 distinct points,

which implies that fC−
is irreducible. This is in contradiction with the

previous statement that C− has two components, implying that this
case is impossible.

Case II. m = 1, b = 1 or 2. If b = a = 1, C+ must have exactly
one component, and its image under f realizes the class [H]. f |C+ is
simple due to Lemma 2.5:

f |C+ ∈ C0,δ1([H], {p1, p2}, J0).

By the positivity of intersection, only one curve exists in C0,δ1([H],
{p1, p2}, J0), which is an embedded simple curve. Denote by q the
point of the intersection of f |C+ and V . The point q depends only upon
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C0,δ1([H], {p1, p2}, J0). Therefore, f |C− must pass x(0) ∩X− ⊔ {q} and
f |C− is an element of Cδ1,0(p!d− [E], x(0) ∩X− ⊔{q}, J0).

If b = a = 2, f |C− is an element of C0,2δ1(p!d− 2[E], x(0) ∩X−
, J0).

f |C− intersects E transversely at two distinct points. Note that the
curve C is rational, and any component of f(C+) intersects E in
X

+
; thus, C+ has exactly two irreducible components. Furthermore,

each component of f(C+) realizes [H] and passes through one point of
{p1, p2}.

The remainder of Proposition 4.2 can be proved similarly to Propo-
sition 3.1. We omit it here. �

Proposition 4.3. Let XR be a compact real symplectic 4-manifold,
and let d ∈ H2(X;Z) be such that c1(X) · d > 4 and τ∗d = −d. Denote
by p : X1,0 → X the projection of the real symplectic blow-up of X at
x ∈ RX. Then, if s > 1, we have

WXR(d, s− 1) =
∑

C1∈RCδr1 ,0(p!d−[E],x(0)∩X
−⊔{q},J0)

(−1)mX1,0 (C1)

+ 2
∑

C2∈RC0,2δr1 (p!d−2[E],x(0)∩X
−
,J0)

(−1)mX1,0
(C2),

(4.2)

WXR(d, s) =
∑

C1∈RCδr1 ,0(p!d−[E],x(0)∩X
−⊔{q},J0)

(−1)mX1,0 (C1)

− 2
∑

C2∈RC0,2δc1 (p!d−2[E],x(0)∩X
−
,J0)

(−1)mX1,0
(C2),

(4.3)

where E is the exceptional divisor and q is some particular point in V .

Proof. Equip the small disc ∆ with the standard complex conjuga-
tion. From subsection 2.3, we know that the symplectic sum π : Z → ∆
can be equipped with a real structure τZ which is induced by the real
structures τ−, τ+ on the real symplectic cuts X

−
and X

+
such that the

map π : Z → ∆ is real. Choose a set of real sections x : ∆ → Z such
that x(0) ∩X+

1,0 contains two points. Let f : C → X♯ be a real element
in RC(d, x(0), J0).

Next, we will divide the proof into two cases according to the type
of real configuration points.
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Case I. x(0) ∩ X+
= {p1, p2} and p1, p2 ∈ RX. From Proposition

4.2, there are two types of the limited curve f as follows.

Type I-1. C+ only has one component. f∗[C+] = [H] and f |C+ ∈
C0,δ1([H], {p1, p2}, J0) is an embedded simple curve. The intersection
point q of f(C+) with V , determined by C0,δ1([H], {p1, p2}, J0), must
be real. In this case, since f(C+) has no self-intersection point; thus,
f(C+) has no node. Therefore, there is only one possibility to recover
a real curve f(C) from f |C+ when f |C− is fixed. Thus, we have

mX♯
(f(C)) = m

X
−(f |C−

) +m
X

+(f |C+)

= m
X

−(f |C−
).

(4.4)

Type I-2. C+ has exactly two irreducible components C+i, i = 1, 2.
In this case, f∗[C+i] = [H], and f |C+i is an embedded simple curve. By

the positivity of intersections, f(C+1) intersects f(C+2) at one point.
This point must be a real node of f(C+) due to the fact that f(C+)
is real. Since f(C+i) passes pi ∈ RX, f(C+1) and f(C+2) cannot
be two τ -conjugated components. Therefore, the real nodal point of
f(C+) must be non-isolated. Moreover, each f(C+i) intersects V at
a real point qi transversally and fC+i

∈ Cδr1 ,0([H], {pi} ⊔ {qi}, J0).
From Proposition 4.2 (2), we obtain that the curve C− is irreducible,
and f |C− is an element of C0,2δ1(p!d− 2[E], x(0) ∩X−

, J0). f |C+

and f |C− form the limited curve f . We know that f(C−) inter-
sects V at two real non-prescribed points transversally. Therefore,
f |C−∈ C0,2δr1 (p!d− 2[E], x(0) ∩X−

, J0). Furthermore, there are two
possibilities for recovering a real curve f(C) from f |C+ when f |C− is
fixed. We have

mX♯
(f(C)) = m

X
−(f |C−

) +m
X

+(f |C+)

= m
X

−(f |C−
).

(4.5)

By Proposition 4.2, an element f of C(d, x(0), J0) is the limit of a
unique element of C(d, x(λ), Jλ) as λ goes to 0. Thus, the latter must
be real when f is real and λ ∈ C∗ is small. When deforming f , no node
appears in a neighborhood of V ∩ f(C). From the analysis of Case I,
we know that the elements of C(d, x(0), J0) have two different types.
Therefore, the elements of RC(d, x(λ), Jλ) will degenerate into two

types: in Type I-1, an element of RCδr1 ,0(p!d− [E], x(0)∩X− ⊔{q}, J0)
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corresponds to a unique element of the limited curve; in Type I-2,
an element of RC0,2δr1 (p!d− 2[E], x(0) ∩X−

, J0) corresponds to two
limited curves with the same mass. We may easily obtain formula
(4.2) from (4.4) and (4.5).

Case II. x(0) ∩ X+= {p, p′} with p, p′ ∈ X \ RX and τ(p) = p′.
From Proposition 4.2, we also obtain two types of the limited curve f
as follows.

Type II-1. C+ has only one component. f∗[C+] = [H], and f |C+

∈ C0,δ1([H], {p, p′}, J0) is an embedded simple curve. The τ -conjugated
pair p, p′ ∈ X \ RX can be chosen such that the intersection point,
determined by C0,δ1([H], {p, p′}, J0), is also q. Thus, f |C− belongs to
Cδr1 ,0(p!d− [E], x(0) ∩ X

− ⊔ {q}, J0), and the remaining argument is
the same as that in Case I. We omit it here.

Type II-2. C+ has exactly two irreducible components C+i, i =1, 2.
In this case, f∗[C+i] = [H], and f |C+i is an embedded simple curve.

By the positivity of intersections, f(C+1) intersects f(C+2) at one real
point which is a real node of f(C+). Since f(C+i) passes one point
of {p, p′} ⊂ X \ RX with τ(p) = p′, f(C+1) and f(C+2) are two τ -
conjugated components. Therefore, the real nodal point of f(C+)
must be isolated. Moreover, each f(C+i) intersects V at a point qi
transversally with τ(q1) = q2. From Proposition 4.2 (2), we can obtain
that the curve C− is irreducible and f |C− is an element of C0,2δ1(p!d

−2[E], x(0) ∩X−
, J0). f |C+ and f |C− form the limited curve f . We

know that f(C−) intersects V at two τ -conjugated non-prescribed
points transversally. Therefore, f |C−∈ C0,2δc1(p!d−2[E], x(0) ∩X−

, J0).
There are two possibilities for recovering a real curve f(C) from f |C+

when f |C− is fixed. We have

mX♯
(f(C)) = m

X
−(f |C−

) +m
X

+(f |C+)

= m
X

−(f |C−
) + 1.

(4.6)

By Proposition 4.2, an element f of C(d, x(0), J0) is the limit of a
unique element of C(d, x(λ), Jλ) as λ goes to 0. Thus, the latter must
be real when f is real and λ ∈ C∗ is small. When deforming f , no node
appears in a neighborhood of V ∩f(C). From the analysis of Case II, we
know the elements of C(d, x(0), J0) have two different types. Therefore,
the elements of RC(d, x(λ), Jλ) will degenerate into two types: in Type

II-1, an element of RCδr1 ,0(p!d − [E], x(0) ∩X− ⊔ {q}, J0) corresponds
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to a unique element of the limited curve; in Type II-2, an element of

RC0,2δc1(p!d − 2[E], x(0) ∩ X
−
, J0) corresponds to two limited curves

with the same mass. Formula (4.3) is easily obtained from (4.4) and
(4.6). �

Next, perform the real symplectic cut along the exceptional divisor

E in X1,0, see Remark 2.1. We can get X
+

1,0
∼= PE(O(−1) ⊕ O), X

−
1,0

∼= X1,0, V as in subsection 3.1.

Let Z̃ be the real symplectic sum of X
+

1,0 and X
−
1,0 along V (see

subsection 2.3). Let p!d − 2[E] ∈ H2(Z̃λ;Z), where d ∈ H2(X;Z).
Choose x̃(λ) as a set of c1(X) · d − 3 real sections ∆ → Z̃ such that
x̃(0) ∩ V = ∅ and x̃(0) ∩X+

1,0 = ∅. Choose an almost complex structure

J̃ on Z̃ as before. Denote X̃♯, C(p!d− 2[E], x̃(0), J̃0), C∗, ∗ = +,−, as
in subsection 3.1.

Proposition 4.4. For a generic J̃0, the set C(p!d − 2[E], x̃(0), J̃0) is

finite and only depends upon x̃(0) and J̃0. Given an element f : C →
X̃♯ of C(p!d−2[E], x̃(0), J̃0), the restriction of f to any component of C

is a simple map, and no irreducible component of C is entirely mapped
into V . Moreover, the curve C− is irreducible and f |C− is an element
of C0,2δ1(p!d− 2[E], x̃(0) ∩X−

1,0, J̃0). The curve C+ has two irreducible
components. Each component of f(C+) realizes the fiber class [F ] in
PE(O(−1) ⊕ O) → E. The map f is the limit of a unique element of

C(p!d− 2[E], x̃(λ), J̃λ) as λ goes to 0.

Proof. As before, we know that no component of C is entirely
mapped into V . Since f∗[C] = p!d−2[E], we may suppose that f∗[C+]
= a[F ]+ b[E∞], a, b ≥ 0, f∗[C−] = p!d−k[E], k > 0, where F is a fiber
of PE(O(−1)⊕O) → E with F · [E0] = 1 and F · [E∞] = 1. Then

a+ b = (a[F ] + b[E∞]) · [E∞] = (p!d− k[E]) · [E] = k,

a = (a[F ] + b[E∞]) · [E0] = (p!d− 2[E]) · [E] = 2.

This implies k ≥ 2.

In X
−
1,0, we know that f |C− passes through

c1(X) · d− 3 = c1(X
−
1,0) · (p!d− 2[E])− 1

distinct points. The same argument as in the proof of Proposition 3.1
shows that C− is irreducible.
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Assume that f |C− is non-simple. Then f |C− factors through a non-
trivial ramified covering of degree δ ≥ 2 of a simple map f0 : P1 → X̃

−
.

Then, (f0)∗[P1] = (1/δ)(p!d− k[E]). Therefore,

1

δ
c1(X̃

−
) · (p!d− k[E])− 1 > c1(X) · d− 3.

This implies
c1(X) · d− δc1(X) · d+ 2δ > k.

Since δ > 2, c1(X) ·d > 4, we have k ≤ 0. This is in contradiction with
k ≥ 2. Thus, f |C− is simple.

On the other hand, we have

c1(X̃
−) · (p!d− k[E])− 1 = c1(X) · d− k − 1 > c1(X) · d− 3.

This implies k ≤ 2, and we have k = 2, b = 0. Since the image of C−
under f intersects V transversally in two distinct points, C+ has two
irreducible components C+i such that f∗[C+i] = [F ], i = 1, 2.

The remainder of Proposition 4.4 can be obtained by a similar
argument as that in the proof of Proposition 3.1. We omit it here. �

Proposition 4.5. Let XR be a compact real symplectic 4-manifold,
d ∈ H2(X;Z) such that c1(X) · d > 4 and τ∗d = −d. Denote by p :
X1,0 → X the projection of the real symplectic blow-up of X at x ∈ RX.
Then, if s > 1,

WX1,0(p
!(d)− 2[E], s− 1)

=
∑

C−∈RC0,2δr1 (p!d−2[E],x̃(0)∩X̃−
1,0,J̃0)

(−1)mX1,0
(C−)

+
∑

C−∈RC0,2δc1 (p!d−2[E],x̃(0)∩X̃−
1,0,J̃0)

(−1)mX1,0
(C−),

where E is the exceptional divisor.

Remark 4.6. The proof of Proposition 4.5 is similar to Proposition
3.2. Propositions 4.3 and 4.5 imply Theorem 1.4.
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4.2. Generating function. In this subsection, we restate our formu-
lae in the form of generating functions. Denote by

W d
XR,L,F (T ) =

[(c1(X)·d−1)/2]∑
s=0

WXR,L,F (d, s)T
s ∈ Z[T ]

the generating function of Welschinger invariants which encodes all of
the information of the Welschinger invariants.

Let XR be a compact real symplectic 4-manifold. If RX is discon-
nected, the previous formulae are still true, and can be proved in the
same method as Theorem 1.4 and Corollary 1.3. Suppose that x′ ⊂ X
is a real set consisting of r′ points in L and s′ pairs of τ -conjugated
points in X with r′ + 2s′ 6 c1(X) · d − 1. We denote the connected

component of RXr′,s′ corresponding to L by L̃. If there is only one

blown-up real point in L, L̃ = L♯RP 2. We assume that F has a τ -

invariant compact representative F ⊂ X \ x′, and denote F̃ = p!F .
Denote by p : Xr′,s′ → X the projection of the real symplectic blow-up
of X at x′. Then

W d
XR,L,F (T ) =W p!d

Xr′,s′ ,L̃,F̃
(T ),

W d
XR,L,F (T )−WXR,L,F (d, 0)− · · · −WXR,L,F (d, s

′ − 1)T s′−1

=W
p!d−

∑r′
i=1[Ei]−

∑s′
j=1([E

′
j ]+[E′′

j ])

Xr′,s′ ,L̃,F̃
(T )T s′ ,

W d
XR,L,F (T )T =W d

XR,L,F (T )−WXR,L,F (d, 0) + 2W
p!d−2[E]

X1,0,L̃,F̃
(T )T,

where Ei, E
′
j , E

′′
j denote the exceptional divisors corresponding to the

real set x′, respectively.

5. Real enumeration. In this section, we will give some applica-
tions of the blow-up formula of Welschinger invariants.

5.1. Blow-up of CP 2. Let CP 2
r,s denote the blow-up of CP 2 at r

real points and s pairs of conjugated points. The projective plane with
the standard symplectic structure and complex conjugation is a real
symplectic manifold. In [1], a recursive formula of Welschinger in-
variants in the projective plane was proven. Using the results of [1]
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and the blow-up formula of Welschinger invariants (Corollary 1.3), we
can compute the invariants of CP 2

r,s, as shown in Tables 1 and 2.

Table 1. Welschinger invariants of CP 2
r,s with r + 2s 6 8.

s 0 1 2 3 4

W (c1(X), 0) 8 6 4 2 0

W (c1(X), 1) 6 4 2 0 –

W (c1(X), 2) 4 2 0 – –

W (c1(X), 3) 2 0 – – –

Table 2. Welschinger invariants with purely real point constraints.

W ([H], 0) W (2[H], 0) W (4[H], 0)

X = CP 2
3,0 1 1 240

X = CP 2
1,1 1 1 144

Note that the Welschinger invariants of CP 2
r,s with purely real point

constraints were computed in [15, 16, 17, 19, 20, 21, 24]. In addition,
the Welschinger invariants of CP 2

r,s were completely computed in [10].
The invariants for r+2s 6 3 with arbitrary real and conjugated pairs of
point constraints were studied in [5]. For 6 6 r + 2s 6 8, WCP 2

r,s
(d, s′)

was considered with point constraints in [2].

5.2. Conic bundles and del Pezzo surfaces of degree 2. Re-
call that there are 12 topological types of degree 2 real del Pezzo sur-
faces. Itenberg, Kharlamov and Shustin [24] computed the Welschinger
invariants with purely real point constraints of all degree 2 real del
Pezzo surfaces. Brugallé [2], computed the Welschinger invariants
with arbitrary point constraints of real degree 2 del Pezzo surfaces
with a non-orientable real part. Horev and Solomon [10] also com-
puted Welschinger invariants with arbitrary point constraints of some
degree 2 del Pezzo surfaces with a non-orientable real part. Brugallé
[2, 3] computed the Welschinger invariants of the entire real degree 1
del Pezzo surface and showed that every degree 2n − 1 del Pezzo sur-
face which is not the minimal del Pezzo surface is the blow-up of a
degree 2n del Pezzo surface at a real point. We can use the blow-up
formula to compute the Welschinger invariants with conjugated point
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constraints in the remaining five topological types of degree 2 real del
Pezzo surfaces with no non-orientable real part.

Let Bn be the real conic bundle with 2n singular fibers and X1 the
minimal real del Pezzo surface of degree 2. Endow P1 × P1 with the
standard real structure. Thus, X1, B3, B2

0,1, B1
0,2, (P1 × P1)0,3 are the

five topological types of real del Pezzo surfaces of degree 2 with real
parts ⊔ 4S2 ⊔ 3S2, ⊔ 2S2, S2 and S1×S1, respectively. The next tables
are from [2, 3, 24].

Table 3.

X1 B3 B2
0,1 B1

0,2 (P1 × P1)0,3
W (2c1(X), 0) 0 0 0 8 32

Table 4.

X1
1,0 B3

1,0 B2
1,1 B1

1,2 (P1 × P1)1,3
W (2c1(X), 0) 18 10 6 6 10

Using Welschinger’s wall-crossing formula

WXR(d, s− 1) =WXR(d, s) + 2WX1,0(p
!d− 2[E], s− 1),

we can obtain the following values.

Table 5.

X1 B3 B2
0,1 B1

0,2 (P1 × P1)0,3
W (2c1(X), 1) −36 −20 −12 −4 12

Acknowledgments. The first author would like to thank E. Bru-
gallé for answering my question about the behavior of pseudo-holomor-
phic curves under the symplectic sum.
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