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ON GENERALIZED WEAVING FRAMES
IN HILBERT SPACES

LALIT K. VASHISHT, SAAKSHI GARG,

DEEPSHIKHA AND P.K. DAS

ABSTRACT. Generalized frames (in short, g-frames) are
a natural generalization of standard frames in separable
Hilbert spaces. Motivated by the concept of weaving frames
in separable Hilbert spaces by [1] in the context of dis-
tributed signal processing, we study weaving properties of
g-frames. Firstly, we present necessary and sufficient con-
ditions for weaving g-frames in Hilbert spaces. We extend
some results of [1, 6] regarding conversion of standard weav-
ing frames to g-weaving frames. Some Paley-Wiener type
perturbation results for weaving g-frames are obtained. Fi-
nally, we give necessary and sufficient conditions for weaving
g-Riesz bases.

1. Introduction. Frames in Hilbert spaces were originally intro-
duced by Duffin and Schaeffer [13] in 1952 in the context of non-
harmonic Fourier series and popularized in 1986 by Daubechies, Gross-
mann and Meyer [9]. Frames are basis-like building blocks that span
a vector space but allow for linear dependency, which is useful for re-
ducing noise and finding sparse representations, spherical codes, com-
pressed sensing, signal processing, wavelet analysis, etc., see [5]. Mo-
tivated by a problem regarding distributed signal processing where re-
dundant building blocks, e.g., frames, play an important role, Bem-
rose, et al., [1] introduced weaving frames in separable Hilbert spaces.
Weaving frames have potential applications in wireless sensor networks
that require distributed processing under different frames, as well as
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preprocessing of signals using Gabor frames. Sun introduced the no-
tion of generalized frames or g-frames in [17]. It is well known that
g-frames include standard frames and bounded invertible linear oper-
ators, as well as many recent generalizations of frames, e.g., bounded
quasi-projectors and frames of subspaces. It is of interest to find the
weaving properties of g-frames in separable Hilbert spaces.

1.1. Outline of the paper. The paper is organized as follows. Sec-
tion 2 contains basic definitions and results regarding frames, weaving
frames and g-frames in Hilbert spaces. In Section 3, we study weaving
g-frames. Necessary and sufficient conditions for weaving g-frames in
Hilbert spaces are given. We present sufficient conditions in terms of
lower g-frame bounds for a sequence of operators not to be weaving
g-frames. Some Paley-Wiener type perturbation results for weaving
g-frames are obtained. In Section 4, we discuss weaving properties of
g-Riesz bases.

2. Preliminaries. In this section, we review the concepts of frames,
g-frames and weaving frames. We begin with some notation. The set
of all positive integers is denoted by N, and J denotes a subset of N. As
is standard, ℓ2(N) is the space of all square summable complex-valued
sequences indexed by N.

2.1. Frames in Hilbert spaces. A sequence {xk}k∈N in a separable
Hilbert space H is called a frame (or Hilbert frame) for H if there exist
positive numbers A0 ≤ B0 < ∞ such that

(2.1) A0∥x∥2 ≤
∑
k∈N

|⟨x, xk⟩|2 ≤ B0∥x∥2 for all x ∈ H.

The numbers A0 and B0 are called lower and upper frame bounds,
respectively. If the upper inequality in (2.1) is satisfied, then we say
that {xk}k∈N is a Bessel sequence (or Hilbert Bessel sequence) with
Bessel bound B0. The frame {xk}k∈N is tight if it is possible to choose
A0 = B0. The frame operator S : H → H for the frame {xk}k∈N is a
bounded, linear, invertible and positive operator, given by

Sx =
∑
k∈N

⟨x, xk⟩xk.
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This gives the reconstruction formula for all x ∈ H,

x = SS−1x =
∑
k∈N

⟨S−1x, xk⟩xk =
∑
k∈N

⟨x, S−1xk⟩xk.

The basic theory of frames may be found in Han, et al., [14],
Christensen [7, 8], Casazza and Kutyniok [5], Casazza [2, 3] and Han
and Larson [15].

2.2. Weaving frames. We recall some elementary facts about weav-
ing frames. Let m ∈ N be fixed, and let

[m] = {1, 2, . . . ,m} and [m]c = N \ [m] = {m+ 1,m+ 2, . . .}.

Definition 2.1 ([1]). A family of frames {ϕij}i∈N,j∈[m] for a Hilbert
space H is said to be woven if there are universal constants A and B so
that, for every partition {σj}j∈[m] of N, the family {ϕij}i∈σj ,j∈[m] is a
frame for H with lower and upper frame bounds A and B, respectively.

Definition 2.2 ([1]). A family of frames {ϕij}i∈N,j∈[m] for a Hilbert
space H is weakly woven if, for every partition {σj}j∈[m] of N, the
family {ϕij}i∈σj ,j∈[m] is a frame for H.

It may be observed that weakly woven frames do not require univer-
sal frame bounds for each weaving.

It is proven in [1] that this weaker form of weaving, given in
Definition 2.2, is equivalent to weaving. Bemrose, et al., in [1] proved
necessary and sufficient conditions for weaving frames (which depend
on frame bounds). They classified when Riesz bases and Riesz basic
sequences can be woven and provided a characterization in terms of
distances between subspaces. Furthermore, they proved that, if two
Riesz bases are woven, then every weaving is, in fact, a Riesz basis
and not just a frame. A geometric characterization of woven Riesz
bases in terms of distance between subspaces of a Hilbert space H is
given in [1]. Casazza and Lynch [6] reviewed fundamental properties of
weaving frames. They considered a relation of frames to projections and
gave a better understanding of what it really means for two frames to be
woven. Finally, they discussed a weaving equivalent of an unconditional
basis.
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Casazza, Freeman and Lynch [4] extended the concept of weaving
Hilbert space frames to the Banach space setting. They introduced and
studied weaving Schauder frames in Banach spaces. Deepshikha and
Vashisht [10] studied weaving properties of an infinite family of frames
in separable Hilbert spaces. They also studied vector-valued weaving
frames [11] and weaving frames with respect to measure spaces in [19].
Deepshikha and Vashisht [12] studied weaving properties of K-frames
in separable Hilbert spaces.

2.3. g-frames in Hilbert spaces. Sun [17] introduced g-frames
which are generalized frames and include ordinary frames and many
recent generalizations of frames, e.g., bounded quasi-projectors and
frames of subspaces. For stability of the g-frame, see [18]. Let H and
K be separable Hilbert spaces, and let {Hn}n∈N be a sequence of closed
subspaces of K. By B(H,Hn) we denote the space of bounded linear
operators from H into Hn.

Definition 2.3. A sequence Λ ≡ {Λn}n∈N, where Λn ∈ B(H,Hn)
for each n ∈ N, is a generalized frame (in short, g-frame) for H with
respect to {Hn}n∈N if there exist positive constants A ≤ B such that

(2.2) A∥x∥2 ≤
∑
n∈N

∥Λnx∥2 ≤ B∥x∥2 for all x ∈ H.

As in the case of standard frames, the constants A and B are
called lower and upper g-frame bounds, respectively. If the right-hand
inequality of (2.2) holds, then Λ is said to be a g-Bessel sequence for H
with respect to {Hn}n∈N. Associated with a g-Bessel sequence Λ, we
shall denote the representation space as follows:(∑

n∈N

⊕
Hn

)
ℓ2

=

{
{zn}n∈N : zn ∈ Hn (n ∈ N),

∑
n∈N

∥zn∥2 < +∞
}
.

The operator

TΛ :

(∑
n∈N

⊕
Hn

)
ℓ2

−→ H

defined by

TΛ({zn}n∈N) =
∑
n∈N

Λ∗
nzn,
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is called the pre-frame operator or synthesis operator, and the adjoint
of TΛ, given by

T ∗
Λ : H −→

(∑
i∈N

⊕
Hi

)
ℓ2

T ∗
Λ : x −→ {Λnx}n∈N, x ∈ H,

is called the analysis operator of Λ. The frame operator SΛ associated
with Λ is defined as

SΛ = TΛT
∗
Λ : H −→ H

SΛ : x −→
∑
n∈N

Λ∗
nΛnx, x ∈ H.

If Λ is a g-frame for H, then SΛ is a linear, bounded, positive and
invertible operator.

Definition 2.4 ([17]). A sequence Λ ≡ {Λn}n∈N, where Λn ∈ B(H,
Hn) for each n ∈ N, is called a generalized Riesz basis (abbreviated
g-Riesz basis) for H with respect to {Hn}n∈N, if

(i) Λ is complete in H, i.e.,

{x : Λnx = 0, n ∈ N} = {0},

and

(ii) there are positive constants AΛ and BΛ such that, for any finite
subset J ⊂ N,

AΛ

∑
j∈J

∥xj∥2 ≤
∥∥∥∥∑

j∈J

Λ∗
jxj

∥∥∥∥2 ≤ BΛ

∑
j∈J

∥xj∥2, xj ∈ Hj , j ∈ J.

The reader is referred to [16, 17, 18] for basic properties about
g-frames and g-Riesz bases.

3. Weaving g-frames. We begin with the definition of weaving g-
frames for separable Hilbert spaces.

Definition 3.1. A family of g-frames{
{Λni}n∈N : i ∈ [m]

}
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for a separable Hilbert space H with respect to {Hn : n ∈ N} is said to
be g-woven if there are universal constants A and B so that, for every
partition {σi}i∈[m] of N, the family {Λni}n∈σi,i∈[m] is a g-frame for H
with lower and upper g-frame bounds A and B, respectively.

Sun [17] obtained a characterization of g-frames in terms of ordinary
frames in separable Hilbert spaces.

Theorem 3.2 ([17]). Let Λn ∈ B(H,Hn) and {en,m}m∈Jn be an ortho-
normal basis for Hn, where Jn ⊂ N, n ∈ N. Then, {Λn}n∈N is a
g-frame for H if and only if {Λ∗

nen,m}m∈Jn,n∈N is a frame for H.

As an immediate consequence, we have the following result for
weaving g-frames.

Corollary 3.3. Let Λ ≡ {Λn}n∈N and Ω ≡ {Ωn}n∈N be g-frames for H
with respect to {Hn : n ∈ N} and, for every n ∈ N, let {en,m}m∈Jn be
an orthonormal basis for Hn. Then, Λ and Ω are g-woven if and only
if {Λ∗

nen,m}m∈Jn,n∈N and {Ω∗
nen,m}m∈Jn,n∈N are woven frames for H.

Proof. Since Λn,Ωn ∈ B(H,Hn) for all n ∈ N, the mappings

x 7−→ ⟨Λnx, en,m⟩ and x 7−→ ⟨Ωnx, en,m⟩

define bounded linear functionals on H for every m ∈ Jn, n ∈ N.
Consequently, we can find some vn,m ∈ H and wn,m ∈ H such that, for
all x ∈ H,

⟨x, vn,m⟩ = ⟨Λnx, en,m⟩ and ⟨x,wn,m⟩ = ⟨Ωnx, en,m⟩.

Hence, for all x ∈ H, we have

Λnx =
∑
m∈Jn

⟨x, vn,m⟩en,m and Ωnx =
∑
m∈Jn

⟨x,wn,m⟩en,m.

Let {σ, σc} be any partition of N, and write {Γn}n∈N = {Λn}n∈σ ∪
{Ωn}n∈σc . Then,

Γnx =

{
Λnx n ∈ σ,

Ωnx n ∈ σc
=

{∑
m∈Jn⟨x, vn,m⟩en,m n ∈ σ,∑
m∈Jn⟨x,wn,m⟩en,m n ∈ σc.
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This gives∑
n∈N

∥Γnx∥2 =
∑
n∈σ

∑
m∈Jn

|⟨x, vn,m⟩|2

+
∑
n∈σc

∑
m∈Jn

|⟨x,wn,m⟩|2 for all x ∈ H.

Hence, {Λn}n∈σ ∪ {Ωn}n∈σc is a g-frame for H with respect to {Hn :
n ∈ N} if and only if

{un,m : m ∈ Jn, n ∈ N} = {vn,m : m ∈ Jn, n ∈ σ}
∪ {wn,m : m ∈ Jn, n ∈ σc}

is a frame for H. Furthermore, for any x ∈ H and for any yn ∈ Hn, we
have

⟨x,Λ∗
nyn⟩ = ⟨Λnx, yn⟩ =

∑
m∈Jn

⟨x, vn,m⟩⟨en,m, yn⟩

=

⟨
x,

∑
m∈Jn

⟨yn, en,m⟩vn,m
⟩
,

and

⟨x,Ω∗
nyn⟩ = ⟨Ωnx, yn⟩ =

∑
m∈Jn

⟨x,wn,m⟩⟨en,m, yn⟩

=

⟨
x,

∑
m∈Jn

⟨yn, en,m⟩wn,m

⟩
.

This gives

Λ∗
nyn =

∑
m∈Jn

⟨yn, en,m⟩vn,m

and
Ω∗

nyn =
∑
m∈Jn

⟨yn, en,m⟩wn,m for all yn ∈ Hn, n ∈ N.

In particular,
vn,m = Λ∗

nen,m

and
wn,m = Ω∗

nen,m for any m ∈ Jn, n ∈ N.

This completes the proof. �
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3.1. Application of Corollary 3.3. Let H = ℓ2(N) and {ek}k∈N be
an orthonormal basis of H. Choose Hn = span{ek}∞k=n for n ∈ N.
Then, {en,m}∞m=1 = {en+m−1}∞m=1 is an orthonormal basis of Hn,
n ∈ N.

(i) Let Λ ≡ {Λn}∞n=1 and Ω ≡ {Ωn}∞n=1, where Λn ∈ B(H,Hn) is
the orthogonal projection of H onto span{en} and Ωn ∈ B(H,Hn) is
the orthogonal projection of H onto span{en, en+1}. Clearly,

Λ∗
nen,m =

{
en m = 1,

0 m > 1,

and

Ω∗
nen,m =


en m = 1,

en+1 m = 2,

0 m > 2.

Note that {Λ∗
nen,m}∞n,m=1 and {Ω∗

nen,m}∞n,m=1 are frames for H.

Next, we show that {Λ∗
nen,m}∞n,m=1 and {Ω∗

nen,m}∞n,m=1 are woven.
Let σ ⊂ N be any arbitrary subset. We compute

∥x∥2 ≤
∑
n∈σ

∑
m∈N

|⟨x,Λ∗
nen,m⟩|2 +

∑
n∈σc

∑
m∈N

|⟨x,Ω∗
nen,m⟩|2

=
∑
n∈σ

|⟨x,Λ∗
nen,1⟩|2 +

∑
n∈σc

|⟨x,Ω∗
nen,1⟩|2

+
∑
n∈σc

|⟨x,Ω∗
nen,2⟩|2

=
∑
n∈σ

|⟨x, en⟩|2 +
∑
n∈σc

|⟨x, en⟩|2

+
∑
n∈σc

|⟨x, en+1⟩|2 ≤ 2
∑
n∈N

|⟨x, en⟩|2

= 2∥x∥2 for all x ∈ H.

Thus,
{Λ∗

nen,m}n∈σ
m∈N

∪ {Ω∗
nen,m}n∈σc

m∈N

is a frame for H for any σ ⊂ N. Hence, by Corollary 3.3, Λ and Ω are
g-woven.
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(ii) Let Λ ≡ {Λn}∞n=1 and Ω ≡ {Ωn}∞n=2 be the same as in part (i)
except for Ω1 which is the zero mapping. Then, {Λ∗

nen,m}∞n,m=1

and {Ω∗
nen,m}∞n,m=1 are not woven. Indeed, let {Λ∗

nen,m}∞m,n=1 and
{Ω∗

nen,m}∞n,m=1 be woven with universal frame bounds A and B.
Choose σ = N \ {1}. Then, compute∑

n∈σ

∑
m∈N

|⟨e1,Λ∗
nen,m⟩|2 +

∑
n∈σc

∑
m∈N

|⟨e1,Ω∗
nen,m⟩|2

=
∑

n∈N\{1}

|⟨e1,Λ∗
nen,1⟩|2 + |⟨e1, 0⟩|2

=
∑

n∈N\{1}

|⟨e1, en⟩|2 + |⟨e1, 0⟩|2

= 0 < A∥e1∥2.

This is a contradiction. Hence, by Corollary 3.3, Λ and Ω are not
g-woven.

Inspired by [1, Lemma 4.3], the next theorem provides sufficient
conditions for a sequence of operators not to be woven g-frames for H.

Theorem 3.4. Suppose that Λ ≡ {Λn}n∈N and Ω ≡ {Ωn}n∈N are g-
frames for H with respect to {Hn : n ∈ N}. Assume that, for every
two disjoint finite sets I, J ⊂ N and every ϵ > 0, there are subsets
σ, δ ⊂ N \ (I ∪ J) with δ = N \ (I ∪ J ∪ σ) such that the lower g-frame
bound of

{Λn}n∈I∪σ ∪ {Ωn}n∈J∪δ

is less than ϵ. Then, there exists a subset M ⊂ N so that

{Λn}n∈M ∪ {Ωn}n∈Mc

is not a g-frame. Hence, Λ and Ω are not g-woven.

Proof. Let ϵ > 0 be arbitrary. By hypothesis, for I0 = J0 = ∅, we
can choose σ1 ⊂ N such that, if δ1 = σc

1, then a lower g-frame bound
of {Λn}n∈σ1 ∪ {Ωn}n∈δ1 is less than ϵ. Thus, there exists an x1 ∈ H
with ∥x1∥ = 1 such that∑

n∈σ1

∥Λnx1∥2 +
∑
n∈δ1

∥Ωnx1∥2 < ϵ.
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Since
∞∑

n=1

∥Λnx1∥2 +
∞∑

n=1

∥Ωnx1∥2 < ∞,

there is a positive integer k1 such that

∞∑
n=k1+1

∥Λnx1∥2 +
∞∑

n=k1+1

∥Ωnx1∥2 < ϵ.

Let I1 = σ1∩[k1] and J1 = δ1∩[k1]. Then, I1∩J1 = ∅ and I1∪J1 = [k1].

By assumption, there are subsets σ2, δ2 ⊂ [k1]
c with δ2 = [k1]

c \ σ2

such that a lower g-frame bound of

{Λn}n∈I1∪σ2
∪ {Ωn}n∈J1∪δ2

is less than ϵ/2, that is, there exists a vector x2 ∈ H with ∥x2∥ = 1
such that ∑

n∈I1∪σ2

∥Λnx2∥2 +
∑

n∈J1∪δ2

∥Ωnx2∥2 <
ϵ

2
.

Similar to the above, there is a k2 > k1 such that

∞∑
n=k2+1

∥Λnx2∥2 +
∞∑

n=k2+1

∥Ωnx2∥2 <
ϵ

2
.

Set I2 = I1∪ (σ2∩ [k2]) and J2 = J1∪ (δ2∩ [k2]). Note that I2∩J2 = ∅
and I2 ∪ J2 = [k2]. Thus, by the induction method, we obtain:

(i) a sequence of positive integers {kn}n∈N ⊂ N with kn < kn+1 for
all n ∈ N;

(ii) a sequence of vectors {xn}n∈N ⊂ H with ∥xn∥ = 1 for all n ∈ N;
(iii) subsets σn ⊂ [kn−1]

c, δn = [kn−1]
c \ σn, n ∈ N; and

(iv) In = In−1 ∪ (σn ∩ [kn]), Jn = Jn−1 ∪ (δn ∩ [kn]), n ∈ N,

which satisfy both∑
i∈In−1∪σn

∥Λixn∥2 +
∑

i∈Jn−1∪δn

∥Ωixn∥2 <
ϵ

n
,(3.1)

and

∞∑
i=kn+1

∥Λixn∥2 +
∞∑

i=kn+1

∥Ωixn∥2 <
ϵ

n
.(3.2)
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By construction, In∩Jn = ∅ and In∪Jn = [kn] for all n ∈ N such that( ∞∪
i=1

Ii

) ⊔ ( ∞∪
j=1

Jj

)
= N,

where ⊔ represents disjoint union. Choose M = ∪∞
i=1Ii. Note that

Mc =
∞∪
j=1

Jj .

We compute∑
i∈M

∥Λixn∥2 +
∑
i∈Mc

∥Ωixn∥2

=

( ∑
i∈In

∥Λixn∥2 +
∑
i∈Jn

∥Ωixn∥2
)

+

( ∑
i∈A∩[kn]c

∥Λixn∥2 +
∑

i∈Ac∩[kn]c

∥Ωixn∥2
)

6
( ∑

i∈In−1∪σn

∥Λixn∥2 +
∑

i∈Jn−1∪δn

∥Ωixn∥2
)

+

( ∞∑
i=kn+1

∥Λixn∥2 +
∞∑

i=kn+1

∥Ωixn∥2
)

<
ϵ

n
+

ϵ

n
=

2ϵ

n
.

This shows that a lower g-frame bound of {Λn}n∈M∪{Ωn}n∈Mc is zero,
a contradiction. Hence, the g-frames Λ and Ω are not g-woven. �

Theorem 3.4 gives a necessary condition for weaving g-frames in
terms of lower frame bounds.

Proposition 3.5. Suppose that the family of g-frames

{{Λni}n∈N : i ∈ [m]}

for H with respect to {Hn : n ∈ N} is g-woven. Then, there exists a
partition {τi}i∈[m] of some finite subset of N and A > 0 such that, for
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any partition {σi}i∈[m] of N \ {τi}i∈[m], the family∪
i∈[m]

{Λin}n∈σi∪τi

has a lower g-frame bound A.

The next proposition gives a universal g-Bessel bound for a family
of g-Bessel sequences. This is an adaptation of [1, Proposition 3.1].

Proposition 3.6. For each i ∈ [m], let {Λni}n∈N be a g-Bessel
sequence for H with respect to {Hn : n ∈ N} and with g-Bessel
bounds Bi. Then, every weaving is a g-Bessel sequence with

m∑
i=1

Bi

as a g-Bessel bound.

Proof. Let {Λni}n∈σi,i∈[m] be a weaving for any partition {σi}i∈[m]

of N. Then,
m∑
i=1

∑
n∈σi

∥Λnix∥2 6
m∑
i=1

∑
n∈N

∥Λnix∥2

6
( m∑

i=1

Bi

)
∥x∥2 for all x ∈ H.

The proof is complete. �

As in the case of standard weaving frames [6, Proposition 15], it is
enough to check g-weaving on smaller sets than the original.

Proposition 3.7. Let Λ ≡ {Λn}n∈N and Ω ≡ {Ωn}n∈N be g-Bessel
sequences in H with respect to {Hn : n ∈ N} with g-Bessel bounds B1

and B2, respectively. If J ⊂ N, and ΛJ ≡ {Λi}i∈J and ΩJ ≡ {Ωi}i∈J

are g-woven frames, then Λ and Ω are g-woven frames for H.
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Proof. Let A be a lower universal g-frame bound for ΛJ and ΩJ ,
and let σ ⊂ N be an arbitrary subset. Then,

A∥x∥2 6
∑

i∈σ∩J

∥Λix∥2 +
∑

i∈σc∩J

∥Ωix∥2

6
∑
i∈σ

∥Λix∥2 +
∑
i∈σc

∥Ωix∥2

6 (B1 +B2)∥x∥2 for all x ∈ H

(by Proposition 3.6). Hence, Λ and Ω are g-woven frames for H. �

Recall that, after removal of a vector from a discrete frame, the
resultant family is either a frame or an incomplete set, see [8, Theo-
rem 5.4.7]. Casazza and Lynch [6] proved that removal of vectors from
woven frames leaves them woven. In the direction of g-frames we have
following result.

Proposition 3.8. Let Λ ≡ {Λn}n∈N and Ω ≡ {Ωn}n∈N be g-woven
frames for H with respect to {Hn : n ∈ N} with universal g-frame
bounds A and B. If J ⊂ N and∑

i∈J

∥Λix∥2 ≤ D0∥x∥2

for all x ∈ H and for some 0 < D0 < A, then Λ0 ≡ {Λi}i∈N\J
and Ω0 ≡ {Ωi}i∈N\J are g-woven frames for H with universal g-frame
bounds A−D0 and B.

Proof. Let σ ⊂ N \ J be arbitrary. We compute∑
i∈σ

∥Λix∥2 +
∑

i∈(N\J)\σ

∥Ωix∥2

=

( ∑
i∈σ∪J

∥Λix∥2 −
∑
i∈J

∥Λix∥2
)
+

∑
i∈(N\J)\σ

∥Ωix∥2

=

( ∑
i∈σ∪J

∥Λix∥2 +
∑

i∈(N\J)\σ

∥Ωix∥2
)
−

∑
i∈J

∥Λix∥2

> (A−D0)∥x∥2 for all x ∈ H.
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On the other hand, for all x ∈ H, we have∑
i∈σ

∥Λix∥2 +
∑

i∈(N\J)\σ

∥Ωix∥26
∑

i∈σ∪J

∥Λix∥2 +
∑

i∈(N\J)\σ

∥Ωix∥2 6 B∥x∥2.

Hence, Λ0 and Ω0 are g-woven frames for H with the required universal
g-frame bounds. �

4. Perturbation of weaving g-frames. It is well known that
perturbation theory is an important area in applied mathematics. For
applications of perturbation theory for frames in various directions, the
reader is referred to [2, 5, 7, 8] and the references therein. Bemrose,
et al., [1] proved sufficient conditions for weaving frames by means
of perturbation theory and diagonal dominance. We begin this section
with the following Paley-Wiener type perturbation of weaving g-frames.

Theorem 4.1. Let Λ ≡ {Λi}i∈N and Ω ≡ {Ωi}i∈N be g-frames for H
with respect to {Hi : i ∈ N} with g-frame bounds A1, B1 and A2, B2,
respectively. Assume that there are constants 0 < λ1, λ2, µ < 1 such
that

λ1

√
B1 + λ2

√
B2 + µ 6 A1

2(
√
B1 +

√
B2)

and
(4.1)∥∥∥∥∑

i∈N

(Λ∗
i xi − Ω∗

i xi)

∥∥∥∥ 6 λ1

∥∥∥∥∑
i∈N

Λ∗
i xi

∥∥∥∥+ λ2

∥∥∥∥∑
i∈N

Ω∗
i xi

∥∥∥∥+ µ∥{xi}i∈N∥,

for all

{xi}i∈N ∈
(∑

i∈N

⊕
Hi

)
ℓ2
.

Then, Λ and Ω are g-woven with universal g-frame bounds A1/2,
B1 +B2.

Proof. Let T and R be the synthesis operators for the frames {Λi}i∈N
and {Ωi}i∈N, respectively. For each σ ⊂ N, define bounded operators

Tσ, Rσ :

(∑
i∈N

⊕
Hi

)
ℓ2

−→ H,
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Tσ({xi}i∈N) =
∑
i∈σ

Λ∗
i (xi),

and

Rσ({xi}i∈N) =
∑
i∈σ

Ω∗
i (xi).

Note that ∥Tσ∥ 6 ∥T∥, ∥Rσ∥ 6 ∥R∥ and ∥Tσ −Rσ∥ 6 ∥T −R∥.

By using (4.1), we have

λ1∥T ({xi}i∈N)∥+ λ2∥R({xi}i∈N)∥+ µ∥{xi}i∈N∥

>
∥∥∥∥∑

i∈N
(Λ∗

i − Ω∗
i )(xi)

∥∥∥∥
= ∥(T −R)({xi}i∈N)∥, {xi}i∈N ∈

(∑
i∈N

⊕
Hi

)
ℓ2
.

This gives ∥T − R∥ ≤ λ1∥T∥+ λ2∥R∥+ µ. Using this, for any σ ⊂ N,
we compute
(4.2)∥∥∥∥∑

i∈σ

Λ∗
iΛix−

∑
i∈σ

Ω∗
iΩix

∥∥∥∥ = ∥Tσ({Λix}i∈σ)−Rσ({Ωix}i∈σ)∥

= ∥TσT
∗
σx−RσR

∗
σx∥

6 ∥(TσT
∗
σ−TσR

∗
σ)(x)∥+∥(TσR

∗
σ−RσR

∗
σ)(x)∥

6 ∥Tσ∥∥T ∗
σ−R∗

σ∥∥x∥+∥Tσ−Rσ∥∥R∗
σ∥∥x∥

6 ∥T∥∥T −R∥∥x∥+ ∥T −R∥∥R∥∥x∥

6 (λ1∥T∥+ λ2∥R∥+ µ)(∥T∥+ ∥R∥)∥x∥

6 (λ1

√
B1+λ2

√
B2+µ)(

√
B1+

√
B2)∥x∥

<

(
A1

2(
√
B1 +

√
B2)

)
(
√
B1 +

√
B2)∥x∥

=
A1

2
∥x∥ for all x ∈ H.



676 L.K. VASHISHT, S. GARG, DEEPSHIKHA AND P.K. DAS

By using (4.2), it follows that∥∥∥∥ ∑
i∈σc

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix

∥∥∥∥
=

∥∥∥∥ ∑
i∈σc

Λ∗
iΛix+

∑
i∈σ

Λ∗
iΛix−

∑
i∈σ

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix

∥∥∥∥
=

∥∥∥∥∑
i∈N

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
>

∥∥∥∥∑
i∈N

Λ∗
iΛix

∥∥∥∥−
∥∥∥∥∑

i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
> A1∥x∥ −

∥∥∥∥∑
i∈σ

Λ∗
iΛix−

∑
i∈σ

Ω∗
iΩix

∥∥∥∥
> A1∥x∥ −

A1

2
∥x∥

=
A1

2
∥x∥ for all x ∈ H.

This gives a universal lower g-frame bound. The upper universal g-
frame bound can be obtained from Proposition 3.6. Hence, Λ and Ω
are g-woven. �

The next theorem gives another variant of Paley-Wiener type per-
turbation of weaving g-frames in terms of frame operators associated
with Λ and Ω.

Theorem 4.2. Let Λ ≡ {Λi}i∈N and Ω ≡ {Ωi}i∈N be g-frames for H
with respect to {Hi : i ∈ N} with frame bounds A1, B1 and A2, B2,
respectively. Assume that there are constants 0 < λ, µ, γ < 1 such that

λB1 + µB2 + γ
√
B1 < A1

and

∥∥∥∥∑
i∈σ

(Λ∗
iΛix− Ω∗

iΩix)

∥∥∥∥ 6 λ

∥∥∥∥∑
i∈σ

Λ∗
iΛix

∥∥∥∥
(4.3)

+ µ

∥∥∥∥∑
i∈σ

Ω∗
iΩix

∥∥∥∥+ γ

(∑
i∈σ

∥Λix∥2
)1/2

,
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for all x ∈ H and for every σ ⊂ N. Then, Λ and Ω are g-woven with
universal g-frame bounds (A1 − λ

√
B1 − µB2 − γ) and (B1 + λ

√
B1 +

µB2 + γ).

Proof. By using the fact that∥∥∥∥∑
i∈σ

Λ∗
iΛix

∥∥∥∥ 6 B1∥x∥ and

∥∥∥∥∑
i∈σ

Ω∗
iΩix

∥∥∥∥ 6 B2∥x∥

for any σ ⊂ N and x ∈ H, we compute∥∥∥∥ ∑
i∈σc

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix

∥∥∥∥ =

∥∥∥∥∑
i∈N

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
>

∥∥∥∥∑
i∈N

Λ∗
iΛix

∥∥∥∥−∥∥∥∥∑
i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
> A1∥x∥ − λ

∥∥∥∥∑
i∈σ

Λ∗
iΛix

∥∥∥∥− µ

∥∥∥∥∑
i∈σ

Ω∗
iΩix

∥∥∥∥
− γ

(∑
i∈σ

∥Λix∥2
)1/2

≥ (A1 − λB1 − µB2 − γ
√
B1)∥x∥,(4.4)

and∥∥∥∥ ∑
i∈σc

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix

∥∥∥∥ =

∥∥∥∥∑
i∈N

Λ∗
iΛix+

∑
i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
6

∥∥∥∥∑
i∈N

Λ∗
iΛix

∥∥∥∥+∥∥∥∥∑
i∈σ

Ω∗
iΩix−

∑
i∈σ

Λ∗
iΛix

∥∥∥∥
6 B1∥x∥+ λ

∥∥∥∥∑
i∈σ

Λ∗
iΛix

∥∥∥∥+ µ

∥∥∥∥∑
i∈σ

Ω∗
iΩix

∥∥∥∥
+ γ

(∑
i∈σ

∥Λix∥2
)1/2

≤ (B1 + λB1 + µB2 + γ
√
B1)∥x∥.(4.5)

Therefore, by (4.4) and (4.5), the g-frames Λ and Ω are g-woven with
the required universal g-frame bounds. �
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We end this section with perturbation of weaving g-frames in terms
of certain closeness between the vectors in Hi.

Theorem 4.3. Let Λ ≡ {Λi}i∈N and Ω ≡ {Ωi}i∈N be g-frames for H
with respect to {Hi : i ∈ N} and with g-frame bounds A1, B1 and A2, B2,
respectively. Assume that there is a constant M > 0 such that, for every
J ⊂ N,

(4.6)
∑
i∈J

∥Λix−Ωix∥2 6 M min

{∑
i∈J

∥Λix∥2,
∑
i∈J

∥Ωix∥2
}
, x ∈ H.

Then, Λ and Ω are g-woven with universal g-frame bounds (A1 +A2)/
(2M + 3) and B1 +B2.

Proof. Let σ ⊂ N be arbitrary. Then, by using (4.6), we compute

(A1 +A2)∥x∥2 6
∑
i∈N

∥Λix∥2 +
∑
i∈N

∥Ωix∥2

=
∑
i∈σ

∥Λix∥2 +
∑
i∈σc

∥Λix∥2 +
∑
i∈σ

∥Ωix∥2 +
∑
i∈σc

∥Ωix∥2

6
∑
i∈σ

∥Λix∥2 + 2

( ∑
i∈σc

∥(Λi − Ωi)(x)∥2 +
∑
i∈σc

∥Ωix∥2
)

+ 2

(∑
i∈σ

∥(Λi−Ωi)(x)∥2+
∑
i∈σ

∥Λix∥2
)
+
∑
i∈σc

∥Ωix∥2

6
∑
i∈σ

∥Λix∥2 + 2

(
M

∑
i∈σc

∥Ωix∥2 +
∑
i∈σc

∥Ωix∥2
)

+ 2

(
M

∑
i∈σ

∥Λix∥2 +
∑
i∈σ

∥Λix∥2
)
+

∑
i∈σc

∥Ωix∥2

= (2M+3)

(∑
i∈σ

∥Λix∥2 +
∑
i∈σc

∥Ωix∥2
)

for all x ∈ H.

Therefore,

A1 +A2

2M + 3
∥x∥2 ≤

∑
i∈σ

∥Λix∥2 +
∑
i∈σc

∥Ωix∥2

≤ (B1 +B2)∥x∥2, x ∈ H.

Hence, Λ and Ω are g-woven with the desired universal g-frame bounds.
�
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5. Weaving g-Riesz bases. Bemrose, et al., [1] classified when
Riesz bases and Riesz basic sequences can be woven and proved a
characterization in terms of distances between subspaces. We present
a necessary and sufficient condition for weaving g-Riesz bases in terms
of standard woven Riesz bases. The proof is based upon the technique
developed by Sun [17], which may be found in the following theorem.

Theorem 5.1 ([17]). Let Λn ∈ B(H,Hn) and {en,m}m∈Jn be an
orthonormal basis for Hn, where Jn ⊂ N, n ∈ N. Then, {Λn}n∈N
is a g-Riesz basis for H if and only if {Λ∗

nen,m}m∈Jn,n∈N is a Riesz
basis for H.

As a corollary, we have the next result for weaving g-Riesz bases.

Corollary 5.2. Let Λ ≡ {Λn}n∈N, and Ω ≡ {Ωn}n∈N be g-Riesz
bases for H with respect to {Hn : n ∈ N}, and let {en,m}m∈Jn be
an orthonormal basis for Hn, for each n ∈ N. Then, Λ and Ω
are g-woven Riesz bases for H if and only if {Λ∗

nen,m}n∈N,m∈Jn and
{Ω∗

nen,m}n∈N,m∈Jn are woven Riesz bases for H.

Proof. For each n ∈ N, since {en,m}m∈Jn is an orthonormal basis for
Hn, every yn ∈ Hn has an expansion of the form

yn =
∑
m∈Jn

cn,men,m,

where {cn,m} n∈N
m∈Jn

∈ ℓ2(N).

Let J ⊂ N be any arbitrary finite subset and {σ, σc} any partition
of N. We write {Γn}n∈N = {Λn}n∈σ ∪ {Ωn}n∈σc and vn,m, wn,m ∈ H
for vectors defined as in the proof of Corollary 3.3. Compute∥∥∥∥∑

n∈J

Γ∗
nyn

∥∥∥∥2 =

∥∥∥∥ ∑
n∈J∩σ

Λ∗
nyn +

∑
n∈J∩σc

Ω∗
nyn

∥∥∥∥2
=

∥∥∥∥ ∑
n∈J∩σ

∑
m∈Jn

⟨yn, en,m⟩vn,m

+
∑

n∈J∩σc

∑
m∈Jn

⟨yn, en,m⟩wn,m

∥∥∥∥2
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=

∥∥∥∥ ∑
n∈J∩σ

∑
m∈Jn

cn,mvn,m +
∑

n∈J∩σc

∑
m∈Jn

cn,mwn,m

∥∥∥∥2,
and ∑

n∈J

∥yn∥2 =
∑
n∈J

∥∥∥∥ ∑
m∈Jn

cn,men,m

∥∥∥∥2 =
∑
n∈J

∑
m∈Jn

|cn,m|2.

Hence, it follows that

A
∑
n∈J

∥yn∥2 6
∥∥∥∥∑

n∈J

Γ∗
nyn

∥∥∥∥2 6 B
∑
n∈J

∥yn∥2

is equivalent to

A
∑
n∈J

∑
m∈Jn

|cn,m|2 6
∥∥∥∥ ∑

n∈J∩σ

∑
m∈Jn

cn,mvn,m +
∑

n∈J∩σc

∑
m∈Jn

cn,mwn,m

∥∥∥∥2
6 B

∑
n∈J

∑
m∈Jn

|cn,m|2,

that is, {Λn}n∈σ ∪ {Ωn}n∈σc is a g-Riesz sequence if and only if

{Λ∗
nen,m} n∈σ

m∈Jn
∪ {Ω∗

nen,m}n∈σc

m∈Jn

is a Riesz sequence.

Next, we show that {Γn}n∈N is g-complete if and only if

{Λ∗
nen,m} n∈σ

m∈Jn
∪ {Ω∗

nen,m}n∈σc

m∈Jn

is complete.

{x : Γnx = 0, n ∈ N} = {x : Λnx = 0, n ∈ σ} ∪ {x : Ωnx = 0, n ∈ σc}

=

{
x :

∑
m∈Jn

⟨x, vn,m⟩en,m = 0, n ∈ σ

}

∪
{
x :

∑
m∈Jn

⟨x,wn,m⟩en,m = 0, n ∈ σc

}
= {x : ⟨x, vn,m⟩ = 0, n ∈ σ,m ∈ Jn}
∪ {x : ⟨x,wn,m⟩ = 0, n ∈ σc,m ∈ Jn}.

This completes the proof. �
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Example 5.3. Let H = CN , where N > 1 is any odd natural number,
and let {en}Nn=1 be the canonical orthonormal basis for H, i.e.,

en =

(
0, . . . , 0, 1︸︷︷︸

nth-place

, 0, . . . , 0

)
.

Suppose that Hn = span{en + en+1} for n ∈ [N − 1] and HN =
span{e1 + eN}. Then,

{en,m}m=1 =

{
1√
2

(
0, . . . , 0, 1︸︷︷︸

nth-place

, 1, 0, . . . , 0

)}
is an orthonormal basis of Hn (n ∈ [n− 1]) and

{eN,m}m=1 =

{
1√
2
(1, 0, . . . , 0, 1)

}
is an orthonormal basis of HN .

Let Λ ≡ {Λn}Nn=1 and Ω ≡ {Ωn}Nn=1, where Λn is the orthogonal
projection from H onto Hn, and Ωn is the orthogonal projection of H
onto span{en} for each n, 1 ≤ n ≤ N . Clearly,

Λ∗
nen,1 = en,1 and Ω∗

nen,1 =
1√
2
en.

It is easy to verify that {Λ∗
nen,m}n∈[N ],m=1 and {Ω∗

nen,m}n∈[N ],m=1 are
Riesz bases for H. Furthermore, for any σ ⊂ N,

{Λ∗
nen,m}n∈σ

m=1

∪
{Ω∗

nen,m}n∈σc

m=1

is a Riesz basis for H. Hence, by Corollary 5.2, Λ and Ω are g-woven.

The next theorem provides sufficient conditions for weaving g-Riesz
bases in terms of g-Riesz sequences. This generalizes [1, Theorem 5.2].

Theorem 5.4. Let Λ ≡ {Λi}i∈N and Ω ≡ {Ωi}i∈N be g-Riesz bases for
H with respect to {Hi : i ∈ N}, for which there are uniform constants
0 < A 6 B < ∞ so that, for every σ ⊂ N, the family

{Λi}i∈σ ∪ {Ωi}i∈σc

is a g-Riesz sequence with g-Riesz bounds A and B. Then, for every
σ ⊂ N, the family {Λi}i∈σ ∪ {Ωi}i∈σc is a g-Riesz basis.
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Proof. We prove the result in the following steps.

Step 1. First, we discuss the case |σ| < ∞. We prove the result by
induction on the cardinality of σ. The case |σ| = 0 is trivial. Suppose
that the result is true for every σ with |σ| = n.

Now, let σ ⊂ N with |σ| = n+1, and choose i0 ∈ σ. Let σ1 = σ\{i0}.
Then,

{Λi}i∈σ1 ∪ {Ωi}i∈σc
1

is a g-Riesz basis by induction hypothesis. Assume that

{Λi}i∈σ ∪ {Ωi}i∈σc

is not a g-Riesz basis, that is,

{Λ∗
i ei,k} i∈σ

k∈N
∪ {Ω∗

i ei,k}i∈σc

k∈N

is not complete in H. Then,

Ω∗
i0ei0,k /∈ span

(
{Λ∗

i ei,k} i∈σ
k∈N

∪ {Ω∗
i ei,k}i∈σc

k∈N

)
.

Indeed, if

Ω∗
i0ei0,k ∈ span

(
{Λ∗

i ei,k} i∈σ
k∈N

∪ {Ω∗
i ei,k}i∈σc

k∈N

)
,

then

span

(
{Λ∗

i ei,k} i∈σ
k∈N

∪ {Ω∗
i ei,k}i∈σc

k∈N

)
⊃ span

(
{Λ∗

i ei,k}i∈σ1
k∈N

∪ {Ω∗
i ei,k}i∈σc

1
k∈N

)
= H,

that is,
{Λ∗

i ei,k} i∈σ
k∈N

∪ {Ω∗
i ei,k}i∈σc

k∈N

is complete in H, which is a contradiction. Hence,

{Γi}i∈N ≡ {Λ∗
i ei,k} i∈σ

k∈N
∪ {Ω∗

i ei,k}i∈σc

k∈N
∪ {Ω∗

i0ei0,k}

is a Riesz sequence in H.

Now, σc
1 = σc∪{i0}. We obtained {Λ∗

i ei,k}i∈σ1,k∈N∪{Ω∗
i ei,k}i∈σc

1,k∈N
by deleting the element Λ∗

i0
ei0,k from the Riesz sequence {Γi}i∈N.
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Therefore, {Λ∗
i ei,k}i∈σ1,k∈N ∪ {Ω∗

i ei,k}i∈σc
1,k∈N cannot be a Riesz basis

for H, i.e., {Λi}i∈σ1
∪ {Ωi}i∈σc

1
cannot be a g-Riesz basis, which is a

contradiction. Hence,

{Λi}i∈σ ∪ {Ωi}i∈σc

is a g-Riesz basis.

Step 2. Consider |σ| = ∞. Suppose that there exists a σ ∈ N with
both σ and σc infinite, such that {Λi}i∈σ ∪{Ωi}i∈σc is not g-complete,
i.e., {Λ∗

i ei,k}i∈σ,k∈N ∪ {Ω∗
i ei,k}i∈σc,k∈N is not complete in H. Then,

M = span

(
{Λ∗

i ei,k} i∈σ
k∈N

∪ {Ω∗
i ei,k}i∈σc

k∈N

)
̸= H.

Thus, there exists a non-zero vector x0 ∈ H such that x0 ⊥ M . Since
{Ω∗

i ei,k}i,k∈N is a Bessel sequence, we can find σ1 ⊂ σ with |σ| < ∞
such that ∑

i∈σ\σ1

∑
k∈N

|⟨x0,Ω
∗
i ei,k⟩|2 <

A

2
∥x0∥2.

From Step 1, the family

{Λ∗
i ei,k}i∈σ1

k∈N
∪ {Ω∗

i ei,k}i∈σ\σ1

k∈N
∪ {Ω∗

i ei,k}i∈σc

k∈N

is a Riesz basis with Riesz bounds A and B. Using x0 ⊥ M , we compute

A∥x0∥2 6
∑
i∈σ1

∑
k∈N

|⟨x0,Λ
∗
i ei,k⟩|2

+
∑

i∈σ\σ1

∑
k∈N

|⟨x0,Ω
∗
i ei,k⟩|2

+
∑
i∈σc

∑
k∈N

|⟨x0,Ω
∗
i ei,k⟩|2

=
∑

i∈σ\σ1

∑
k∈N

|⟨x0,Ω
∗
i ei,k⟩|2 <

A

2
∥x0∥2,

which is absurd. Thus, {Λi}i∈σ ∪ {Ωi}i∈σc is g-complete, and hence, a
g-Riesz basis. �
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