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ON RATIONAL TRIANGLES
VIA ALGEBRAIC CURVES

MOHAMMAD SADEK AND FARIDA SHAHATA

ABSTRACT. A rational triangle is a triangle with ra-
tional side lengths. We consider three different families of
rational triangles having a fixed side and whose vertices are
rational points in the plane. We display a one-to-one corre-
spondence between each family and the set of rational points
of an algebraic curve. These algebraic curves are: a curve of
genus 0, an elliptic curve and a genus 3 curve. We study the
set of rational points on each of these curves and explicitly
describe some of its rational points.

1. Introduction. Several arithmetic questions on the geometry of
the Euclidean plane have been a subject of interest in mathematical
literature. One of the techniques for tackling such a question is to
construct a system of diophantine equations whose set of rational
solutions provides an answer. Therefore, answering these questions
reveals the interplay between analytical geometry and arithmetical
geometry.

A rational subset of the plane is said to be rational if all pairwise
distances among its points are rational. In 1945, Ulam wondered which
rational subsets S of the plane are infinite. It is well known that a line
and a circle have dense rational subsets. Erdős conjectured that S must
be of a very special type. In [10], it was proven that the circle and the
line are the only algebraic curves containing an infinite rational set. In
order to prove the result, given an algebraic curve C, they constructed
a new curve C ′ of genus g ≥ 2 whose number of rational points is
larger than the size of any rational subset of the algebraic curve C.
According to Faltings’ theorem, the number of rational points on C ′ is
finite, hence, the result.
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One more condition may be imposed on rational sets; their points
may be required to be rational, i.e., the x- and y- coordinates of the
points are rational numbers. In [7], it was proven that there exist
infinitely many rational points on the x-axis lying at rational distances
from four fixed points on the y-axis. The proof involves constructing
an elliptic curve with positive rank. In [5], it was shown that, if the
number of points on the y-axis is greater than four, then there are only
finitely many rational points on the x-axis lying at rational distances
from the points on the y-axis. This holds since the number of such
points is the number of rational points on an algebraic curve whose
genus is g > 1.

A rational triangle is a triangle whose side lengths are rational
numbers. It is easily seen that the vertices of a rational triangle make up
a rational set whose size is three. An arithmetical question on rational
triangles which has occupied a prominent position since ancient times
is which rational numbers appear as the area of a right-angled rational
triangle. These rational numbers are called congruent numbers. A
rational number n is a congruent number if and only if the elliptic
curve y2 = x3 − n2x is of positive rank.

A Heron triangle is a rational triangle whose area is rational. In [1,
3, 4, 8, 11], rational and Heron triangles with certain properties were
investigated via the study of algebraic curves and surfaces. Moreover,
rational triangles were used to explore the size of the sets of rational
points of some algebraic curves.

In this note, we are interested in rational triangles whose vertices
are rational points in the plane. We consider three families of rational
triangles with rational vertices. The first family of such triangles con-
sists of isosceles triangles. It is well known that, given a line segment ℓ
of rational length and with rational endpoints, there exist infinitely
many isosceles triangles whose base is ℓ, namely, those whose vertices
are points on the perpendicular bisector of ℓ. This yields that, out of
the latter triangles, there are infinitely many whose sides are rational,
and the third vertex is a rational point in the plane, in other words,
there are infinitely many rational points on the perpendicular bisector
of ℓ which lie at a rational distance from the endpoints of ℓ. This is
proved by showing that these rational points on the perpendicular bi-
sector are in one-to-one correspondence with the rational points on a
genus 0 curve. In addition, we explicitly describe these points.
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The second family of rational triangles consists of the triangles for
which two of the vertices are the origin and a fixed rational point on
the x-axis, whereas the third vertex is a rational point on a fixed line
in the plane. These triangles possess rational areas; therefore, they
are Heron triangles. We attach an elliptic curve of positive rank to this
family, which implies the existence of infinitely many such triangles. We
further study this elliptic curve by shedding some light on its torsion
subgroup and detecting conditions that force the rank to be at least 2.

The third family consists of the triangles for which two of the vertices
are the origin and a fixed rational point Q on the x-axis, and the third
vertex is a rational point on the parabola x = y2. It follows that such
a triangle is a Heron triangle. Unlike the first and second families of
triangles in this note, the third family turns out to consist of finitely
many triangles. The reason is that the existence of a triangle in this
family is equivalent to the existence of a rational point on a genus 3
curve. We display infinitely many rational points Q for which the
corresponding family of rational triangles is nonempty. The latter is
achieved by exhibiting an explicit rational point on the corresponding
genus 3 curve.

2. Rational isosceles triangles and genus 0 curves. We recall
that a rational triangle is a triangle with rational side lengths. A point
in the xy-plane is rational if its x- and y-coordinates are rational.
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Suppose that we fix a rational point P1 = (X1, Y1) in the xy-plane
at a rational distance from the origin O where P1 and O are distinct
points. In this section, we consider the problem of finding rational
points P = (X,Y ) which lie at the same rational distance, say R, from
the origin O and the point P1. In other words, we are seeking the
rational isosceles triangles △OPP1 with the fixed base OP1 and the
vertex P itself being rational. We note that the point P lies on the
perpendicular bisector of the line segment joining O and P1, and that

R >

√
X2

1 + Y 2
1

2
.

The rational point P = (X,Y ), together with the rational distance R,
form a solution

(x : y : z : w) = (X : Y : R : 1)

of the following system of Diophantine equations

x2 + y2 = z2

(x−X1w)
2 + (y − Y1w)

2 = z2.(2.1)

Equation (2.1) describes the intersection curve of two quadratic sur-
faces in P3. We will call this curve E(X1,Y1). The curve E(X1,Y1) is
birationally equivalent, hence isomorphic, to the singular cubic curve
C(X1,Y1), defined by

y2 = −16(X2
1 + Y 2

1 )x(x+ 1)2,

see for example [2, Theorem 2.8]. The curve C(X1,Y1) has a node at the
point S = (x, y) = (−1, 0). There is an isomorphism of abelian groups
between the nonsingular part C(X1,Y1)(Q) \ {S} of C(X1,Y1) and the

multiplicative group Q× of Q, see [9, Chapter 3, Exercise 3.5], in other
words, a rational parametrization may be found for C(X1,Y1) \ {S}.

Now, we let R denote the set of all rational isosceles triangles
△OPP1 with base OP1 where |OP | = |PP1| = R and the vertices P
and P1 are rational. We note that a triangle in R is determined
completely by the vertex P .
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Proposition 2.1. A triangle △OP1P with base OP1 lies in R if and
only if there exists a t ∈ Q such that

X =
X1

2
± t2X1(X

2
1 + Y 2

1 )− 4t(X2
1 + Y 2

1 ) + 4X1

2(t2(X2
1 + Y 2

1 )− 4)
,

Y =
Y1
2

± X1(4t(X
2
1 + Y 2

1 )− t2X1(X
2
1 + Y 2

1 )− 4X1)

2Y1(t2(X2
1 + Y 2

1 )− 4)
,

R =
(t(X2

1 + Y 2
1 )− 2X1)

2 + 4Y 2
1

2t2Y1(X2
1 + Y 2

1 )− 8Y1
.

Proof. The perpendicular bisector L of the line segment joining O
and P1 = (X1, Y1) is described by

L : y = −X1

Y1
x+

X2
1 + Y 2

1

2Y1
.

Since P = (X,Y ) lies on L and the distance between P and O is R,
i.e., X2 + Y 2 = R2, by substitution and solving a quadratic equation,
we obtain

X =
X1

2
± Y1

2

√
4R2

X2
1 + Y 2

1

− 1.

Thus, for X to be rational, we need to solve the following diophantine
equation:

(2.2)
4R2

X2
1 + Y 2

1

− 1 = δ2.

Since X2
1 + Y 2

1 ̸= 0, we may assume without loss of generality that
Y1 ̸= 0. Now the point

(R, δ) =

(
X2

1 + Y 2
1

2Y1
,
X1

Y1

)
is a rational solution for the latter diophantine equation. It may be
concluded that (2.2) has infinitely many rational solutions that can be
parameterized as:

(R, δ)=

(
(t(X2

1+Y
2
1 )−2X1)

2+4Y 2
1

2t2Y1(X2
1+Y

2
1 )−8Y1

,
t2X1(X

2
1+Y

2
1 )−4t(X2

1+Y
2
1 )+4X1

Y1(4−t2(X2
1+Y

2
1 ))

)
,
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t ∈ Q. Thus,

X =
X1

2
± t2X1(X

2
1 + Y 2

1 )− 4t(X2
1 + Y 2

1 ) + 4X1

2(t2(X2
1 + Y 2

1 )− 4)
. �

It is worth mentioning that, for each t ∈ Q, we obtain a distance R
and two values for X, which correspond to the points lying on the
perpendicular bisector at a distance R from the origin O. Thus, the
triangles that correspond to these two X-values are similar.

Remark 2.2. Proposition 2.1 yielded a parametric solution (x : y : z :
1) = (X : Y : R : 1) to the curve of intersection of the two quadratic
surfaces in (2.1).

Corollary 2.3. Given a rational point P1 in the xy-plane lying at a
rational distance from the origin O, there exist infinitely many rational
points P such that △OPP1 is a rational isosceles triangle for which
|OP | = |PP1|.

Proof. This is a direct consequence of Proposition 2.1. �

Remark 2.4. In Corollary 2.3, the origin O may be replaced with any
rational point O′ using a rational change of coordinates.

Example 2.5. Taking P1 = (3, 4) and t = 0.5, we obtain the point

P =

(
− 25

9
,
125

24

)
,

which lies at a distance

R =
425

72

from both the origin and P1. The triangle △OPP1 is rational.

3. Elliptic curves and rational triangles. In this section, we
investigate a family of rational triangles with a fixed side and link the
number of these triangles with the size of the rational subgroup of an
elliptic curve. We recall that a set S of points in the xy-plane is said to
be a rational distance set if the distance between any two points in S
is rational.
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3.1. Description of the problem. Let b, q and m be rational
numbers. We consider the point Q = (q, 0) on the x-axis and the
line L : y = mx+ b. We are looking for the rational points P = (X,Y )
lying on L at a rational distance, say R, from the origin O and at a
rational distance, say S, from Q. This construction yields a rational
distance set {O,P,Q} of rational points. In other words, we are trying
to find all of the rational triangles △OQP with the fixed base OQ and
where the vertex P lies on the line L : y = mx + b. We set Am,b,q as
the set of all such triangles. We remark that any triangle in Am,b,q is a
Heron triangle. In fact, the area of a triangle △OQP is |q(mX + b)|/2.

The point P = (X,Y ) is a vertex of a triangle in Am,b,q if and only
if (x1 : x2 : x3 : x4) = (X : R : S : 1) is a solution of the following
system of diophantine equations

(1 +m2)x21 + 2mbx1x4 + b2x24 = x22(3.1)

(1 +m2)x21 + 2(mb− q)x1x4 + (b2 + q2)x24 = x23.

System (3.1) represents an intersection curve Cm,b,q of two quadratic
surfaces in P3. We note that, with a simple change of variables, C0,b,q

was extensively studied in relation to Heron triangles in [1].
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If m ̸= 0, the point(
− b

m
: ± b

m
: ±

(
b

m
+ q

)
: 1

)
is a rational point on the curve. By computing the discriminant of
Cm,b,q, see [2], we conclude that, for rational numbers b, m and q with
b ̸= 0, q ̸= 0 and q ̸= −b/m, the curve Cm,b,q is an elliptic curve.

Let Cm,b,q(Q) be the set of rational points on Cm,b,q. We define the
following relation on Cm,b,q(Q) \ {x4 = 0}: the points(

x1
x4

:
x2
x4

:
x3
x4

: 1

)
∼

(
x′1
x′4

:
x′2
x′4

:
x′3
x′4

: 1

)
if

x1
x4

=
x′1
x′4
,

x22
x24

=
x′22
x′24

and
x23
x24

=
x′23
x′24

.

This is clearly an equivalence relation; therefore, we let C denote the
set of equivalence classes.

Lemma 3.1. There exists a one-to-one correspondence between the set
of triangles Am,b,q and the set of equivalence classes C.

Proof. We define the one-to-one correspondence as follows. A tri-
angle △OQP ∈ Am,b,q will be sent to the equivalence class containing
(X : R : S : 1), where P = (X,Y ), R is the rational distance |OP |
and S is the rational distance |PQ|. An equivalence class in C, say rep-
resented by the rational point (x1 : x2 : x3 : x4) ∈ Cm,b,q(Q), x4 ̸= 0,
will be sent to the triangle OQP , where

P =

(
x1
x4
,m

x1
x4

+ b

)
.

This point lies at rational distance∣∣∣∣x2x4
∣∣∣∣

from O and at rational distance ∣∣∣∣x3x4
∣∣∣∣

from Q. �



ON RATIONAL TRIANGLES VIA ALGEBRAIC CURVES 333

Remark 3.2. The rational side lengths q, R and S of a triangle in
Am,b,q force

X =
q2 +R2 − S2

2q

itself to be rational. Thus, Am,b,q is precisely the set of Heron triangles
with a fixed side of length q and a vertex on the line y = mx+ b.

We now know that Cm,b,q is an elliptic curve, except for finitely many
possibilities for the values of b, m and q, described as the intersection
of two quadratic surfaces in P3. We may wish to obtain a Weierstrass
equation describing Cm,b,q. Indeed, when b ̸= 0, q ̸= 0 and q ̸= −b/m,
the curve Cm,b,q is isomorphic to the elliptic curve Em,b,q described by
the Weierstrass equation

y2 = x3 − 27Im,b,qx− 27Jm,b,q,

see [2], where

Im,b,q= 256(b4+2b3mq+(5m2+4)b2q2+4mb(m2 + 1)q3+(m2+1)2q4),

Jm,b,q= 4096(2b2 + 2bmq + (m2 + 1)q2)

· (b4+2b3mq−b2(7m2+8)q2−8bm(m2+1)q3 − 2(m2+1)2q4).

We recall that two elliptic curves defined over Q by the short
Weierstrass equations Ei : y

2 = x3 + Aix + Bi are isomorphic if and
only if λ4A1 = A2 and λ6B1 = B2, for some nonzero λ in Q.

In addition, we note that Im,b,q = b4Im,1,q/b and Jm,b,q = b6Jm,1,q/b.
Thus, given that b ̸= 0, we obtain the next result.

Proposition 3.3. The elliptic curves Em,b,q and Em,1,q/b are isomor-
phic.

In view of Proposition 3.3 we will assume from now on that b = 1.
Given q and m in Q∗ such that q ̸= −1/m, we will write Cm,q and Em,q

instead of Cm,1,q and Em,1,q, respectively. The curve Cm,q is given by
the intersection of the following two quadratic surfaces, see (3.1),

(1 +m2)x21 + 2mx1x4 + x24 = x22(3.2)

(1 +m2)x21 + 2(m− q)x1x4 + (1 + q2)x24 = x23;
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moreover, the elliptic curve Em,q is described by the following Weier-
strass equation:

y2 = x3 − 1

3
[(m2 + 1)2q4 + 4m(m2 + 1)q3 + (5m2 + 4)q2 + 2mq + 1]x

(3.3)

+
1

27
[2(m2 + 1)2q4 + 8m(m2 + 1)q3 + (7m2 + 8)q2 − 2mq − 1]

· [(m2 + 1)q2 + 2mq + 2].

The explicit formulae for the isomorphism between the elliptic curves
Cm,q and Em,q are given in Appendix A.

3.2. Torsion subgroup of Em,q(Q). We show that Em,q(Q) contains
the subgroup Z2. Moreover, we characterize those values for m and q
such that Em,q(Q) contains Z2 × Z2.

In order to find the points of order 2 on Em,q, we need to find
the zeros of the polynomial fm,q(x) in the Weierstrass equation y2 =
fm,q(x), (3.3), describing the curve. Factoring the polynomial fm,q(x)
yields that x1 = ((m2 +1)q2 +2mq+2)/3 is a zero of fm,q(x). In fact,
this point (x1, 0) of order 2 corresponds to the rational point(

− 1

m
: − 1

m
: −q − 1

m
: 1

)
in Cm,q(Q). The existence of the point (x1, 0) ensures that Em,q(Q)
contains Z2.

In fact, the other two zeros x2, x3 of fm,q(x) are given by

−((m2 + 1)q2 + 2mq + 2)/6± q
√
(1 +m2)((1 +m2)q2 + 4mq + 4)/2.

Therefore, that the torsion subgroup of Em,q(Q) contains Z2 × Z2 is
equivalent to (1+m2)((1+m2)q2+4mq+4) being a complete Q-square.

For a fixed value of m ∈ Q, the conic may be parameterized as
t2 = (1 +m2)((1 +m2)q2 + 4mq + 4) and the following value obtained
for q which forces the torsion subgroup of Em,q(Q) to contain Z2 × Z2

q := q(n) =
1−m2(2 + 3m2) + 2(1 +m2)n+ n2

m(1 +m2(2 +m2)− n2)
, n ∈ Q.
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Proposition 3.4. The torsion subgroup of the elliptic curve Em,q(Q)
contains the cyclic group Z2. Furthermore, for a fixed value of m,
there exist infinitely many values for q such that the torsion subgroup
of Em,q(Q) contains Z2 × Z2.

Now, we will introduce infinitely many values for q such that the
torsion subgroup of Em,q contains a point of order 4.

Proposition 3.5. For some nonzero rational m, if

q =
4(2t−m)

1 +m2 − 4t2

for some t ∈ Q, such that

t ̸= m±
√
1 +m2

2
,

then the point P = (x, y) given by

x =
m4− 24m3t+ (104t2+ 6)m2 −mt(160t2+ 24) + 80t4+ 24t2+ 5

3(m2 − 4t2 + 1)2

y = −2(3m2 − 8mt+ 4t2 − 1)(m2 − 4mt+ 4t2 + 1)

m2 − 4t2 + 12

is a point of order 4 in Em,q(Q).

Proof. We first note that, if

t = m±
√
1 +m2

2
,

then q = −1/m, and hence, Em,q is a singular curve. The order of P
can be easily checked using the duplication formula on Em,q, see, for
example, [9, page 59]. In fact,

x(2P ) =
2(4t4 − 8t3 + 16t2 − 12t+ 3)

3(2t2 − 1)2

and y(2P ) = 0. �



336 M. SADEK AND F. SHAHATA

Remark 3.6. Point P in Proposition 3.5 is in correspondence with the
following rational point in Cm,q(Q), see (3.2),(
q

2
:

√
1 +m2

4
q2 +mq + 1 :

√
1 +m2

4
q2 +mq + 1 : 1

)
=

(
2

2t−m

1 +m2 − 4t2
:
m2 − 4mt+ 4t2 + 1

m2 − 4t2 + 1
:
m2 − 4mt+ 4t2 + 1

m2 − 4t2 + 1
: 1

)
.

The latter point corresponds to the isosceles triangle in the set Am,q,
whose base is |q|, and the two other sides are of length

m2 − 4mt+ 4t2 + 1

m2 − 4t2 + 1
.

Note that the area of this triangle is∣∣∣∣q(qm+ 2)

4

∣∣∣∣ ∈ Q.

3.3. Rank of Em,q. Now, we shall investigate the rank of Em,q(Q)
and see the impact of the positivity of the rank on the size of the set
Am,q.

Theorem 3.7. RankEm,q(Q(m, q)) ≥ 1.

Proof. Point

Pm,q =

(
− (2m2 − 1)q2 + 4mq + 1

3
, q(mq + 1)2

)
is a point in Em,q(Q(m, q)). By specializing with the values m = 1
and q = 1, the elliptic curve E1,1(Q) is defined by y2 = x3 − 8x + 8,
where P1,1 = (−2, 4) ∈ E1,1(Q) is of infinite order. Therefore, by
Silverman’s specialization theorem, [9, Appendix C, Section 20],
rankEm,q(Q(m, q)) ≥ 1. �

Corollary 3.8. For all but finitely many pairs (m, q) ∈ Q × Q, the
set Am,q contains infinitely many rational triangles with base |q| whose
vertices lie on the line y = mx+ 1.
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In what follows, we choose m and q so that we can construct elliptic
curves Em,q with higher rank.

Theorem 3.9. Set q := q(h) = (1− h2)/2h. This yields

rankEm,q(Q(m,h)) ≥ 2.

Proof. The point Qm,q = (xm,h, ym,h), given by

xm,h =
h4(1+m2)−4h3m−2h2(m2+3m−3)+4h(m+ 3)+m2+6m+1

12h2

ym,h =
(mh2 − 2h−m)(h+ 1)(hm−m− h− 1)

4h3
,

lies in Em,q(Q(m,h)). Moreover, the point Pm,q, see Theorem 3.7, is a
point in Em,q(Q(m,h)). Taking m = 1 and h = 1/2, we obtain P1,3/4

= (−73/48, 147/64) and Q1,3/4 = (121/24, 21/2). Further, using SAGE,
it is obtained that these points are linearly independent in E1,3/4. The
result now follows using Silverman’s specialization theorem. �

Remark 3.10. The point Qm,q(h) ∈ Em,q(h) in Theorem 3.9 corre-
sponds to the point (

0 : 1 :
1 + h2

2h
: 1

)
∈ Cm,q(h).

The triangle in Am,q(h) that corresponds to Qm,q(h) is a right Heron
triangle with area:

A(h) =

∣∣∣∣1− h2

4h

∣∣∣∣.
Thus, the numbers A(h) are congruent numbers.

Theorem 3.11. Let

q := q(u,m) =
2(u−m)

1 +m2 − u2
.

Then, rankEm,q(Q(m,u)) ≥ 2.
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Proof. The point Hm,q = (xm,u, ym,u), given by

xm,u =
5m4 + (6− 10u)m3 + (4u2 − 6u+ 10)m2

3(m2 − u2 + 1)2

+
2(u3 − 3u2 − 5u+ 3)m− u4 + 6u3 − 6u+ 5

3(m2 − u2 + 1)2

ym,u =
2(m− u+ 1)2(m2 − um+ 1)

(m2 − u2 + 1)2
,

together with the point Pm,q are two linearly independent points. This
can be proven by specializing m = 1, u = 3, and hence, q = −4/7. �

Remark 3.12. The point Hm,q in Theorem 3.11 in Em,q(Q(m,u)) is
in correspondence with the point(

2(u−m)

1 +m2 − u2
:
m2 − 2mu+ u2 + 1

m2 − u2 + 1
: − (m− 1− u)(m+ 1− u)

m2 − u2 + 1
: 1

)
on Cm,q(Q(u,m)). The latter point gives rise to a right rational triangle
whose base is |q| and area is∣∣∣∣ (m− u)(m− u− 1)(m− u+ 1)

(m2 − u2 + 1)2

∣∣∣∣,
in particular, this area is a congruent number.

.. X.
q

.

Y

..

R

.

P

.

S

.
Q

Figure 3.
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4. Rational triangles via curves of genus 3. The problem we
discuss in this section is similar to that in Section 3. Let q be a rational
number. Consider the point Q = (q, 0) on the x-axis and the parabola
x = y2. We are searching the plane for the rational points P = (X,Y )
lying on the parabola at a rational distance, say R, from the origin O
and, at a rational distance, say S, from Q. Again this construction
yields a rational distance set {O,P,Q} of rational points.

The set Sq is the set of rational triangles whose base is OQ and whose
third vertex P lies on the parabola x = y2. Note that△OQP is a Heron
triangle. Furthermore, a point P = (X,Y ) is a vertex of some triangle
in Sq if and only if (x1 : x2 : x3 : x4 : x5) = (X : Y : R : S : 1) is a
rational solution for the following intersection Cq of quadratic surfaces
in P4:

x21 + x22 = x23

(x1 − qx5)
2 + x22 = x24

x22 = x1x5,

where R is the distance between P and O, and S is the distance between
P and Q. The point (0 : 0 : 0 : ±q : 1) lies in Cq(Q). Yet, this point
corresponds to a degenerate triangle in Sq.

It is known that the genus of a smooth complete intersection of three
quadratic surfaces in P4 is 5. However, using the Jacobian criterion of
smoothness, the intersection curve Cq has two ordinary double points,
namely, (0 : 0 : 0 : ±q : 1). It follows that the curve Cq is of genus 3.
Faltings’ celebrated theorem implies that the set of rational points
Cq(Q) is finite as the genus of Cq is greater than 1. This yields the
following result.

Corollary 4.1. The set Sq is finite.

It may be asked whether the set Sq can be nonempty.

Theorem 4.2. If

q =
(u2 + 1)2

8u2

for some u ∈ Q\{0,±1}, then Sq contains an isosceles Heron triangle.
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Similarly, if

q =
(u2 − 1)2

4u2

for some u ∈ Q \ {0,±1}, then Sq contains a right Heron triangle.

Proof. When q = (u2 + 1)2/8u2, it is easily seen that

(x1 : x2 : x3 : x4 : x5) =

(
(u2 − 1)2

4u2
:
u2 − 1

2u
:
u4 − 1

4u2
:
(u2 + 1)2

8u2
: 1

)
is a rational point in Cq(Q). This produces an isosceles rational triangle
in Sq as q = S.

If q = (u2 − 1)2/4u2, then(
(u2 − 1)2

4u2
:
u2 − 1

2u
:
u4 − 1

4u2
:
u2 − 1

2u
: 1

)
is a rational point in Cq(Q). Therefore, a right Heron triangle in Sq as
q2 + S2 = R2 has been obtained. �

Remark 4.3. Theorem 4.2 yielded the congruent numbers

(u2 − 1)3

16u3
,

the area qS of the right Heron triangle.

APPENDIX

A. The isomorphism between Em,q and Cm,q. Recall that the
curve Cm,q is defined by

(1 +m2)x21 + 2mx1x4 + x24 = x22,

(1 +m2)x21 + 2(m− q)x1x4 + (1 + q2)x24 = x23.

The curve Cm,q is isomorphic to the curve C ′
m,q, defined by

y2 =
(1 +mq)2

4
x4 + q(1 +mq)x3z

+

((
1− m2

2

)
q2 −mq +

1

2

)
x2z2 − q(1 +mq)xz3 +

(1 +mq)2

4
z4,
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via the following isomorphism

ψ : Cm,q −→ C ′
m,q; (x1 : x2 : x3 : x4) 7−→ (x : y : z),

defined by

ψ(x1 : x2 : x3 : x4)

=


(mx1 + x4 : x3(x1 + x2) : x1 + x2) if (x1 : x2 : x3 : x4)

̸= (− 1
m : 1

m : q + 1
m : 1)

(1 : mq+1
2 : 0) if (x1 : x2 : x3 : x4)

= (− 1
m : 1

m : q + 1
m : 1),

whereas the inverse is given by

ψ−1(x : y : z) =
( z

2−x2

2z : x2+z2

2z : y
z : m(x2−z2)+2xz

2z ) if (x :y :z) ̸= (1 : ±mq+1
2 : 0)

(− 1
m : 1

m : q + 1
m : 1) if (x :y :z) = (1 : mq+1

2 : 0)

(− 1
m : 1

m : −q − 1
m : 1) if (x :y :z) = (1 : −mq−1

2 : 0).

Now the curve C ′
m,q is isomorphic to the elliptic curve Em,q, defined

by the following Weierstrass equation

Y 2 = X3 − 1

3
[(m2 + 1)2q4+4m(m2 + 1)q3+(5m2 + 4)q2+2mq+1]X

+
1

27
[2(m2 + 1)2q4+8m(m2 + 1)q3+(7m2 + 8)q2−2mq−1]

· [(m2 + 1)q2+2mq+2].

Let

Gm,q =

{(
m2q2 + 2mq + q2 − 1

3
, ±q

)}
⊂ Em,q(Q),

and

G′
m,q =

{(
1 : ±mq + 1

2
: 0

)}
⊂ C ′

m,q(Q).

The isomorphism
ϕ : C ′

m,q −→ Em,q



342 M. SADEK AND F. SHAHATA

is defined as follows: ϕ(G′
m,q) = Gm,q; otherwise, ϕ(x : y : 1) = (X,Y ),

where

X = y(1 +mq) +
1

2
(m2q2 +mq + 1)x2 + q(mq + 1)x

+
1−2mq+2q2−m2q2

6

Y =
mq+1

2
(2qy+2(1 +mq)xy + (mq+1)2x3

+ 3q(1+mq)x2 + x(1−m2q2 + 2q2−2mq)− q(mq+1)),

whereas the inverse is defined by ϕ−1(Gm,q) = G′
m,q, else ϕ

−1(X,Y ) =
(x : y : 1), where

x = − 3Y + (2− 3X)q + 2mq2 + (1 +m2)q3

(mq + 1)(b(m, q)− 3X)

y =
54X3 − 27b(m, q)X2 − 27Y 2 − 54qY + a(m, q)

6(mq + 1)(b(m, q)− 3X)2

and

a(m, q) = q6(m2 + 1)3 + 6mq5(m2 + 1)2 + 3q4(3m2 − 1)(m2 + 1)

−4mq3(m2 + 3)− 3q2(3m2 + 8) + 6mq − 1,

b(m, q) = m2q2 + 2mq + q2 − 1.
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