Translator Disclaimer
2018 Construction of globalizations for partial actions on rings, algebras, C$^*$-algebras and Hilbert bimodules
Damián Ferraro
Rocky Mountain J. Math. 48(1): 181-217 (2018). DOI: 10.1216/RMJ-2018-48-1-181

Abstract

We give a necessary condition for a partial action on a ring to have globalization. We also show that every partial action on a C$^*$-algebra satisfying this condition admits a globalization and, finally, we use the linking algebra of a Hilbert module to translate our condition to the realm of partial actions on Hilbert modules.

Citation

Download Citation

Damián Ferraro. "Construction of globalizations for partial actions on rings, algebras, C$^*$-algebras and Hilbert bimodules." Rocky Mountain J. Math. 48 (1) 181 - 217, 2018. https://doi.org/10.1216/RMJ-2018-48-1-181

Information

Published: 2018
First available in Project Euclid: 28 April 2018

zbMATH: 06866706
MathSciNet: MR3795739
Digital Object Identifier: 10.1216/RMJ-2018-48-1-181

Subjects:
Primary: 46L55
Secondary: 46L05, 46L40

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
37 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 1 • 2018
Back to Top