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AN IDENTITY FOR COCYCLES
ON COSET SPACES OF

LOCALLY COMPACT GROUPS

H. KUMUDINI DHARMADASA AND WILLIAM MORAN

ABSTRACT. We prove here an identity for cocycles
associated with homogeneous spaces in the context of locally
compact groups. Mackey introduced cocycles (λ-functions)
in his work on representation theory of such groups. For a
given locally compact group G and a closed subgroup H
of G, with right coset space G/H, a cocycle λ is a real-
valued Borel function on G/H × G satisfying the cocycle
identity

λ(x, st) = λ(x.s, t)λ(x, s),

almost everywhere x ∈ G/H, s, t ∈ G,

where the “almost everywhere” is with respect to a measure
whose null sets pull back to Haar measure null sets on G.
Let H and K be regularly related closed subgroups of G.
Our identity describes a relationship among cocycles for
G/Hx, G/Ky and G/(Hx ∩ Ky) for almost all x, y ∈ G.
This also leads to an identity for modular functions of G and
the corresponding subgroups.

1. Introduction and statement of results. The aim of this paper
is to prove an identity for cocycles (Mackey’s λ functions). The
need for this identity arose in connection with problems on induced
representations to be discussed in a later publication. Let G be a
separable locally compact group and H a closed subgroup of G. In
his treatment of induced representation on locally compact groups [4],
Mackey introduced the concept of a cocycle λ as a real-valued positive
function on (G/H) × G satisfying certain identities (see Section 2).
Most importantly, such cocycles are associated with quasi-invariant
measures; to each such cocycle there is a quasi-invariant measure µ on
G/H so that the Radon-Nikodym derivative of the translated measure
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µ · s with respect to µ is λ(·, s) for all s ∈ G. Once λ is specified, this
measure is unique up to a positive scalar multiple. The basic properties
of these functions are well established in the literature, cf., [1, 4, 5].

In order to state our results, we will need some notation and
concepts. Let λH denote a cocycle corresponding to the homogeneous
space G/H, and let Hx = x−1Hx for x ∈ G. Let ∆H be the modular
function of the group H. Closed subgroups H and K of G are said
to be regularly related if the double coset space H\G/K is a standard
Borel space, cf., [4]. We note that the double coset space formed by
the right action of the diagonal subgroup Λ = {(x, x) : x ∈ G} of G×G
on the coset space (H × K)\(G × G) (that is, H × K\G × G/Λ) is
identified with H\G/K by the map

(x, y) 7−→ xy−1.

The regularly related property for H and K is equivalent to this action
being smooth [4].

Our main result provides a link between cocycles for conjugates of
regularly related subgroups. We will abuse notation and assume that
the cocycle λH(s, t) is actually defined on G × G and constant on the
right cosets of H, rather than on (G/H)×G.

Theorem 1.1. Let G be a separable locally compact group and H
and K closed subgroups of G. If H and K are regularly related, then, for
each double coset D(x, y) = (H ×K)(x, y)Λ, there is a quasi-invariant
measure µx,y on G/(Hx ∩Ky), x, y ∈ G, and a corresponding cocycle
λHx∩Ky such that

λHx(ts−1, s)λKy (ts−1, s)λHx∩Ky (t, s−1) = 1,(1.1)

s, t ∈ G, almost everywhere (x, y) ∈ (G×G)/(H ×K).

Moreover, λHx∩Ky (t, s) is defined everywhere and continuous on (G/(Hx

∩Ky))×G.

Theorem 1.1 leads to an identity relating the modular functions
corresponding to the subgroups involved:

Corollary 1.2. For (x, y) ∈ G × G such that (1.1) holds, and for
s ∈ Hx ∩Ky,
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∆Hx(s)∆Ky (s)

∆G(s)∆Hx∩Ky (s)
= 1.

A necessary and sufficient condition for the existence of an invariant
measure on a quotient group G/H of G is that ∆H(x) = ∆G(x) for all
x ∈ H. We say that G ⊃ H is comodular if this occurs. Now, we have
the following straightforward consequence of Corollary 1.2.

Corollary 1.3. Let H and K be regularly related closed subgroups
of a separable locally compact group G and (x, y) ∈ G × G such that
identity (1.1) holds. If G ⊃ H is comodular, then K ⊃ (Hz ∩ K) is
comodular for almost all z ∈ G.

2. Preliminaries on cocycles. In order to avoid measure theoretic
complications, we assume throughout that G is a locally compact
separable group and H a closed subgroup. We denote the right-
invariant Haar measure on G by νG, with e denoting the identity of
the group. The canonical mapping from G to the set of right-cosets
G/H is denoted by pH . Throughout this section, X denotes the set
of right cosets G/H of H with the standard right action of G. A left
action by any other (closed) subgroup K of G gives rise to orbits in
one-to-one correspondence with the double cosets H\G/K, and the
stabilizer of Hx ∈ X under the action of K is Hx ∩K.

The next brief list provides the key results on cocycles, quasi-
invariant measures and related concepts from our perspective. The
interested reader may refer to [1, 4, 5].

• There is a regular Borel section B ⊂ G, that is, a Borel set B
that intersects each right G coset in exactly one point such that
(p−1

H (pH(K))) ∩ B has a compact closure for each compact subset K
of G.

• A strictly positive, real-valued continuous function ρH exists on G
satisfying

ρH(hx) = (∆H(h)/∆G(h))ρH(x), x ∈ G, h ∈ H.

• Such a ρ-function gives rise to a unique Borel cocycle λρ on X×G
such that
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λρ(pH(s), y) =
ρ(sy)

ρ(s)
, s, y ∈ G,

with the properties:

(a) for all x ∈ X and s, t ∈ G, λρ(x, st) = λρ(x.s, t)λρ(x, s);
(b) for all h ∈ H,λρ(pH(e), h) = ∆H(h)/∆G(h);
(c) for t ∈ G, λρ(pH(e), t) is bounded on compact sets as a function

of t. For x, t ∈ G and for almost all v ∈ G/H, λHx(x−1v, t) =
λH(v, t).

• For each ρ-function on G there is a quasi-invariant measure µ on X
such that, for all y ∈ G, the corresponding cocycle λρ has the property
that λρ(·, y) is a Radon-Nikodym derivative of the translation measure
µ · y with respect to the measure µ.

• For x ∈ G, let ẋ = pH(x). If µ denotes the quasi-invariant measure
corresponding to the function ρ, then∫

G

f(x)ρ(x) dνG(x) =

∫
X

∫
H

f(hx) dνH(h) dµ(ẋ), f ∈ C00(G),

where C00(G) denotes the continuous functions on G with compact
support. We write µ ≻ λ to denote that, for all y ∈ G, λ(·, y) is the
cocycle which is the Radon-Nikodym derivative of the translate

E 7−→ µ([E]y)

with respect to µ. The following facts on λ and corresponding ρ-
functions may be found in many references in the literature (see, for
example, [1, 4]).

There are quasi-invariant measures on X, any two of which are
absolutely continuous. Null sets for such measures are exactly those
sets E for which p−1

H (E) has Haar measure zero. The relations µ ≻ λ
and λ = λρ among quasi-invariant measures, cocycles, and ρ-functions
have the following properties.

(i) Every cocycle is of the form λρ; λρ1 = λρ2 if and only if ρ1/ρ2 is
a constant.

(ii) For every cocycle there is a quasi-invariant measure µ such that
µ ≻ λ; if µ1 ≻ λ and µ2 ≻ λ, then µ1 is a constant multiple of µ2.
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(iii) For every quasi-invariant measure µ there is a cocycle λ such
that µ ≻ λ. If µ ≻ λ1 and µ ≻ λ2, then, for all t, λ1(·, t) = λ2(·, t)
almost everywhere.

(iv) If µ ≻ λρ1 and µ ≻ λρ2 , then ρ1/ρ2 is constant almost
everywhere.

3. Proofs of the results. First, we recall some standard results on
the disintegration of measures. Let X be a separable, locally compact
space supporting a finite measure µ, and let R be an equivalence
relation on X where r(x) is the equivalence class containing x. The
relation R is measurable if there exists a countable family E1, E2, . . .
of subsets of X/R such that r−1(Ei) is measurable for each i and such
that each point in X/R is the intersection of the Ei containing it, cf.,
[2, 4].

It is well known (see, for example, [4, page 124, Lemma 11.1]) that
the measure µ is decomposable as an integral over X/R of measures µy

concentrated on the equivalence classes.

If µ̃ is the “push-forward” measure on X/R from the measure µ
on X, i.e., µ̃(E) = µ(r−1(E)), then, for each y in X/R, there exists a
finite Borel measure µy on X such that µy(X − r−1({y})) = 0 and

(3.1)

∫
f(y)

∫
g(x) dµy(x) dµ̃(y) =

∫
f(r(x))g(x) dµ(x),

whenever f ∈ L1(X/R, µ̃) and g is bounded and measurable on X. If µ
is quasi-invariant, then, in the disintegration of µ in (3.1) above, µy is
also quasi-invariant under the action of G almost everywhere y [4].

Proof of Theorem 1.1. It is clear that, if H and K are regularly
related, then the orbits of G/H under the action of K outside of a set of
measure zero form the equivalence classes of a measurable equivalence
relation. The right action of the diagonal subgroup Λ = {(x, x) : x ∈
G} of G×G on the coset space (G×G)/(H ×K) has stabilizer

Hx ×Ky ∩ Λ = (H ×K)(x,y) ∩ Λ

at (Hx,Ky), and the orbit of this point is the double coset (H ×
K)(x, y)Λ. We write Υ for the set of all double cosets

(H ×K)\G×G/Λ ≃ H\G/K.
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As noted earlier, the regularly related property for H and K is equiva-
lent to this orbit space being smooth [4]. WritingD(x, y) for the double
coset to which (x, y) belongs, for a fixed finite measure ν0 on G × G
equivalent to the Haar measure, we define a measure µ(H,K) on Υ by

µ(H,K)(F ) = ν0(D
−1(F )).

Such a measure is called an admissible measure by Mackey.

Fix a finite product measure ν0 = ν1 × ν2 on (G×G) equivalent
to the Haar measure. Let µH×K be the image of ν0 under pH×K and
µH , µK the images of ν1, ν2 under pH and pK , respectively. Let µH,K

be an admissible measure in Υ corresponding to ν0.

For a function f on (G/H)× (G/K) for which∫
G/H

∫
G/K

f(x, y) dµH(x) dµK(y)

is integrable, using the change of variables

x 7−→ xs and y 7−→ ys,

we obtain∫
G/H

∫
G/K

f(x, y) dµH(x) dµK(y)

=

∫
G/H

∫
G/K

λH(x, s)λK(y, s)f(xs, ys) dµH(x) dµK(y)

=

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys) dµH×K(x, y).

For (x, y) ∈ (G×G)/(H ×K), write r(x, y) = D(p−1
H×K(x, y));

this defines a measurable equivalence relation since H and K are
regularly related. The measure µH×K is disintegrated into an integral
of measures µx,y, where D(x, y) ∈ Υ, with respect to the measure
µH,K on Υ. Also, each µx,y is a quasi-invariant measure on the orbit
r−1(D(x, y)), cf., (3.1). Using this disintegration, we have∫

(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys) dµH×K(x, y)

=

∫
D∈Υ

∫
t∈Λ/(H×K)(x,y)∩Λ

λH(xt, s)λK(yt, s)f(xts, yts) dµx,y(t) dµH,K(D),
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where (x, y) is a coset representative of the coset D(x, y). Identifying

the space Λ/((H ×K)
(x,y) ∩ Λ) with G/(Hx∩Ky), we can regard µx,y

as a measure on G/(Hx ∩Ky). Then, we have

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys) dµH×K(x, y)

(3.2)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

λH(xt, s)λK(yt, s)f(xts, yts) dµx,y(t) dµH,K(D).

Changing variables t 7→ ts−1 in the integral on the right-hand side, we
find that

(3.3)

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys) dµH×K(x, y)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

λH(xts−1, s)λK(yts−1, s)f(xt, yt)

λHx∩Ky (t, s−1) dµx,y(t) dµH,K(D).

On the other hand, if we begin with∫
(G×G)/(H×K)

f(x, y) dµH×K(x, y),

and use disintegration, we have∫ ∫
(G×G)/(H×K)

f(x, y) dµH×K(x, y)

=

∫
D∈Υ

∫
t∈Λ/(H×K)(x,y)∩Λ

f(xt, yt) dµx,y(t, t) dµ(H,K)(D)(3.4)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

f(xt, yt) dµx,y(t) dµ(H,K)(D).

Now, (3.3) and (3.4) yield

(3.5)
λH(xts−1, s)λK(yts−1, s)λHx∩Ky (t, s−1) = 1,

s ∈ G, almost everywhere t ∈ G/(Hx ∩Ky);

or, using cocycle property (c) in Section 2,

(3.6) λHx(ts−1, s)λKy (ts−1, s)λHx∩Ky (t, s−1) = 1,
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for s ∈ G, almost everywhere t ∈ G/(Hx ∩Ky) and for almost all
(x, y) ∈ (G×G)/(H ×K).

Fixing such an (x, y) in (G×G)/(H ×K), and invoking continuity
of λH and λK , we see that (3.6) is true for all t ∈ G/(Hx ∩Ky).
Furthermore, (3.6) implies that λHx∩Ky (t, s) is defined everywhere and
continuous on (G/(Hx ∩Ky))×G. �

Proof of Corollary 1.2. Setting t = s in (1.1) and using property (a)
of the cocycles in Section 2, we obtain

(3.7) λHx(e, s)λKy (e, s) = λHx∩Ky (e, s).

Now, we use property (b) of the cocycles in Section 2 to obtain

(3.8)
∆Hx(s)

∆G(s)

∆Ky (s)

∆G(s)
=

∆Hx∩Ky (s)

∆G(s)

This leads to the required equality

�(3.9)
∆Hx(s)

∆G(s)

∆Ky (s)

∆Hx∩Ky (s)
= 1.

Remarks 3.1.

• We emphasize that the result is an almost everywhere statement
on the product space G/H × G/K. If H = K, the diagonal {(x, x) :
x ∈ G/H} will normally have zero measure. Indeed, if it has non-zero
measure, so that our results allow us to make statements regarding the
comodularity of

G ⊃ Hx = Hx ∩Hx,

the quotient spaceG/H is discrete, and thus, H is an open subgroup. In
that case, it is already well known (and trivial) that ∆G(h) = ∆Hx(h)
for all h ∈ Hx and x.

• If we consider the special case where K = e, we have Ky = e for
all y ∈ G, giving s = e. The conclusion from Corollary 1.2 in this case
is trivial.

• If H is a normal subgroup of G, then Hx = H for all x ∈ G, and
we have ∆H(s) = ∆G(s) in consequence of the normality. Here, with
an application of Fubini’s theorem, cf., [3, page 153], Corollary 1.2
becomes
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∆Hx∩Ky (s) = ∆Ky (s) for s ∈ H ∩Ky.

However, this remains a fact, since H ∩Ky is normal in Ky.

Proof of Corollary 1.3. If G ⊃ H is comodular, then so is G ⊃ Hx

for all x ∈ G. An application of Corollary 1.2 implies that Hx ⊃
Hx∩Ky is comodular for almost all x and y. By conjugating with y−1

and using Fubini’s theorem, it then follows by conjugation that

K ⊃ Hz ∩K

is comodular for almost all z ∈ G. �
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