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PARTIAL REPRESENTATIONS AND THEIR DOMAINS
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In memory of Boris Novikov

ABSTRACT. We study the structure of the partially
ordered set of the elementary domains of partial (linear
or projective) representations of groups. This provides an
important information on the lattice of all domains. Some
of these results are obtained through structural facts on
the ideals of the semigroup S3(G), a quotient of Exel’s
semigroup S(G), which plays a crucial role in the theory
of partial projective representations. We also fill a gap in the
proof of an earlier result on the structure of partial group
representations.

1. Introduction. Partial group representations were introduced in
the theory of operator algebras by Exel [13], see also [12], and inde-
pendently by Quigg and Raeburn [20], as an important ingredient of a
new approach to C∗-algebras generated by partial isometries (see [2]).
Similarly as in the case of usual representations, there is an algebra,
called the partial group algebra of a group G, which governs the partial
representations of G. A decomposition result for partial group algebras
of finite groups was obtained in [4], see also [8], whereas the structure
of partial representations of an arbitrary G were studied in [11], where
it was shown that the so-called elementary partial representations, to-
gether with the irreducible (indecomposable) representations, of sub-
groups of G are building pieces from which the irreducible (indecom-
posable) partial representations of G can be constructed. In [5, 6, 7],
the theory of partial projective representations was developed, in par-
ticular, the structure of the partial Schur multiplier was investigated.
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Other results on partial group algebras, partial representations and the
partial Schur multiplier were obtained in [3, 9, 10, 15, 17, 18], (also
see the survey [19]).

According to [6], the partial Schur multiplier pM(G) is a semilattice
of abelian groups pMX(G), called components, where X runs over the
domains of the partial projective representations of G. It was shown
that the domains X are exactly the T -invariant subsets of G × G,
where T is a semigroup of order 25 acting on G×G. The structure of T
does not depend upon G, and it is a disjoint union of the symmetric
group S3 and an ideal which is a completely 0-simple semigroup. A
rather good understanding of the components pMX(G) was achieved
in [6, 7], in particular, any pMX(G) is an epimorphic image of the
total component pMG×G(G). The latter contains the classical Schur
multiplier M(G) of G; however, pMG×G(G) is essentially larger than
M(G). In regards to the domains, a lattice is formed with respect to the
set-theoretic inclusion, intersection and union. We know from [6] that
the domains X of partial projective representations of a finite group
G are exactly the finite unions of elementary domains. An elemen-
tary domain is understood to be the domain of an elementary partial
representation (which, obviously can be seen as a projective partial
representation with idempotent factor set).

Our main purpose is to heighten our understanding of the lattice
C(G) of domains of partial (projective or linear) representations by
concentrating on their structural pieces, the elementary domains. The
article is organized as follows. In the first part of Section 2, see
subsection 2.1, we present a correction to the proof of a structural
result [11, Theorem 2.2] on partial representations. In the second part,
subsection 2.2, we give some preliminary facts and clarify a remark
already mentioned by experts in semigroups, according to which the
structural result on the partial group algebra of a finite group given
in [4] can be obtained by using the theory of semigroup algebras. This
is seen in detail in Remark 2.5, and we do not claim novelty, neither
for the idea nor for the proof. The latter is based on the fact that
the partial group algebra is the semigroup algebra of Exel’s semigroup
S(G), introduced by Exel in [13] to deal with partial actions and partial
representations. The semigroup S(G) is also known to be isomorphic
to the Birget-Rhodes expansion of G, see subsection 2.2.
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The theory of partial projective representations depends heavily
upon the semigroup S3(G), which is a quotient of S(G). There is
an anti-isomorphism between C(G) and the lattice of the non-trivial
ideals of S3(G), which we recall at the beginning of Section 3, where
we also give some facts regarding the ideals of S3(G) for further use.
This anti-isomorphism is applied in the following sections to translate
results on ideals in S3(G) into facts about C(G), and vice versa.

The main part of the paper begins in subsection 3.1, in which
we characterize the minimal and irreducible elementary domains in
terms of T -orbits. An irreducible domain is called a block if it is not
minimal, i.e., it is not an atom in the lattice of the domains. We
prove the uniqueness of the decomposition of a domain into blocks and
atoms in Corollary 3.19, which is a consequence of the more general
Proposition 3.18. Corollary 3.21 translates the latter result into the
language of ideals in S3(G), implying, in particular, the uniqueness
of a decomposition of a non-zero ideal in S3(G) into an intersection
of meet-prime ideals. Section 4 is dedicated to the decomposition of
elementary domains in the case of a finite G. In Theorem 4.3, we give
the decomposition of a non-minimal elementary domain into blocks and
prove its uniqueness under the assumption of minimality. Corollary 4.8
states the corresponding fact for the ideals in S3(G). Proposition 4.14
characterizes the finite groups G with irreducible elementary domains.
In Section 5, Theorem 5.1 determines some invariants of C(G), giving
the formulas for the number of minimal elementary domains as well
as for the numbers of blocks according to their type. The results
are used in Proposition 5.4 to correct [7, Proposition 6.1]. Finally,
Proposition 5.11 gives invariants for the partially ordered set of the T -
orbits, and we list some properties of the lattice C(G) in Proposition 6.2
of Section 6.

2. Partial representations and the partial group algebra
KparG. Let G be a group, K a field and V a vector space over K.
We recall from [4] that a partial representation of G on V is a map

π : G −→ EndK(V ),

which sends 1G to the identity operator and such that

π(g−1)π(gh) = π(g−1)π(g)π(h)
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and

π(gh)π(h−1) = π(g)π(h)π(h−1),

for all g, h ∈ G.

It is well known that the group algebraKG controls the theory ofK-
representations of G; similarly, the partial group algebra KparG, which
is the semigroup algebra KS(G), governs the partial representations
of G. For the reader’s convenience, we recall that S(G) is the monoid
generated by the symbols {[g] | g ∈ G} with defining relations:

[g−1][g][h] = [g−1][gh],

[g][h][h−1] = [gh][h−1]

and

[g][1] = [g],

(it follows that [1][h] = [h]). This monoid was introduced by Exel
in [13].

2.1. On the structure of partial representations. Let G be an ar-
bitrary group. In order to study the structure of partial representations
of G, it is useful to consider the groupoid Γ(G) which was introduced
in [4] for the case of a finite G and with non-necessarily finite G as used
in [11] to investigate the partial representations of G of finite degree.
The groupoid Γ(G) is the small category whose objects are the subsets
A ⊆ G containing 1 and whose morphisms are (A, g), where g ∈ G
and A is a subset of G containing 1 and g−1. The composition rule in
Γ(G) is defined for the pairs (A, g) and (B, h), such that A = hB, in
which we define (hB, g) · (B, h) = (B, gh).

It follows that the identity morphisms in Γ(G) are of the form
(A, 1), and the inverse of (A, g) is (gA, g−1). The groupoid Γ(G) can
be considered as an oriented graph whose vertices are labeled by the
objects of Γ(G), and each morphism (A, g) in Γ(G) gives an arrow

A −→ gA.

Given an object (vertex) A of Γ(G), we take the connected component
of Γ(G) containing A and denote its set of vertices by VA. Evidently,
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the stabilizer
H = StA = {g ∈ G | gA = A}

is a subset of A, and A is a union of right cosets of H, i.e.,

A =
∪
i∈I

Hgi

for some index set I and some transversal

{gi | i ∈ I} ⊆ A

containing 1. Clearly, the cardinality |VA| of VA equals |I|, and VA

consists of the vertices of the form g−1
i A, i ∈ I.

For a small category Γ, the category algebra KΓ is defined by taking
the free K-module whose basis is formed by the morphisms of Γ and
defining the multiplication in the following way:

γ1 · γ2 =

{
γ1γ2 if the composition γ1γ2 ∈ Γ exists,

0 otherwise.

Let ∆ be a connected component of Γ = Γ(G) with a finite number
of vertices. Define the map

λ∆ : G −→ K∆

by:

λ∆(g) =

{∑
A∈V∆, A∋g−1(A, g) if there is an A ∈ V∆ with g−1 ∈ A,

0 otherwise.

The next fact from [11] describes the structure of the partial repre-
sentations of G of finite degree.

Theorem 2.1. [11, Theorem 2.2]. Let G be an arbitrary group and V
a vector space over a field K. For any connected component ∆ of Γ(G)
with a finite number of vertices, the map

λ∆ : G −→ K∆

is a partial representation of G in K∆. Moreover :
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(i) For every irreducible (respectively, indecomposable) K-represen-
tation

φ : K∆ −→ End(V )

of finite degree, φ ◦ λ∆ is an irreducible (respectively, indecomposable)
partial representation of G.

(ii) Conversely, for every irreducible (respectively, indecomposable)
partial K-representation

π : G −→ End(V )

of finite degree, there is a unique connected component ∆ of Γ(G) with
a finite number of vertices and a unique representation

π̃ : K∆ −→ End(V )

such that π̃ ◦ λ∆ = π.

Next, we fill a gap in the proof of [11, Theorem 2.2]. In order to
do this, we state a fact which was used in the proof of the above result
but was not properly justified, see [11, pages 314, 315].

Proposition 2.2. Using the notation of Theorem 2.1, let ∆ be a
connected component of Γ(G), the number of vertices of which |V∆|
is finite. Then, the K-algebra A generated by the elements

{λ∆(g) | g ∈ G}

coincides with K∆.

Proof. In what follows, if (A, g) ∈ Γ(G), then A will be called
the support set of (A, g). Denote by B1, . . . , Bm the vertices of the
component ∆, and let (B, h) be an arbitrary element of this component.
Let t2, . . . , tk be the only indices ti for which B \ Bti ̸= ∅, and choose
an element xi ∈ B \Bti for each 2 ≤ i ≤ k. For convenience, also define
x0 = x1 = 1 and xk+1 = h−1. Then,

A0 = {x1, x2, . . . , xk+1} ⊆ B.

Define g1, g2, . . . , gk+1 ∈ G by means of the equality gi = x−1
i xi−1 for

i ∈ I = {1, . . . , k + 1}. In particular, we have g1 = x1 = 1, as well as
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g2 = x−1
2 and gk+1 = hxk. Note that, if i ∈ I, then g−1

i belongs to

x−1
i−1B ∈ V∆. Consequently,

λ∆(gk+1) · · ·λ∆(g1) =
∑

g−1
i ∈Ai∈V∆

i∈I

(Ak+1, gk+1) · · · · · (A1, g1)

=
∑

g−1
1 ∈A1∈V∆

g−1
2 ∈g1A1

...
g−1
k+1∈gk···g1A1

(A1, gk+1 · · · · · g1)

=
∑

g−1
1 ∈A1∈V∆

(g2g1)
−1∈A1

...
(gk+1···g1)−1∈A1.

(A1, h)

Since g1 = 1 = x−1
1 and (g2g1) = x−1

2 , . . . , (gk+1 · · · g1) = h = x−1
k+1, we

have

(2.1) λ∆(gk+1) · · ·λ∆(g1) =
∑

A0⊆A∈V∆

(A, h) =
∑

B⊆A∈V∆

(A, h).

The last equality in (2.1) is a consequence of the fact that A0 ̸⊆ Bti for
every i ∈ {2, . . . , k}, by definition of A0, and thus, in the above sum
every A ⊇ B.

We will complete the proof using induction on d(B), where the
function d : V∆ → N is defined below. If A is maximal, that is, if

A ⊆ A′ for some A′ ∈ V∆ implies A = A′,

we set d(A) = 0. Otherwise, we define

d(A) = max{n ∈ N | there exists an A1, . . . , An ∈ V∆,

with An ) · · · ) A1 ) A}.

If the support of (B, h) matches the first case, then B is not
contained in the support of any other element of ∆, and therefore, (2.1)
is reduced to
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λ∆(gk+1) · · ·λ∆(g1) = (B, h).

Thus, the algebra A contains every (B, h) whose support is maximal.

Let d(B) = k > 0, and assume by induction that every (A, g) ∈ ∆
satisfying

0 ≤ d(A) < k

is in A. Then, writing (2.1) in the form:

λ∆(gk+1) · · ·λ∆(g1) = (B, h) +
∑

B(A∈V∆

(A, h),

it is easily seen that, if (A, h) ∈ ∆ and B ( A, then d(A) < k = d(B).
By induction, it follows that (A, h) ∈ A and

(B, h) = λ∆(gk+1) · · ·λ∆(g1)−
∑

B(A∈V∆

(A, h) ∈ A. �

2.2. On the structure of Kpar(G). Here, we show that the structural
result from [4, Section 3] on partial group algebras can be obtained
using the theory of semigroup algebras. This was previously mentioned
in private communications by experts in semigroups, so this idea is
not new; nevertheless, we prefer to give some details here in order to
make this clear. First, we record some basic facts and notation from
semigroup theory. Let S be a semigroup, and a ∈ S. Then:

• Ia = S1aS1, is the principal ideal of S generated by a, and Ja

is the J -class containing a, i.e., the set of elements of Ia which
generate Ia. Let J(a) = Ia \ Ja. Then, J(a) is an ideal of S
[1, page 72], and each factor semigroup J 0

a = Ia/J(a) is called
a principal factor of S. In particular, each principal factor of
an inverse semigroup is inverse. The J -classes will be ordered
by Ja ≤ Jb if, and only if, Ia ⊆ Ib.

• E(S) = {e ∈ S | e2 = e}, and there is a partial order defined
in E(S) by

e ≤ f ⇐⇒ e = ef = fe.

• If S is a semigroup with 0, then the quotient K0S = KS/Kθ
is called the contracted semigroup algebra, where
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Kθ = {λ0 | λ ∈ K}.

If S has no 0, we shall write K0S = KS.
• By the Rees-Sushkevich theorem, see [1], all completely 0-
simple semigroups are described by the following construction.

Let H be a group, I and ∆ arbitrary sets, 0 a symbol and
P = (pλ,i)(λ,i)∈∆×I a matrix with entries in H ∪ 0 such that
each row and each column contains an element from H. Denote
by S0(H; I,∆;P ) the set

{⟨i, h, λ⟩ | i ∈ I, λ ∈ ∆, h ∈ H} ∪ 0,

with multiplication

⟨i, g, λ⟩ · ⟨j, h, µ⟩ =

{
⟨i, gpλ,jh, µ⟩ if pλ,j ̸= 0,

0 otherwise.

0 · ⟨i, g, λ⟩ = ⟨i, g, λ⟩ · 0 = 0 · 0 = 0.

In particular, completely 0-simple inverse semigroups are those
where I and ∆ can be chosen to be equal, and P to be Id, the
identity matrix, where the entries in the main diagonal of P are
equal to the identity element of H, and all other entries are 0.
Note that a completely simple inverse semigroup is necessarily
a group.

• Similarly, one defines a Munn algebra M(R; I,∆;P ) whose
elements are matrices I ×∆ over a K-algebra R with finitely
many non-zero entries. The product of A and B is defined as
APB, for all A,B ∈ M(R; I,∆;P ), whereas the addition and
multiplication by scalars are defined as usual.

• If I and ∆ are finite of orders m and n, respectively, one
writes S0(H; I,∆;P ) = S0(H;m,n;P ) and M(R; I,∆;P ) =
M(R;m,n;P ).

Let G be a finite group. It follows from [4, Corollary 2.7 and
Theorem 3.2] that there is a K-algebra isomorphism

(2.2) ψ : KparG −→
⊕

Mm(KH),

where the H’s are subgroups of G and m ∈ N. Every subgroup H of G
appears in the above decomposition, and summands with the same m
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and H may repeat several times; the interested reader should consult
[8, Theorem 2.1] for the details on multiplicities.

As suggested in [6, Remark 1], it is possible to establish (2.2) by
means of the theory of semigroup algebras. We shall note this in
Remark 2.5, after stating some facts.

Lemma 2.3. Let S be a semigroup. Then, each ideal I of S is a join
of the principal ideals of S contained in I, and, for every a, b ∈ S, we
have:

• Ia =
∪
{Jx | x ∈ S such that Jx ≤ Ja}.

• Jab ≤ Ja and Jab ≤ Jb.

If S is an inverse semigroup, then:

• Ja = Jaa−1 = Ja−1a = Ja−1 , for every a ∈ S, and thus, each
principal ideal is generated by an idempotent.

• Je ≤ Jf for every e, f ∈ E(S) with e ≤ f , and consequently,

Ie =
∪

{Je′ | e′ ∈ E(S) such that e′ ≤ e}.

It is shown [14] that there is a semigroup isomorphism

S(G) ≃ G̃R = {(A, g) | {1, g} ⊆ A ⊆ G, |A| <∞},

where the multiplication in G̃R is given by the rule (A, g)(B, h) =
(A ∪ gB, gh).

The isomorphism is induced by the map

[g] 7−→ ({1, g}, g).

The latter implies that S(G) is isomorphic to the Birget-Rhodes ex-
pansion of G, see [14, 21] for details. In particular, S(G) is an inverse

semigroup. From this point on, S(G) stands for G̃R.

Lemma 2.4. For any group G, the following statements hold :

• E(S(G)) = {(A, 1) | {1} ⊆ A ⊆ G, |A| < ∞}, and (A, 1) ≤
(B, 1) if, and only if, A ⊇ B.
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• [6, Corollary 2]. The J -class of an element (A, g) ∈ S(G) is
the set

JA = {(a−1A, a−1b) ∈ S(G) | a, b ∈ A},

and thus, JA = JB for some B with {1} ⊆ B ⊆ G and |B| <∞
if, and only if, B = a−1A for some a ∈ A.

• [6, Lemma 3]. The principal factor J 0
A of S(G) corresponding

to the J -class JA is isomorphic to S0(H;m,m; Id), where

H = StA = {g ∈ G | gA = A} ⊆ A

and m = |A|/|StA|.
• With the notation of the above item, we have

K0J 0
A ≃ K0S

0(H;m,m; Id) ≃Mm(KH).

Proof. We only prove the last item. From [1, Lemma 5.17], we
obtain K0S

0(G;m,n;P ) ≃ M(KG;m,n;P ) for any group G. In
particular, taking G = H, m = n = |A|/|H| and P = Id, we see
that M(KH;m,m, Id) =Mm(KH), and

ϕ : K0S
0(H;m,m, Id) −→Mm(KH),

given by

ϕ

( m∑
i=1

m∑
j=1

∑
g∈H

ci,j,g⟨i, g, j⟩
)

=

m∑
i=1

m∑
j=1

( ∑
g∈H

ci,j,gg

)
ei,j ,

is an isomorphism, where ei,j stands for the matrix unit. �

Remark 2.5. It is known [16, Chapter 5, Corollary 27] that, if S is a
finite inverse semigroup, then

K0S ≃
r⊕

i=1

K0Ti,

where T1, . . . , Tr are the non-zero principal factors of S. In particu-
lar [4], for a finite group G,

Kpar(G) ≃
⊕
i∈I

Mmi(KHi),
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and, in this case, Hi is a subgroup of G for every i ∈ I. Indeed,
for A ⊆ G containing 1, it follows from the third and fourth items of
Lemma 2.4 that, for the principal factor J 0

A, we have that K0J 0
A is

isomorphic to
K0S

0(H;m,m, Id) ≃Mm(KH)

for some m ∈ N, where H is a subgroup of G.

3. Domains of partial factor sets and some remarks on the
ideal structure of the semigroup S3(G). In [5, page 261], the
authors introduced the monoid T generated by symbols u, v and t with
relations u2 = v2 = (uv)3 = 1, t2 = t, ut = t, tuvt = tvuv, tvt = 0.
Then, there is a disjoint union

T = S ∪ tS ∪ vtS ∪ uvtS ∪ 0,

where
S = ⟨u, v | u2 = v2 = (uv)3 = 1⟩

is a group isomorphic to the symmetric group S3.

Given an arbitrary group G, there is a left action of T on G × G
defined by means of the following transformations:

(3.1) u(x, y) = (xy, y−1), v(x, y) = (y−1, x−1), t(x, y) = (x, 1).

Then, 0(x, y) = (1, 1), for all x, y ∈ G, and there is an action of S3 on
G × G induced by T . The S3-orbit of a pair (x, y) ∈ G × G is of the
form

(3.2) S3(x, y) = {(x, y), (xy, y−1), (y, y−1x−1),

(y−1, x−1), (y−1x−1, x), (x−1, xy)},

for all x, y ∈ G.

Remark 3.1. The importance of the monoid T resides in the fact that
the T -subsets D of G×G, that is, the elements of

C(G) = {D ⊆ G×G | T D ⊆ D} = {D ⊆ G×G | T D = D},

are precisely the domains of the partial factor sets of G, see [5, Corol-
lary 7 and Theorem 5].
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Note that (C(G),∩,∪) is a complete lattice, and it follows from (3.1)
that {(1, 1)} and G × G are the zero and the unity elements of C(G),
respectively.

Our goal is to describe the lattice (C(G),∩,∪). For this, we consider
the quotient semigroup

S3(G) = {(A, a) ∈ S(G) | |A| ≤ 3} ∪ {0}

of S(G), see [6, page 447]. Denote by Y ∗(S3(G)) the set of ideals
of S3(G) different from S3(G) and the empty set. Then, from [7,
Proposition 5.3], there is a lattice isomorphism

(3.3) ι : (C(G),∩,∪) ∋ X −→ ι(X) ∈ (Y ∗(S3(G)),∪,∩),

where X and ι(X) are related by

(3.4) ({1, a, ab}, ab) ∈ ι(X) ⇐⇒ (a, b) ̸∈ X.

Observe that
({1, a}, a) ∈ ι(X) ⇐⇒ (a, 1) ̸∈ X

for any a ∈ G.

From the second item of Lemma 2.4, the J -classes of S(G) can
be indexed by subsets of G containing the identity. Furthermore, if
A = {1, a}, we denote JA by Ja, and, if A = {1, a, b} has three
elements, JA is denoted by Ja,b. Then, by Lemma 2.3, we have the
following.

Proposition 3.2. Let a, b ∈ G. Then,

• Ja = Jb if and only if a = b or ab = 1.
• If a2 ̸= 1, then Ja,a2 = Ja−1,a = Ja2,a−1 < Ja.
• If b /∈ {a, a−1, a2}, then

Ja, b = Ja−1,a−1b = Jb−1,b−1a < Ja,Jb,Ja−1b.

• All other non-zero J -classes in S3(G) are incomparable.

Proposition 3.2 yields

(3.5) Ia,b = Ja,b ∪ {0} and Ia =
∪

x∈G\{1,a}

Ja,x ∪ Ja ∪ {0},
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for any a, b ∈ G \ {1} with a ̸= b, where Ia and Ia,b are the ideals
of S3(G) related to the J -classes Ja and Ja,b, respectively. It follows
from (3.5) that the zero ideal

z =
∪

a∈G\{1}

Ia = S3(G) \ ({1}, 1)

is the maximum of the poset (Y ∗(S3(G)),⊆). Moreover, in the poset
of principal ideals of S3(G), the ideals Ia,b, where a, b ∈ G \ {1} with
a ̸= b are minimal, and those of the form Ia are maximal. Furthermore,
Ia is also minimal if and only if G = C2.

Definition 3.3. An element I of Y ∗(S3(G)) will be called maximal if
it is maximal in the poset (Y ∗(S3(G)) \ {z},⊆).

Let X ⊆ G and I ∈ Y ∗(S3(G)). To simplify notation, we write

IX =
∪
x∈X

Ix,

in particular, z = IG\{1}.

Proposition 3.4. If I is a maximal element of Y ∗(S3(G)), then there
is an a ∈ G such that

I = IG\{1,a} ∪ Ia,a−1 ,

where Ia,a−1 = ∅ if a = a−1.

Proof. Let I be a maximal ideal from Y ∗(S3(G)), and take (A, 1) ∈
z \ I, where A = {1, a, b}. Then, one of the elements ({1, a}, 1)
or ({1, b}, 1) is not in I. Without loss of generality, suppose that
({1, a}, 1) /∈ I. Since I is maximal, and for any y ∈ G \ {1, a}, we
have

I ⊆ I ∪ Iy ( z.

We conclude that
I ⊇ (z \ Ia) = IG\{1,a}.

If I ) IG\{1,a}, there exists a (B, b) ∈ I \ Ic for all c ̸= a, which

implies {1, c} ̸⊆ B and {1, c−1} ̸⊆ B. Thus, c, c−1 /∈ B for all c ̸= a,
and, since |B| ≥ 2, we have B = {1, x, y}, where x, y ∈ {a, a−1}. If
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x = y, then B = {1, x} and Ia = Ix ⊆ I, a contradiction. Hence, x ̸= y,
B = {1, a, a−1}, o (a) > 2 and I = (z \ Ia) ∪ Ia,a−1 , which completes
the proof. �

3.1. Minimal and irreducible domains. Let G be a finite group,
Pr the projection of

⊕
Mm(KH) onto the matrix algebra Mm(KH),

and consider the map

[ ] : G ∋ g 7−→ [g] ∈ KparG.

A function of the form

φ = Pr ◦ ψ ◦ [ ] : G −→Ml(KH),

where ψ is given by (2.2), is called an elementary partial representation
of G, and the set

D = {(x, y) ∈ G×G | φ(x)φ(y) ̸= 0}

is called an elementary domain.1

Here, we recall an algorithm that determines the elementary partial
representations of G (for more details, see [4, Section 3] or [17,
Section 2]).

Let H be a group. We denote by ei,j(h) the matrix in Mm(KH)
whose (i, j)-entry is h and all other entries are zero. Below, we shall
write ei,j = ei,j(1H).

Let A be a vertex in the groupoid Γ(G), H = StA, and let

A =
m∪
i=1

Hgi

be a disjoint union, where g1 = 1. Denote τ = {g1, . . . , gm}. We
say that τ is a right transversal of H in A. The elementary partial
representation

φA,τ : G −→Mm(KH)

is obtained as follows. For any x ∈ G, set

IA,τ
x = {i ∈ {1, . . . ,m} | gix ∈ A}.

If IA,τ
x = ∅, define φA,τ (x) = 0. If IA,τ

x ̸= ∅, then, for each i ∈ IA,τ
x ,

there is a unique element j = ji,x in {1, . . . ,m} and h = hi,x ∈ H such
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that gix = hgj . In this case, we have

(3.6) φA,τ (x) =
∑

i∈IA,τ
x

ei,j(h).

Let DA,τ be the elementary domain corresponding to φA,τ .

Lemma 3.5. Let G be a finite group and A and A′ two vertices lying in
the same connected component of Γ(G). Furthermore, let τ be a right
transversal of StA in A, and let τ ′ be a right transversal of StA′ in
A′. Then, DA,τ = DA′,τ ′ .

Proof. We have that A′ ∈ VA and A′ = g−1
k A for some gk ∈ τ =

{g1 = 1, g2, . . . , gm}. Then, H ′ = StA′ = g−1
k (StA)gk, and τ

′′ = g−1
k τ

is a right transversal of StA′ in A′. It is readily seen that

φA′,τ ′′ : G −→Mm(KH ′)

is related to

φA,τ : G −→Mm(KH)

by the formula

φA′,τ ′′(x) = diag(g−1
k , g−1

k , . . . g−1
k )φA,τ (x) diag(gk, gk, . . . gk),

for all x ∈ G, and it follows that DA,τ = DA′,τ ′′ . From [11,
Lemma 3.1], the representations

φA′,τ ′′ , φA′,τ ′ : G −→Mm(KH ′)

are equivalent, which implies that DA′,τ ′′ = DA′,τ ′ and from which we
conclude that DA,τ = DA′,τ ′ . �

In view of Lemma 3.5, DA,τ and IA,τ will be denoted by DA and
IA, respectively.

When G is finite, Lemma 3.5 implies that every connected compo-
nent of Γ(G) gives an elementary domain, which can be obtained from
an arbitrary vertex of the component. We shall prove that, for the
vertex A = {1, a, b}, the domain DA is T (a−1, b). First, we need some
preliminary results.
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Lemma 3.6. Let G be a finite group and A a vertex in Γ(G). Then,
(x, y) ∈ DA if, and only if, there is an A′ ∈ VA such that {x−1, y} ⊆ A′.

Proof. Let x, y ∈ G. Then, by definition, (x, y) ∈ DA is equivalent
to φA,τ (x)φA,τ (y) ̸= 0, where τ is a right transversal of StA in A.
Furthermore, the equality gix = hgj holds if and only if gjx

−1 = h−1gi,
and using (3.6), we obtain

(x, y) ∈ DA ⇐⇒ there exists j ∈ IA
x−1 ∩ IA

y ⇐⇒ gjx
−1 ∈ A

and
gjy ∈ A⇐⇒ {x−1, y} ⊆ g−1

j A. �

The next result easily follows from the definition of T .

Lemma 3.7. Let x ∈ G. Then,

T (x, 1) = {(1, 1), (x, 1), (1, x−1), (x−1, x), (x−1, 1), (1, x), (x, x−1)}

and

T (x, 1) = T (x−1, 1) = T (1, x−1) = T (1, x) = T (x−1, x) = T (x, x−1).

Now, we calculate the elementary domain associated to the vertex
{1, a, b}.

Proposition 3.8. Let G be a finite group and a, b ∈ G. Then,

D{1,a,b} = T (1, a) ∪ T (1, b) ∪ T (1, b−1a) ∪ S3(b
−1, a) = T (b−1, a).

In particular, any T -orbit is an elementary domain.

Proof. For the first equality, if A = {1, a, b}, then

VA = {A, {1, a−1, a−1b}, {1, b−1, b−1a}},

(with repetitions if and only if A ∼= C3 or |A| ≤ 2). From Lem-
ma 3.6, a pair (u, v) is in D{1,a,b} if, and only if, {u−1, v} ⊆ {1, a, b},
{u−1, v} ⊆ {1, a−1, a−1b} or {u−1, v} ⊆ {1, b−1, b−1a}. Checking case
by case, we get
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D{1,a,b} = {(1, 1), (1, a), (1, b), (a−1, 1), (a−1, a), (a−1, b), (b−1, 1),

(b−1, a), (b−1, b)}
∪ {(1, a−1), (1, a−1b), (a, 1), (a, a−1), (a, a−1b), (b−1a, 1),

(b−1a, a−1), (b−1a, a−1b)}
∪ {(1, b−1), (1, b−1a), (b, 1), (b, b−1), (b, b−1a), (a−1b, 1),

(a−1b, b−1), (a−1b, b−1a)}.

From Lemma 3.7 and (3.2) we conclude that

D{1,a,b} = T (1, a) ∪ T (1, b) ∪ T (1, b−1a) ∪ S3(b
−1, a).

Now, we verify that D{1,a,b} = T (b−1, a). From the above, we

have (b−1, a) ∈ D{1,a,b}, and from Remark 3.1, we obtain T (b−1, a) ⊆
D{1,a,b}. For the opposite inclusion, keeping in mind that S3 ≃
S ⊆ T , and the fact that T (b−1, a) is T -invariant, it is sufficient
to note that (1, a) = vtv(b−1, a), (1, b) = vt(b−1, a) and (1, b−1a) =
vtuv(b−1, a). �

Definition 3.9. Let G be an arbitrary group and D ∈ C(G).

• D will be called irreducible if D = D1 ∪ D2, where D1, D2 ∈
C(G), implies D1 = D or D = D2, otherwise, D will be called
reducible.

• D ̸= {(1, 1)} is called minimal or an atom if D ⊇ D′ ) {(1, 1)}
implies D = D′ for any domain D′.

Observe that, in the above definition, ifG is finite, it may be assumed
that any minimal domain is elementary since any domain is a union of
elementary domains, see [6, Theorem 4].

Remark 3.10. In a decomposition

D =
∪
i∈I

Di,



PARTIAL REPRESENTATIONS AND THEIR DOMAINS 2583

there could be indices j, k ∈ I such that Dj ⊆ Dk. In such a case,
the domain Dj would be superfluous. Then, we consider only minimal
decompositions, i.e., decompositions in which Dj ̸⊆ Dk for j ̸= k.

Example 3.11. There is a decomposable elementary domain for C5.
Indeed, it is computed in [17, Section 3] that

C5 × C5 = T (a, a3) ∪ T (a2, a2),

and the domain C5 × C5 is decomposable. Obviously, any minimal
domain is irreducible.

Proposition 3.12. A domain D is minimal if, and only if, D =
T (a, 1), for some a ∈ G \ {1}.

Proof. A domain D is minimal if, and only if, ι(D) is maximal in
the poset Y ∗(S3(G)), where ι is the isomorphism given in (3.3). Then,
by Proposition 3.4, D is minimal if, and only if, there exists an a ∈ G
such that

ι(D) = IG\{1,a} ∪ Ia,a−1 ,

where Ia,a−1 = ∅ if a = a−1. The proof will be complete if we show
that

ι(T (a, 1)) = IG\{1,a} ∪ Ia,a−1 ,

and this follows from (3.4) and Lemma 3.7. �

Combining Propositions 3.8 and 3.12 we obtain the following.

Corollary 3.13. Let D be a domain for a finite group G. Then D is
minimal if and only if there exists 1 ̸= x ∈ G such that D = D{1,x}.

Proposition 3.14. A domain is irreducible if, and only if, it is a T -
orbit.

Proof. Suppose that there are (elementary if G is finite) domains D1

and D2 such that
T (a, b) = D1 ∪D2.
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Since (a, b) ∈ T (a, b), without loss of generality, we suppose that
(a, b) ∈ D1. Thus, T (a, b) ⊆ D1 ⊆ T (a, b), that is, T (a, b) = D1.
Therefore, T (a, b) is irreducible. �

Definition 3.15. An ideal I ∈ Y ∗(S3(G)) will be called meet-prime
(or meet-irreducible) if I = I1 ∩ I2, where I1, I2 ∈ Y ∗(S3(G)) implies
I = I1 or I = I2.

Remark 3.16. It is easy to verify that the zero ideal is a meet-prime
element of Y ∗(S3(G)) if, and only if, |G| ≤ 4.

For x ∈ G, we denote

i(x) = ({1, x}, x) ∪ ({1, x−1}, x−1) ∪ ({1, x}, 1) ∪ ({1, x−1}, 1).

Corollary 3.17. An element I in Y ∗(S3(G)) is meet-prime if, and
only if, it is maximal or has the form

I = S3(G) \
( ∪

x∈{1,a,b,a−1b}

i(x) ∪ Ia,b
)
,

where a, b ∈ G and 1 /∈ {a, b, a−1b}.

Proof. Take I in Y ∗(S3(G)). Then, by Proposition 3.14, I is meet-
prime if, and only if, there are a, b ∈ G such that I = ι(T (b−1, a)).
Now, if 1 ∈ {a, b, a−1b}, Proposition 3.12 implies that I is maximal.
Suppose that 1 /∈ {a, b, a−1b}. From (3.4), we have that, for x, y ∈ G,
the element ({1, x, xy}, xy) is not in I if, and only if, (x, y) ∈ T (b−1, a).
Now, using the second equality of Proposition 3.8, (3.5) and the third
item of Proposition 3.2, we obtain the desired result. �

A non-minimal T -orbit is called a block. Hence, for any domain D,
there are blocks {Bi | i ∈ I} and minimal domains {Mj | j ∈ J } in
C(G) such that

D =
∪
i∈I

Bi ∪
∪
j∈J

Mj .

We may also remove from such a decomposition any minimal domain
Mj which is a subset of some Bi, in other words, we always assume
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that, in the decomposition of a domain D, there are no i, j such that
Bi ⊇Mj .

Proposition 3.18. Let G be an arbitrary group. Suppose that the
domains D1, D2 ∈ C(G) are decomposed as

D1 =
∪
i∈I

Bi ∪
∪
j∈J

Mj and D2 =
∪
k∈K

Ck ∪
∪
l∈L

Nl,

with Mj ̸⊆ Bi and Nl ̸⊆ Ck, where the Bi’s and Ck’s are blocks and
the Mj’s and Nk’s are minimal. If D1 ⊆ D2, then

• {Bi | i ∈ I} ⊆ {Ck | k ∈ K}.
• For any j ∈ J , we have that Mj ⊆ Ck for some k ∈ K or
Mj = Nl for some l ∈ L.

Proof. From Proposition 3.12, the condition Mj ̸⊆ Bi for each i ∈ I
implies

Mj ̸⊆
∪
i∈I

Bi,

analogously,

Nl ̸⊆
∪
k∈K

Ck.

Let i ∈ I. From Lemma 3.7 and Proposition 3.8, we have that Bi

= T (xi, yi), where 1 /∈ {xi, yi, xiyi}, and (xi, yi) ∈ D2. Since, for any
j ∈ J , Nj = T (1, aj) for some aj ̸= 1, each element (u, v) ∈ Nj

satisfies 1 ∈ {u, v, uv}. Consequently, there exists a k ∈ K such that
(xi, yi) ∈ Ck, and this implies Ck = T (xi, yi) = Bi and

{Bi | i ∈ I} ⊆ {Ck | k ∈ K}.

For the second item, we have that Mj = T (1, zj), for some zj ̸= 1,
and j ∈ J . Then, if Mj is not contained in any block appearing in the
decomposition of D2, we obtain

Mj ⊆
∪
l∈L

Nl.

Since, for each l, we have Nl = T (1, zl), with zl ̸= 1, we get T (1, zj) ⊆
T (1, zl0) for some l0. Finally, by Proposition 3.12, Mj = Nl0 . �
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Corollary 3.19. Let G be an arbitrary group. If a domain D ∈ C(G)
is decomposed as∪

i∈I
Bi ∪

∪
j∈J

Mj and
∪
k∈K

Ck ∪
∪
l∈L

Nl,

with Mj ̸⊆ Bi and Nl ̸⊆ Ck, where the Bis and Cks are blocks and the
Mjs and Nks are atoms, then

{Bi | i ∈ I} = {Ck | k ∈ K}

and

{Mj | j ∈ J } = {Nl | l ∈ L}.

Since every element in C(G) can be written as a union of elements of
T -orbits, the isomorphism (3.3) implies that each element in Y ∗(S3(G))
is an intersection of maximal ideals and ideals which correspond to
blocks.

Definition 3.20. An element I ∈ Y ∗(S3(G)) will be called a block
ideal if I = ι(D) for some block D ∈ T (G).

By Proposition 3.14, the block ideals are meet-prime, and their
description is given in Corollary 3.17. Next, we write Proposition 3.18
in terms of maximal and block ideals.

Corollary 3.21. Let G be an arbitrary group and I1, I2 ∈ Y ∗(S3(G)).
Let

I1 =
∩
i∈I

mi ∩
∩
j∈J

nj

and
I2 =

∩
k∈K

ak ∩
∩
l∈L

bl,

with nj ̸⊆ mi and bl ̸⊆ ak, where the mis and aks are maximal ideals
and the njs and bks are block ideals. If I1 ⊇ I2, then

• {bl | l ∈ L} ⊇ {nj | j ∈ J }.
• For any i ∈ I, we have that bl ⊆ mi for some l ∈ L or mi = ak
for some k ∈ K.
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Clearly, Corollary 3.21 implies the uniqueness of a decomposition of
an ideal into an intersection of maximal and block ideals in a sense
similar to Corollary 3.19.

4. Decomposition of elementary domains. In this section, G
will denote a finite group. From Propositions 3.8 and 3.14 every T -orbit
is an irreducible elementary domain; moreover, the union of T -orbits
is an element of C(G) but not necessarily an elementary domain. For
instance, in C4 = {1, a, a2, a3}, the domain X = T (1, a) ∪ T (1, a2) is
not elementary. Since each elementary domain D is a union of T -orbits

D =
∪

(x,y)∈D

T (x, y),

it is natural to consider the following problem.

Given an elementary domain D, find a set I with minimal cardinal-
ity such that

D =
∪
i∈I

T (xi, yi).

In order to solve our problem, we use the following.

Lemma 4.1. Let A and B be vertices in Γ(G) such that A ⊆ B. Then,
DA ⊆ DB.

Proof. Let a, b ∈ G. From Lemma 3.6, we know that (a, b) ∈ DA if,
and only if, there is a gj ∈ A with {a−1, b} ⊆ g−1

j A. Then, gj ∈ B and

{a−1, b} ⊆ g−1
j B ∈ VB.

Again, from Lemma 3.6, we obtain (a, b) ∈ DB . �

Remark 4.2. The converse of Lemma 4.1 is not true. For example,
by [17, Corollary 6.2], if |G| > 3 and A is a vertex in Γ(G), such that
|A|+ 1 = |G|, then DG = DA.

Setting Gn = {A ⊆ G | 1 ∈ A, |A| = n}, we define an equivalence
relation on Gn by
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A ∼ B ⇐⇒ VA = VB .

Then, the equivalence class of a vertex A is exactly VA.

Let Cn be a full set of representatives of the equivalence classes
of ∼. The next result gives a decomposition of the elementary domain
induced by a vertex B ∈ Γ(G), with |B| ≥ 3.2

Theorem 4.3. Let B be a vertex in Γ(G) with |B| ≥ 3, and consider
a transversal τ = {b1 = 1, b2, . . . , bm} ⊆ B such that

B =

m∪
i=1

StBbi.

Then,

(4.1) DB =
m∪
i=1

∪
A∈C3

A⊆b−1
i B

DA.

Moreover, the above decomposition is minimal in the sense that no block
DA appearing in (4.1) can be omitted, and the decomposition is unique
up to permutations of blocks.

Proof. It follows from Corollary 4.1 and Lemma 3.5 that, for any
b ∈ B and A ⊆ b−1B, DA ⊆ Db−1B = DB . Consequently,

DB ⊇
m∪
i=1

∪
A∈C3

A⊆b−1
i B

DA.

In order to prove the other inclusion, suppose that (u, v) ∈ DB.
From Lemma 3.6, there is a vertex B′ ∈ VB containing the set
{u−1, v}. Since |B′| = |B| ≥ 3, there exists a subset E of B′ such
that {1, u−1, v} ⊆ E and |E| = 3. It again follows from Lemma 3.6
that (u, v) ∈ DE , and we obtain (4.1). The minimality of (4.1) is a
consequence of the next two claims.

Claim 4.4. Let A and B1 be vertices in Γ(G) with A,B1 ∈ G3. Then,
VA = VB1 if, and only if, DA = DB1 .
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From Lemma 3.5, all vertices from a given component of Γ(G) induce
the same elementary domain. For the converse, let A = {1, a1, a2} and
B1 = {1, b1, b2}, with |A| = |B1| = 3. We have
(4.2)

VA = VB1 ⇐⇒ B1 = A or B1 = a−1
1 A or B1 = a−1

2 A
⇐⇒ {b1, b2} ∈ {{a1, a2}, {a−1

1 , a−1
1 a2}, {a−1

2 , a−1
2 a1}}

(3.2)⇐⇒ (b−1
1 , b2) ∈ S3(a

−1
1 , a2).

We use Proposition 3.8 to prove that T (a−1
1 , a2) = T (b−1

1 , b2) im-
plies (4.2). If T (a−1

1 , a2) = T (b−1
1 , b2), then (b−1

1 , b2) ∈ T (a−1
1 , a2),

and there is
γ ∈ T = S ∪ tS ∪ vtS ∪ uvtS ∪ 0

such that (b−1
1 , b2) = γ(a−1

1 , a2). Moreover, by (3.1) and (3.2), we see
that

tS3(x, y) = {(x, 1), (xy, 1), (y−1, 1), (y−1x−1, 1), (y, 1), (x−1, 1)},

for every (x, y) ∈ G×G. Hence, the pairs (a, b) in (tS ∪ vtS ∪ 0)(x, y)
have a 1 in its second coordinate. Since 1 ̸∈ {b1, b2}, it follows that

γ /∈ tS3 ∪ vtS3 ∪ 0.

Similarly, γ /∈ uvtS3 since the pairs in uvtS3(a
−1
1 , a2) are of the form

(x−1, x); however, by hypothesis, b1 ̸= b2. Therefore, γ ∈ S, and
(b−1

1 , b2) ∈ S3(a
−1
1 , a2), which is (4.2). This completes the proof.

Claim 4.5. If A,B1, . . . , Bm ∈ G3 are vertices in different connected
components of Γ(G), then

DA *
m∪
j=1

DBj .

Fix an arbitrary j ∈ {1, . . . ,m}, and write A = {1, a1, a2} and
Bj = {1, b1, b2}. Then, from Claim 4.4 and Proposition 3.8, we obtain

DA = T (a−1
1 , a2) ̸= T (b−1

1 , b2) = DBj .

For
(x, y) ∈ T (a−1

1 , a2) ∩ T (b−1
1 , b2),
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we have
T (x, y) ⊆ T (a−1

1 , a2) ∩ T (b−1
1 , b2).

On the other hand, by Proposition 3.8, the non-trivial domains properly
contained in a T -orbit are minimal. Consequently, 1 ∈ {x, y, xy},
and therefore, for any (u, v) ∈ DA such that 1 ̸∈ {u, v, uv}, we have
(u, v) ̸∈ DBj . In particular, (a−1

1 , a2) ̸∈ DBj . Since j is arbitrary, it
follows that

DA = T (a−1
1 , a2) *

m∪
j=1

DBj .

Finally, Corollary 3.19 implies that decomposition (4.1) is unique.
�

Remark 4.6. Our decomposition theorem gives a criterion to decide
whether an element D ∈ C(G) is an elementary domain. Indeed, let

D =
∪
i∈I

T (xi, yi)

with |I| ≥ 2 and B as in Theorem 4.3. If there exists an i ∈ I such that
every vertex in V{1,yi,x

−1
i } is not contained in b−1

j B for all 1 ≤ j ≤ m,

we have D ̸= DB .

Definition 4.7. We say that an ideal I of Y ∗(S3(G)) is elementary if
I = ι(D) for some elementary domain D of G.

For elementary ideals, we have the following version of Theorem 4.3.

Corollary 4.8. Let G be a finite group and IB the ideal of S3(G)
corresponding to an elementary domain DB, with |B| > 3, and consider
a transversal τ = {b1 = 1, b2, . . . , bm} ⊆ B such that

B =

m∪
i=1

StBbi.

Then,

IB =
m∩
i=1

∩
A∈C3

A⊆b−1
i B

IA.
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Moreover, this decomposition is minimal, i.e., no ideal IA can be
omitted, and it is unique up to permutations of ideals.

Definition 4.9. We say that a vertex A is total 3 if DA = G×G.

Another consequence of Theorem 4.3 is given in the following.

Corollary 4.10. Let G be a group such that |G| ≥ 3. Then,

• DG = G × G =
∪

A∈C3
DA. Furthermore, for any vertex B of

Γ(G), DB is not total if, and only if, there exists an A ∈ C3
such that DA is not contained in DB.

• 0 =
∩

A∈C3
IA, where IA = ι(DA) and ι is the isomorphism

defined in (3.3).

Proposition 4.11. If A is a vertex of Γ(G) such that |StA|(|G|2−1) >
|A|(|A|2 − 1), then DA is not total.

Proof. From Lemma 3.6, (x, y) ∈ DA if and only if there exists a
vertex A′ ∈ VA which contains x−1 and y. This corresponds to the
following pair of arrows in the groupoid Γ(G):

y−1A′ y // A′ x // xA′.

For each vertex A′, there are exactly |A|2 different pairs of such arrows.
Since one of these pairs is always (1, 1), and |VA| = |A|/|StA|, we
conclude that DA has at most

|A|
|StA|

(|A|2 − 1) + 1

elements. In particular, for any A which is total, we have

|G|2 = |DA| ≤
|A|

|StA|
(|A|2 − 1) + 1. �

Remark 4.12. The following assertions hold for a finite group G:

• A vertex is total if and only if IA = ι(DA) = 0 and, by
[17, Theorem 6.1], this occurs when |A| = |G| − k, for some
0 < k < |G| and |G| > k(2|StA|+ 1).
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• From Proposition 4.11, IA = 0 also when |StA|(|G|2 − 1) ≤
|A|(|A|2 − 1). Note that, in the above cases, A has a “small”
stabilizer. Moreover,

• for any subgroup H ( G, the domain DH is not total.
• If A is a vertex of Γ(G), where |G| ≥ 6 and |A| ≤ 3, then DA

is not total due to Proposition 4.11.

Definition 4.13. Let G be a group.

• We say that an ideal I of Y ∗(S3(G)) is elementary if I = ι(D),
for some elementary domain D for G.

• The domains {(1, 1)} and G × G will be called the trivial
domains of G.

Proposition 4.14. Let G be a finite group. Then, the following are
equivalent :

(i) 1 ≤ |G| ≤ 4;

(ii) the zero ideal is a meet-prime element of Y ∗(S3(G));

(iii) every elementary domain for G is irreducible;

(iv) all non-trivial elementary domains for G are minimal ;

(v) every elementary ideal from Y ∗(S3(G)) is meet-prime;

(vi) all non-trivial elementary ideals from Y ∗(S3(G)) are maximal.

Proof.

(i) ⇔ (ii). Observed in Remark 3.16.

(i) ⇒ (iii). If 1 ≤ |G| ≤ 4, it is easily seen that every non trivial
elementary domain for G induced by A ∈ VA is minimal, and DG is
irreducible.

(iii) ⇒ (i). Suppose that |G| > 4. If |G| ≥ 6, it follows from the last
item of Remark 4.12 and Proposition 3.8 that DG = G×G is not a T -
orbit, and consequently, is reducible. Finally, if |G| = 5, Example 3.11
shows that there are reducible elementary domains for G.

(iv) ⇒ (iii). This is evident if DG is irreducible. On the other hand,
if DG is reducible, then it can easily be verified that |G| ≥ 5 and G
contains elements a ̸= 1 and b ̸= 1 with ab ̸= 1. Then, the domain
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T (a, b) ) T (a, 1) is not minimal. Finally, (v) and (vi) are equivalent
to (iii) and (iv), respectively, via ι. �

5. Some invariants of C(G). We compute some numbers with
respect to the minimal elementary domains and blocks. For n ∈ N,
the subset of elements of order n in G will be denoted by on(G). Note
that Proposition 3.8 implies that any block contains one, two or three
minimal elementary domains. We shall calculate the number of such
blocks in each of these cases, as well as the number of minimal domains.

Theorem 5.1. Let G be a finite group.

(i) The number min(G) of minimal elementary domains for G is
given by :

min(G) =
|G|+ |o2(G)| − 1

2
.

(ii) Denote by Bl1(G) the set of blocks which contain exactly one
minimal elementary domain. Then,

|Bl1(G)| = |{H subgroup of G | H ≃ C3}| =
|o3(G)|

2
.

(iii) Let Bl2(G) be the set of blocks which contains exactly two
minimal elementary domains. Then,

|Bl2(G)| =
|{a ∈ G | o (a) > 3}|

2
.

(iv) Write Bl(G) for the set of all blocks. Then,

|Bl(G)| =
(|G|−1

2

)
+ |o3(G)|
3

.

(v) Let Bl3(G) be the set of blocks which contains exactly three
minimal elementary domains. Then,

|Bl3(G)| =
2
(|G|−1

2

)
− |o3(G)| − 3|{a ∈ G|o (a) > 3}|

6
.

Proof.

(i) Any x ∈ G \ {1} induces an elementary domain T (x, 1) =
T (x−1, 1), and Proposition 3.12 guarantees that these are the only
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domains which are minimal. On the other hand, from Lemma 3.7,
we have T (y, 1) = T (x, 1) if, and only if, x = y or x = y−1.
Consequently, the number of minimal elementary domains T (x, 1) for
which x ∈ o2(G) is exactly |o2(G)|. On the other hand, each subset
{y, y−1} of G \ (o2(G) ∪ {1}) induces the minimal elementary domain
T (y, 1), and the number of such subsets is

|G| − (|o2(G)|+ 1)

2
.

Therefore,

min(G) = |o2(G)|+
|G| − (|o2(G)|+ 1)

2
=

|G|+ |o2(G)| − 1

2
.

(ii) For any a ∈ G such that o (a) = 3, we have from Lemma 3.7 and
Proposition 3.8 that

T (a, a) = D{1,a,a2}

= T (1, a) ∪ T (1, a2) ∪ T (1, a−2a) ∪ S3(a
−2, a)

= T (1, a) ∪ S3(a, a).

Thus, any
H = ⟨a | a3 = 1⟩ ⊆ G

determines a block T (a, a) containing exactly one minimal elementary
domain. Moreover, the fact that for a, b ∈ G with a ̸= b ̸= a−1 implies
T (1, a) ̸= T (1, b), then T (a, a) ̸= T (b, b) and this correspondence is
injective. We conclude that

|Bl1(G)| ≥ |{H < G | H ≃ C3}|.

On the other hand, if

D{1,a,b} = T (1, a) ∪ T (1, b) ∪ T (1, b−1a) ∪ S3(b
−1, a)

contains only one minimal elementary domain, we have T (1, a) =
T (1, b) = T (1, b−1a). This implies b = a−1 = b−1a; hence, b = a2

and a3 = 1. Therefore, {1, a, b} = {1, a, a2} ≃ C3, and (ii) follows.

(iii) Let {1, a, b} be a set of three elements such that D{1,a,b} is
a block containing exactly two minimal elementary domains. The
component V{1,a,b} of Γ(G) has three vertices or one vertex. In the
latter case, by the proof of item (ii), {1, a, b} is a group of order 3,
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the associated block of which lies in Bl1(G). Consequently, V{1,a,b} has
three vertices and

D{1,a,b} = D{1,a−1,a−1b} = D{1,b−1,b−1a}.

Without loss of generality, we may assume that

T (1, a) = T (1, b) ̸= T (1, b−1a).

This implies b = a−1 and b ̸= b−1a. Then, a−1 = b ̸= a2, and we
conclude that o (a) /∈ {1, 2, 3}. Conversely, it is clear that any block
of the form D{1,a,a−1}, where a ∈ G is such that o (a) > 3 contains
exactly two minimal domains. Then, |Bl2(G)| equals the number of
subsets {a, a−1} of G for which o (a) > 3. The latter is

|{a ∈ G | o (a) > 3}|/2,

proving (iii).

(iv) Since, from Lemma 3.5, vertices lying in the same component
of the groupoid Γ(G) induce the same elementary domain, we merely
need to count the number of components defined by the vertices A of
three elements. If such an A is not a subgroup, then StA = {1}, and
its component in Γ(G) has exactly three vertices. Otherwise, A = StA
is one of the |o3(G)|/2 subgroups of G isomorphic to C3. Thus, the
number of blocks is

|o3(G)|
2

+

(|G|−1
2

)
− |o3(G)|/2
3

,

and (iv) follows.

(v) From Proposition 3.8,

|Bl(G)| = |Bl1(G)|+ |Bl2(G)|+ |Bl3(G)|,

and (v) follows from (ii), (iii) and (iv). �

Remark 5.2. Let G be a finite group. From (3.2), each S3-orbit
contains 1, 2, 3 or 6 elements, see [7, page 216], where the notation
A(a,b) is used for S3-orbits. The orbits with 2 or 6 elements are the
so-called effective orbits, see [15]. Then:

• from the proof of item (ii) of Theorem 5.1, the blocks in
Bl1(G) correspond to connected components of Γ(G) which
have exactly one vertex A and such that |StA| = 3, and also
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are in one-to-one correspondence with the S3-orbits containing
exactly 2-elements.

• From Proposition 3.12, the S3-orbits containing exactly three
elements correspond to the minimal domains of G, and the
blocks correspond to the effective orbits.

Example 5.3. Let n ∈ N and Cn = ⟨a | an = 1⟩. If 3 | n, then an/3
and a2n/3 are the only elements of Cn of order 3; otherwise, Cn has no
element of order 3. Therefore, from Theorem 5.1 (iv),

|Bl(Cn)| =
(
n−1
2

)
+ |o3(G)|
3

=

{
(n−1)(n−2)

6 if 3 - n,
(n−1)(n−2)+4

6 if 3 | n.

If n ≥ 4 is not a multiple of 3, then |Bl(Cn)| is equal to the number

Pn =

⌊
n− 1

3

⌋(
n− 3

2

⌊
n− 1

3

⌋
− 3

2

)
obtained after the proof of [7, Proposition 6.1]. Indeed, it is readily
verified that |Bl(Cn)| = Pn if n is of the form 3k + 1 or 3k + 2, with
k ∈ N. However, for n = 3k, the number of effective S3-orbits, which is
the same as the number of blocks, is actually |Bl(Cn)| = Pn +1. Thus,
[7, Proposition 6.1] must be restated as follows.

Proposition 5.4. Let n ≥ 3 and σ ∈ pm′
Cn×Cn

(Cn). Then, σ is
uniquely determined by its values σ(i, j), where 1 ≤ i ≤ ⌊n− 1/3⌋,
i ≤ j ≤ n− 2i− 1 and σ(n/3, n/3) if 3 | n.

In view of Example 2 in [7, Corollaries 6.2, 6.4] Pn should be
replaced by |Bl(Cn)|.

Now, we turn our attention to the question of determining the
number of different blocks D{1,x,y} which contain a given minimal ele-
mentary domain T (1, a). As a first step in this direction, we have the
following.

Lemma 5.5. Let G be an arbitrary group and a ∈ G \ {1}. Then,
T (1, a) ⊆ T (x, y), where 1 /∈ {x, y, xy} if, and only if, there is an
element z ∈ G such that T (x, y) = T (z, a).
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Proof. From (3.1), it is clear that (1, a) ∈ T (z, a) for any z ∈ G. On
the other hand, from Proposition 3.8, we have

T (x, y) = T (1, y) ∪ T (1, x) ∪ T (1, xy) ∪ S3(x, y),

and, from (3.2), any element (a, b) in S3(x, y) is such that 1 /∈ {a, b, ab}.
Therefore, if T (1, a) ⊆ T (x, y), then

(1, a) ∈ T (1, x) ∪ T (1, y) ∪ T (1, xy),

and it follows from Lemma 3.7 that

a ∈ {x, x−1, y, y−1, xy, y−1x−1},

in other words,

T (x, y) =



T (a, y) = T (y−1a−1, a), or

T (a−1, y) = T (y−1, a), or

T (x, a), or

T (x, a−1) = T (xa−1, a), or

T (x, x−1a) = T (x−1, a), or

T (x, x−1a−1) = T (x−1a−1, a).

In any case, we have T (x, y) = T (z, a), for some z ∈ G. �

Remark 5.6. Let x, y ∈ G. It follows from the proof of Lemma 5.5
that, for any u, v ∈ G, the following assertions are equivalent:

• T (x, y) ∩ T (u, v) = {(1, 1)};
• {u, v, uv} ∩ {x, x−1, y, y−1, xy, y−1x−1}= ∅.

Next, we characterize different sets, say {1, a, y} and {1, a, z}, which
determine the same block.

Lemma 5.7. If |{1, a, y, z}| = 4, then D{1,a,y} = D{1,a,z} if, and only
if, one of the following conditions holds:

• a2 = 1 and z = ay; or
• {y, z} = {a−1, a2}.
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Proof. From Claim 4.4, we have D{1,a,y} = D{1,a,z} if, and only if,

{1, a, z} = {1, a−1, a−1y}

or
{1, a, z} = {1, y−1, y−1a}.

This is equivalent to

{a, z} = {a−1, a−1y}

or
{a, z} = {y−1, y−1a},

which implies that a2 = 1 and z = ay or {y, z} = {a−1, a2}. �

Now, we are ready to give the number of blocks which contain a
given minimal elementary domain.

Proposition 5.8. Let a ∈ G \ {1}, and denote by Bl(1, a) the set of
blocks containing the minimal elementary domain T (1, a). Then,

|Bl(1, a)| =


(|G| − 2)/2 if a2 = 1,

|G| − 2 if a3 = 1,

|G| − 3 if a2 ̸= 1 ̸= a3.

Proof. We use Lemma 5.7 and consider three cases. If a2 = 1, then,
for each y ∈ G \ {1, a}, we have two equal blocks, D{1,a,y} = D{1,a,ay}.
Consequently,

|Bl(1, a)| = (|G| − 2)/2.

If a3 = 1, the condition {y, z} = {a2, a−1} only occurs for y = z.
Therefore, |Bl(1, a)| = |G| − 2, in this case. Finally, if a2 ̸= 1 ̸= a3,
then D{1,a,y} = D{1,a,z} for y, z ∈ G \ {1, a} only if {y, z} = {a−1, a2}.
Thus, |Bl(1, a)| = |G| − 3. �

Write
T (G) = {T (x, y) | (x, y) ∈ G×G}.

Then, (T (G),⊆) is a partially ordered set, and, by Corollary 3.19, any
element of C(G) may be uniquely written by taking unions of elements
of T (G).
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Proposition 5.9. If G and H are groups, then T (G) ≃ T (H) as
partially ordered sets, if and only if C(G) ≃ C(H) as lattices.

Proof. Let
ϕ : T (G) −→ T (H)

be an isomorphism of partially ordered sets. Since any D ∈ C(G) has
a unique decomposition

D =
∪
i∈I

T (ai, bi),

we may extend ϕ to C(G) by setting

φ(D) =
∪
i∈I

ϕ(T (ai, bi)) ∈ C(H).

Clearly, the above decomposition for φ(D) is unique. Thus, φ is a
one-to-one correspondence between C(G) and C(H) which preserves
inclusions, and this implies that φ is a lattice isomorphism.

Conversely, a lattice isomorphism

φ : C(G) −→ C(H)

takes irreducible domains for G into irreducible domains for H, and,
since the irreducible domains are exactly the T -orbits, restricting φ to
T (G), we obtain an isomorphism

T (G) −→ T (H). �

Denote by YT (G) the subset of Y ∗(S3(G)) consisting of maximal
and block ideals. This leads to:

Proposition 5.10. Let G and H be groups such that

(YT (G),⊆) ∼= (YT (H),⊆)

as partially ordered sets. Then, the lattices Y ∗(S3(G)) and Y
∗(S3(H))

are isomorphic.

We have the following.
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Proposition 5.11. If T (G) ≃ T (G′) as partially ordered sets, then
|G| = |G′|, |o2(G)| = |o2(G′)| and |o3(G)| = |o3(G′)|.

Proof. For any group G, we have

G = {1} ∪ o2(G) ∪ o3(G) ∪ {a ∈ G | o (a) > 3},

and, from Theorem 5.1, we obtain

|G| = 1 + |o2(G)|+ 2|Bl1(G)|+ 2|Bl2(G)|.

The equalities |Bl1(G)| = |Bl1(G′)| and |Bl2(G)| = |Bl2(G′)| imply

(5.1) |G| − |o2(G)| = |G′| − |o2(G′)|.

Moreover, the isomorphism T (G) ≃ T (G′) also implies min(G) =
min(G′), and Proposition 5.11 follows from Theorem 5.1. �

It is natural to ask the following:

Question 5.12. Are there non-isomorphic groups G and H such that
C(G) ≃ C(H)?

We checked some groups of small order and did not find non-
isomorphic G and H with C(G) ≃ C(H). It is clear from Proposi-
tion 5.11 that C(Cn) ≃ C(Cm) implies n = m.

6. Some final remarks on the lattice (C(G),∩,∪). Finally, we
shall point out some properties of the lattice (C(G),∩,∪) for any
group G. For the reader’s convenience, we recall the following notions.

Definition 6.1. Let L = (L,∧,∨) be a lattice. Then:

• if L is complete, an element x ∈ L is called compact if, whenever
x ≤

∨
A, A ⊆ L, then there exists a finite subset F of A such

that x ≤
∨
F . The set of all compact elements of L is denoted

by Lc.
• We say that L is algebraic if L is complete, and x =

∨
(↓x∩Lc),

for any x ∈ L, where ↓x = {a ∈ L | a ≤ x}.
• Suppose that L has 0 and 1. For x ∈ L, we say that y ∈ L
is a complement if x ∧ y = 0 and x ∨ y = 1. (Note that, in a
distributive lattice, an element has at most one complement.)
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• L is called Boolean if L is distributive, there exist 0 and 1, and
any x ∈ L has a complement.

Proposition 6.2. Let G be a group. Then,

• the set of compact elements of C(G) is

(6.1) C(G)c = {D ∈ C(G) | D is a finite union of T -orbits}.

• (C(G),∩,∪) is algebraic.
• (C(G),∩,∪) is Boolean if, and only if, |G| ≤ 2.

Proof. Let

D =
m∪
i=1

T (xi, yi)

be an element of the right-hand side of (6.1), and let A be a subset of
C(G), if D ≤

∪
A. Then, for any i, there exists a Di ∈ A such that

T (xi, yi) ∈ Di. Thus,

D ⊆
m∪
i=1

Di,

and D ∈ C(G)c. Conversely, if

D =
∪
i∈I

T (xi, yi) ∈ C(G)c,

then there exists a finite subset F of I such that

D ≤
∪
i∈F

T (xi, yi).

Since, from Proposition 3.8, every T -orbit contains at most three
minimal domains, Proposition 3.18 implies that I is finite.

Next, take X ∈ C(G). Then, we have

↓X ∩ C(G)c = {D ∈ C(G) | D ⊆ X is a finite union of T -orbits}.

Clearly, X ⊇
∪
(↓X∩C(G)c) and, given (xi, yi) ∈ X, the T -orbit T (xi,

yi) is in ↓X ∩ C(G)c. We obtain

X =
∪

(↓X ∩ C(G)c),

which shows that C(G) is algebraic.
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It is easy to verify that, if |G| ≤ 4, then (C(G),∩,∪) is Boolean if
and only if |G| ≤ 2. Thus, we need to prove that (C(G),∩,∪) is not
Boolean when |G| ≥ 5. The list of elementary domains for G = C5 is
given in [17, page 74], from which we readily see that (C(C5),∩,∪)
is not Boolean (the domain D4 has no complement). Assume that
|G| ≥ 8. We will check that, in this case T (x, y), where 1 /∈ {x, y, xy}
has no complement. Let τ be a full set of representatives of T -orbits
of G×G, and write

Λ = {x, x−1, y, y−1, xy, y−1x−1}.

Take X ∈ C(G), given by

X =
∪

(u,v)∈τ
{u,v,uv}∩Λ=∅

T (u, v).

From Remark 5.6, X is the greatest element in C(G) such that

X ∩ T (u, v) = {(1, 1)}.

Since |G| ≥ 8, there exist z ∈ G \ Λ, z ̸= 1, and the pair (x, z) /∈
T (x, y) ∪ X such that C(G) is not Boolean in this case. Finally,
the latter argument also works for G with |G| ∈ {6, 7} by taking
(x, y) = (a, a) if G = ⟨a | an = 1⟩, where n ∈ {6, 7} or

G = S3 = ⟨a, b | a3 = b2 = 1, b−1ab = a−1⟩. �

Acknowledgments. We thank the referee for many valuable sug-
gestions and remarks which helped to improve the article.

ENDNOTES

1. In [11], elementary partial representations were defined for
arbitrary groups.

2. By our results, for every vertex B such that |B| < 3, we have
that DB is a T -orbit.

3. A partial factor set of an arbitrary group G is called total if its
domain is G × G. When working over algebraically closed fields, it
is shown in [7, Corollary 5.8 iv)] that there is a group epimorphism
from pMG×G(G) to any other component of the partial Schur multiplier
pM(G), given by restriction.
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