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FINDING NEW SMALL DEGREE POLYNOMIALS
WITH SMALL MAHLER MEASURE

BY GENETIC ALGORITHMS

S. EL OTMANI, A. MAUL, G. RHIN AND J.-M. SAC-ÉPÉE

ABSTRACT. In this paper, we propose a new application
of genetic-type algorithms to find monic, irreducible, non-
cyclotomic integer polynomials with small degree and Mahler
measure less than 1.3, which do not appear in Mossinghoff’s
list of all known polynomials with degree at most 180 and
Mahler measure less than 1.3 [10]. The primary focus lies
in finding such polynomials of small degree. In particular,
the list referred to above is known to be complete through
degree 44, and we show that it is not complete from degree
46 on by supplying two new polynomials of small Mahler
measure, of degrees 46 and 56. We also provide a large
list of polynomials of small Mahler measure of degrees up
to 180 which, although discovered by us through the use
of a method described in Boyd and Mossinghoff [3] based
on limit points of small Mahler measures, do not appear
on Mossinghoff’s list [10]. Finally, we verify that our new
polynomials of degrees 46 and 56 cannot be produced from
the known small limit points.

1. Introduction. The Mahler measure of a polynomial P ∈ C[x],
where

P (x) = b0x
d + b1x

d−1 + · · ·+ bd = b0

d∏
k=1

(x− αk), b0 ̸= 0,

is defined by

M(P ) := |b0|
d∏

k=1

max(1, |αk|).
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For an algebraic number α, we denote by M(α) the Mahler measure
of its minimal polynomial in Z[x]. For a general survey on Mahler
measure, we refer to Smyth [16].

For P ∈ Z[x], we clearly have M(P ) ≥ 1. From Kronecker’s first
theorem [7], M(P ) = 1 if and only if P is a product of cyclotomic
polynomials and a power of x.

In 1933, Lehmer [8] asked whether there exists a positive number δ
such that, if α is neither 0 nor a root of unity, then M(α) ≥ 1+δ. This
is an open problem known as Lehmer’s question. He found the smallest
known Mahler measure > 1, M(P0) = 1.176280 . . . , where

P0(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

A polynomial is said to be reciprocal if P (x) = xdP (1/x). An alge-
braic number is reciprocal if its minimal polynomial is reciprocal. In
1971, Smyth [15] proved that, if α ̸= 0, 1 is a nonreciprocal algebraic
number, then M(α) ≥ 1.324717 . . . , which is the smallest Pisot number
equal to M(x3 − x− 1) = θ0.

Many computations have been done to obtain, for a fixed degree d,
all the polynomials P with M(P ) < θ0. Boyd [1, 2] computed all
irreducible, noncyclotomic integer polynomials P with degree d ≤ 20
having M(P ) < 1.3, and Mossinghoff [9] used this same algorithm to

extend the computation to d ≤ 24. Flammang, Rhin and Sac-Épée [5]
extended these computations for the polynomials P with M(P ) < θ0
and d ≤ 36, and polynomials P with M(P ) < 1.31 and d = 38 or 40.
These computations use a large family of explicit auxiliary functions to
obtain better bounds on the coefficients of P . Using the same meth-
od, Mossinghoff, Rhin and Wu [12] computed all polynomials with
measure less than 1.3 and degree at most 44. They also determined
the minimal Mahler measure for each degree ≤ 54. In all of these
computations, the polynomials P are primitive, that is to say, there
is no polynomial Q such that P (x) = Q(xk) for some integer k > 1
(this implies M(P ) = M(Q)).

Mossinghoff maintains a website [10] which contains all known
irreducible polynomials P ∈ Z[x] with degP ≤ 180 and M(P ) < 1.3.
All exhaustive searches are contained in this table. Several heuristic
searches produced a large number of polynomials.
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The length of P , denoted L(P ), is equal to∑
0≤i≤d

|bi|,

and the height of P , denoted H(P ), is

max
0≤i≤d

|bi|.

One of the searches, due to Mossinghoff [9] and Lisonek, tested for a
particular degree d and a fixed length l of all polynomials of height 1.
This is very efficient since it finds all P with degree at most 40 and
measure less than 1.3. Other techniques used include a numerical de-
scent technique, which produced 19 polynomials with degree between
174 and 180 by Rhin and Sac-Épée [14], and a method slightly modi-
fying cyclotomic polynomials by Mossinghoff, Pinner and Vaaler [11].
There were also polynomials associated with some small limit points of
Mahler measure [3]. Surprisingly, the last to be added to Mossinghoff’s
list were three polynomials of degrees 46, 48 and 52 [12].

For the reader’s convenience, we now provide some details regarding
the genetic algorithms upon which our search method is based. We
do not recall general theoretical results about genetic optimization
strategies, but we focus on the practical process used to solve our
particular problem.

2. A brief review of genetic algorithms. In the framework of
the genetic optimization strategies, a polynomial is a point in the
optimization phase-space, which is defined by its genes. For our pur-
poses, the genes of a polynomial are merely its integer coefficients.
The goal of the optimization process is to improve the quality, i.e., the
position, of the points in the phase-space. To give an example, suppose
that we wish to find polynomials

x16 + a15x
15 + a14x

14 + · · ·+ a14x
2 + a15x+ 1

of degree 16 with Mahler measure less than 1.3. These polynomials are
reciprocal [15] due to their small Mahler measure. The principle of our
genetic algorithm is to consider the Mahler measure as a function

M(a8, a9, a10, a11, a12, a13, a14, a15)



2622 EL OTMANI, MAUL, RHIN AND SAC-ÉPÉE

that we wish to minimize over a given domain D, in other words, the
goal is to find values of the integer variables a8, . . . , a15 which minimize
the function M. Below, we summarize the outline of the method.
See [6] for a detailed presentation of the principle.
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• Initial population: An initial population of polynomials is
created randomly.

• Selection: Each polynomial of the current generation (the
initial population in the first step) will be copied as often to
the new generation, the lower the Mahler measure, compared
to the average Mahler measure of the entire current sample.

• Mating and crossover: In addition to Elite children, i.e.,
polynomials with a very low Mahler measure, which are au-
tomatically still present in the following generation, Crossover
children are generated by combining the genes, i.e., the coeffi-
cients, of pairs of parents (polynomials of the previous genera-
tion).

• Mutation: Mutation children are generated via random changes
of a small number of their genes.

The mating/crossover process on one hand and the mutation process
on the other hand are both essential to the proper functioning of
the algorithm. The mating/crossover allows for selection of the best
genes stemming from the previous generation, whereas the mutation
introduces an element of chance for improving the diversity of the
current generation.
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3. Implementation and results. In order to implement the ge-
netic optimization strategies in our context, we make use of the op-
timization toolbox available in the MATLAB software environment [4],
which allows taking into account some particular constraints since our
variables only have integer values.

Due to the fact that the genetic algorithms are known to be rather
slow, we choose to utilize only the values −1, 0 and 1 for our variables.
When the algorithm supplies a polynomial, the Mahler measure of
which is lower than 1.3, it is necessary to check that this polynomial
is irreducible. This test is made via the GP-PARI number theory
library [13]. When the polynomial is irreducible, we check whether or
not it is in Mossinghoff’s list [10]. If it is not irreducible, we examine its
irreducible factors, and we also compare them with Mossinghoff’s list.
Such factors supply the polynomials with high coefficients appearing in
our list.

Our two new polynomials of small Mahler measure of degrees 46 and
56 (with their Mahler measures and their coefficients) are given below.
Since the polynomials which follow are necessarily reciprocal, we only
provide half of the coefficients of each polynomial. Overall, our list is
comprised of 51 new polynomials, 49 of which have a degree greater
than 174.

• Degree 46:
↪→1.286061466752 1 −2 3 −3 3 −3 3 −2 0 1 −2 3 −5 6

−6 5 −4 3 −1 −1 3 −4 5 −5
• Degree 56:

↪→1.2839804468828 1 −2 2 −2 1 1 −2 3 −3 2 −1 0 1 −1
1 −1 1 −1 1 0 −1 2 −3 3 −2 0 2 −4 5

4. Comments on the results. Another effective method for find-
ing monic, irreducible, non-cyclotomic integer polynomials with degree
at most 180 and Mahler measure less than 1.3 is to use [3], which gives
a list of 48 limit points of small Mahler measures. For example, the
smallest known limit point is

M(1 + x+ y(x2 + x+ 1) + y2(x2 + x)) = 1.25543 . . . .

The one-variable Mahler measures close to these limit points may be
obtained by substituting ±xi for x and ±xj for y (with i and j coprime
integers) and by taking their noncyclotomic factors. It therefore needed
to be determined whether our polynomials could or could not be
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constructed by this method. Using the 48 two-variable polynomials
corresponding to the 48 limit points, we then tested our 51 polynomials,
and it appeared that 49 of them were of this type. In fact, only
polynomials

p1 = 1 + x+ y(x2 + x+ 1) + (x2 + x)y2

and
p2 = 1 + y(x2 + x+ 1) + y2x2

were sufficient for constructing these 49 polynomials. This was no
surprise since the two corresponding limit points are the smallest and
are less than 1.3. It was even made much clearer for us after additional
intensive computing: denoting

Pa,b(x, y) = xmax(a−b,0)(φa(x) + φb(x)y + xb−aφa(x)y
2) [3]

(φa(x) is the polynomial (xa − 1)/(x − 1)), we sought to find missing
polynomials in Mossinghoff’s list by using each set of coefficients given
in [3]

(P2,3, P7,12, P8,15 . . .),

and this method provided a large number of polynomials, as may
be seen at http://iecl.univ-lorraine.fr/∼Jean-Marc.Sac-Epee/SMM3.

txt. As the results in this file indicate, only P2,3 and P1,3 (or P2,1)
provided valuable polynomials, contrary to the other sets of coefficients
(P3,5, P7,12, P8,15 . . .).

It is also interesting to note that constructing polynomials from
limit points seems to supply only those of high degree (at least 174).
Therefore, our genetic method has the benefit of providing small degree
polynomials (degrees 46 and 56) which cannot be constructed from the
known limit points.

5. Final remarks. In order to use genetic algorithms to handle our
problem of minimization was effective since this method works even
if the functions to be minimized are very complex with, furthermore,
in our case, the constraint linked to integer variables. However, the
genetic algorithms have the disadvantage of being rather slow, and it
would be interesting to explore the possibilities of developing hybrid
algorithms to accelerate this minimization method.
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