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THE IDEAL OF UNCONDITIONALLY
p-COMPACT OPERATORS

JU MYUNG KIM

ABSTRACT. We investigate the ideal Kup, 1 ≤ p ≤ ∞, of
unconditionally p-compact operators. We obtain the isomet-
ric identities Kup = Kup ◦ Kup, Kmax

up = Lsur
p∗ , Kmin

up = ⊗̂/wp∗

and Kup = NQdual
up and prove that, if X∗ has the approxi-

mation property or Y has the Kup-approximation property,

then Kup(X,Y ) is isometrically equal to Kmin
up (X,Y ), and

the dual space Kup(X,Y )∗ is isometric to (Linj
p )∗(X∗, Y ∗).

As a consequence, for every Banach space X, we ob-
tain the isometric identities Kmax

up (ℓ1(Γ), X) = Lp∗ (ℓ1(Γ), X),

Kmin
up (ℓ1(Γ), X) = ℓ∞(Γ)⊗̂wp∗X and Kup(ℓ1(Γ), X)∗ = Dp∗

(ℓ∞(Γ), X∗).

1. Introduction. The main notion of the paper stems from the
criterion of compactness. Grothendieck [7] proved that a subset K of
a Banach space X is relatively compact if and only if, for every ε > 0,
there exists a null sequence (xn) in X such that

K ⊂
{ ∞∑

n=1

αnxn : (αn) ∈ Bℓ1

}
and supn ∥xn∥ ≤ supx∈K ∥x∥ + ε, where Bℓ1 denotes the closed unit
ball of ℓ1 and, in general, BZ denotes the closed unit ball of a Banach
space Z. From this result, the operator norm of a compact operator

T : Y −→ X
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can be determined via null sequences as follows:

(†) ∥T∥ = inf

{
sup
n

∥xn∥ : ∥xn∥ −→ 0,

T (BY ) ⊂
{∑

n

αnxn : (αn) ∈ Bℓ1

}}
.

That criterion of compactness was naturally extended by Sinha and
Karn [15] as follows. For 1 ≤ p < ∞ and a subset K of X, K is said
to be relatively p-compact if there exists an (xn) ∈ ℓp(X) such that

K ⊂ p-co({xn}) :=
{∑

n

αnxn : (αn) ∈ Bℓp∗

}
,

where 1/p + 1/p∗ = 1, and ℓp(X) is the Banach space with the norm
∥ · ∥p of all X-valued absolutely p-summable sequences. A linear map

T : Y −→ X

is said to be p-compact if T (BY ) is a relatively p-compact subset of X.
The collection of all p-compact operators from Y to X is denoted by
Kp(Y,X). In view of (†), the same method may be used for measuring
p-compact operators. Similarly, Delgado, Piñeiro and Serrano [4, 5]
introduced an operator ideal norm on Kp. The norm ∥·∥Kp , 1 ≤ p < ∞,
on the space Kp(Y,X) is defined by

∥T∥Kp = inf{∥(xn)∥p : (xn) ∈ ℓp(X), T (BY ) ⊂ p-co({xn})}.

Then [Kp, ∥ · ∥Kp ] is a Banach operator ideal [5].

For 1 ≤ p ≤ ∞, the closed subspace ℓup(X) of ℓwp (X), the Banach
space with the norm ∥·∥wp of allX-valued weakly p-summable sequences,
consists of sequences (xn) satisfying

∥(0, . . . , 0, xm, xm+1, . . .)∥wp −→ 0,

as m → ∞. Elements in ℓup(X) are called unconditionally p-summable
sequences [8]. We say that a subset K of X is relatively unconditionally
p-compact (u-p-compact) if there exists an (xn) ∈ ℓup(X) such that
K ⊂ p-co({xn}). Also, a linear map T : Y → X is said to be u-
p-compact if T (BY ) is a relatively u-p-compact subset of X. The
collection of all u-p-compact operators from Y to X is denoted by
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Kup(Y,X), and the norm ∥ · ∥Kup on Kup(Y,X) is defined by

∥T∥Kup = inf{∥(xn)∥wp : (xn) ∈ ℓup(X) and T (BY ) ⊂ p-co({xn})}.

Then, the ideal [K, ∥ · ∥] of compact operators is isometrically equal to
[Ku∞, ∥ · ∥Ku∞ ], and [Kup, ∥ · ∥Kup ], 1 ≤ p < ∞, is a Banach operator
ideal [8, Theorem 2.1].

The main purpose of this paper is to establish some relationships
among the ideals [Kup, ∥ · ∥Kup ], some well-known operator ideals and
tensor norms based on the investigation of the ideal [Kp, ∥ · ∥Kp ] of
Galicer, Lassalle and Turco [6, 11].

2. A factorization of Kup. The following lemma may be verified
from a standard argument.

Lemma 2.1. Let K be a collection of sequences of positive numbers.
If

sup
(kj)∈K

∞∑
j=1

kj < ∞ and lim
l→∞

sup
(kj)∈K

∑
j≥l

kj = 0,

then, for every ε > 0, there exists a sequence (bj) of real numbers with
bj ↗ ∞ and bj > 1 for all j such that

sup
(kj)∈K

∞∑
j=1

kjbj ≤ (1 + ε) sup
(kj)∈K

∞∑
j=1

kj and lim
l→∞

sup
(kj)∈K

∑
j≥l

kjbj = 0.

Theorem 2.2. Let 1 ≤ p ≤ ∞. Then, T ∈ Kup(X,Y ) if and
only if there exist a quotient space Z of ℓp∗ (c0 if p = 1), R ∈
Kup(X,Z) and S ∈ Kup(Z, Y ) such that T = SR. In this case,
∥T∥Kup = inf ∥S∥Kup∥R∥Kup , where the infimum is taken over all such
factorizations.

Proof. The “if” part is clear and, in this case,

∥T∥Kup ≤ inf ∥S∥Kup∥R∥Kup .

Let T ∈ Kup(X,Y ), and let ε > 0 be given. The following proof
is essentially due to [15, Theorem 3.2], [2, Theorem 3.1] and [6,
Proposition 2.9]. Choose (yn) ∈ ℓup(Y ) such that T (BX) ⊂ p-co({yn})
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and ∥(yn)∥wp ≤ ∥T∥Kup(1 + ε). Define the operators

Ey : ℓp∗ −→ Y

by

Eyα =
∑
n

αnyn,

and
Êy : ℓp∗/ker(Ey) −→ Y

by Êy[α] = Eyα. Now, for each x ∈ X, there exists an α ∈ ℓp∗ such
that

Tx =
∑
n

αnyn.

Define the map

Ty : X −→ ℓp∗/ker(Ey) by Tyx = [α].

Then, it is easily seen that Ty is well defined, linear and ∥Tyx∥ ≤ ∥x∥
for every x ∈ X. It follows that T = ÊyTy.

Now, by an application of Lemma 2.1, there exists a sequence (βn)
of positive numbers with limn→∞ βn = 0 and βn < 1 such that
(zn) := (yn/βn) ∈ ℓup(Y ) and ∥(yn/βn)∥wp ≤ ∥(yn)∥wp (1 + ε). Define
the operators

Dβ : ℓp∗ −→ ℓp∗ and Ez : ℓp∗ −→ Y

by

Dβα = (αnβn) and Ezα =
∑
n

αnzn,

respectively, and the map

D̂β : ℓp∗/ker(Ey) −→ ℓp∗/ker(Ez) by D̂β([α]) = [(βnαn)].

Then, we see that D̂β is well defined and linear. Consider

[x1] := [β1e1], . . . , [xn] := [βnen], . . . ∈ ℓp∗/ker(Ez).
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Then, it is easily verified that ([xn])
∞
n=1 ∈ ℓup(ℓp∗/ker(Ez)),∥([xn])n∥wp

≤ 1 and

D̂β(Bℓp∗/ker(Ey)) ⊂
{∑

n

αn[xn] : (αn) ∈ Bℓp∗

}
.

Thus, D̂β is u-p-compact, and ∥D̂β∥Kup ≤ 1. Define the map

Êz : ℓp∗/ker(Ez) −→ Y by Êz([α]) = Ezα.

Recall that (zn) ∈ ℓup(Y ). Then,

Êz(Bℓp∗/ker(Ez)) ⊂
{∑

n

αnzn : (αn) ∈ Bℓp∗

}
.

Therefore, Êz is u-p-compact and ∥Êz∥Kup ≤ ∥(yn)∥wp (1+ε). It follows

that Êy = ÊzD̂β .

Now, we have the following commutative diagram:

X
T //

Ty

��

Y

ℓp∗/ker(Ey)
D̂β

//

Êy

66nnnnnnnnnnnnn
ℓp∗/ker(Ez),

Êz

OO

and we have

inf ∥S∥Kup∥R∥Kup ≤ ∥Êz∥Kup∥D̂βTy∥Kup

≤ ∥(yn)∥wp (1 + ε) ≤ ∥T∥Kup(1 + ε)2.

Since ε > 0 is arbitrary, inf ∥S∥Kup∥R∥Kup ≤ ∥T∥Kup . �

From the proof of Theorem 2.2, we also obtain a factorization of Kp

via Kup.

Theorem 2.3. Let 1 ≤ p ≤ ∞. Then,

T ∈ Kp(X,Y )

if and only if there exist a quotient space Z of ℓp∗ (c0 if p = 1),
R ∈ Kup(X,Z) and S ∈ Kp(Z, Y ) such that T = SR. In this case,
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∥T∥Kp = inf ∥S∥Kp∥R∥Kup , where the infimum is taken over all such
factorizations.

Corollary 2.4. Let 1 ≤ p ≤ ∞. Then [Kup, ∥ · ∥Kup ] = [Kup ◦ Kup, ∥ ·
∥Kup ◦ ∥ · ∥Kup ] and [Kp, ∥ · ∥Kp ] = [Kp ◦ Kup, ∥ · ∥Kp ◦ ∥ · ∥Kup ].

3. The maximal hull and minimal kernel of [Kup, ∥ · ∥Kup ].
Given a Banach operator ideal [A, ∥·∥A], we denote by [Amax, ∥·∥Amax ],
[Amin, ∥·∥Amin ], [Asur, ∥·∥Asur ], [Ainj, ∥·∥Ainj ], [A∗, ∥·∥A∗ ] and [Adual, ∥·
∥Adual ], the maximal hull, minimal kernel, surjective hull, injective hull,
adjoint ideal and dual ideal, respectively. The definitions may be found
in [3, 14].

A classical p-compact operator T ∈ Kp(X,Y ), 1 ≤ p ≤ ∞, from X
to Y , is represented as

T =
∑
n

x∗
n ⊗ yn, (x∗

n) ∈ ℓup(X
∗), (yn) ∈ ℓup∗(Y ),

and its norm is
∥T∥Kp := inf ∥(x∗

n)∥wp ∥(yn)∥wp∗ ,

where the infimum is taken over all such representations of T . Then,
[Kp, ∥·∥Kp ] is a Banach operator ideal, cf., [3, subsection 22.3] and [14,
subsection 18.3].

From [3, Proposition 9.8] and [8, Lemma 3.2], we have:

Proposition 3.1. Let 1 ≤ p ≤ ∞. Then, [Kup, ∥ · ∥Kup ] = [Ksur
p∗ , ∥ ·

∥Ksur
p∗

].

From Proposition 3.1 and [3, Corollary 9.8], we have:

Corollary 3.2. Let 1 ≤ p ≤ ∞, and let Γ be a set. Then, for every
Banach space X, Kup(ℓ1(Γ), X) is isometrically equal to Kp∗(ℓ1(Γ), X).

A Banach operator ideal [A, ∥·∥A] is said to be associated to a tensor
norm α if the canonical map

(A(M,N), ∥ · ∥A) −→ M∗ ⊗α N
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is an isometry for all finite-dimensional normed spaces M and N . We
denote by /α, α\, \α and α/, the left-injective associate, right-injective
associate, left-projective associate and right-projective associate, respec-
tively, of α. See [3, subsections 20.6, 20.7] for the corresponding defi-
nitions.

The following is a crucial tensor norm in this paper. Let u ∈ X⊗Y .
For 1 ≤ p ≤ ∞, define

wp(u) = inf

{
∥(xj)∥wp ∥(yj)∥wp∗ : u =

n∑
j=1

xj ⊗ yj , n ∈ N
}
.

Then, wp is a finitely generated tensor norm, cf., [3, Section 12]. For
the definition of accessibility of tensor norms, see [3, subsection 21.1].

Proposition 3.3. Let 1 ≤ p ≤ ∞. Then, the ideal [Kup, ∥ · ∥Kup
] is

associated to the totally accessible tensor norm /wp∗ .

Proof. Since wp∗ is accessible, cf., [3, Theorem 21.5 (1)], by the
symmetric version of [3, Proposition 21.1 (2)] /wp∗ is totally accessible.

Now, let α be a finitely generated tensor norm associated to [Kup, ∥ ·
∥Kup ]. Then by Corollary 3.2, for every n ∈ N and every finite-
dimensional normed space N , we have the following isometries:

ℓn∞ ⊗wp∗ N −→ Kp∗(ℓn1 , N) −→ Kup(ℓ
n
1 , N) −→ ℓn∞ ⊗α N.

Then, using the proof of [6, Theorem 3.3], the proof is complete. �

Corollary 3.4. Let 1 ≤ p ≤ ∞. Then [Kmax
up , ∥ · ∥Kmax

up
], [Kup, ∥ · ∥Kup ]

and [Kmin
up , ∥ · ∥Kmin

up
] are all totally accessible.

Proof. By Proposition 3.3, [Kmax
up , ∥ · ∥Kmax

up
] is associated to /wp∗ .

Hence, by Proposition 3.3 and [3, Proposition 21.3], [Kmax
up , ∥ · ∥Kmax

up
] is

totally accessible. The other parts follow from [3, Exercise 21.2 (b)].
�

We denote the ideal of p-factorable operators by [Lp, ∥ · ∥Lp ], cf., [3,
Section 18] and [14, subsection 19.3].
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Theorem 3.5. Let 1 ≤ p ≤ ∞. Then [Kmax
up , ∥·∥Kmax

up
] = [Lsur

p∗ , ∥·∥Lsur
p∗

]

and Kmin
up (X,Y ) is isometric to X∗⊗̂/wp∗Y for all Banach spaces X

and Y .

Proof. Since [Lp∗ , ∥ · ∥Lp∗ ] is associated to wp∗ , see [3, subsec-
tion 17.12], by [3, Theorem 20.11 (2)], [Lsur

p∗ , ∥ · ∥Lsur
p∗

] is associated

to /wp∗ . By Proposition 3.3, we obtain the first part since the maxi-
mal ideal associated to a finitely generated tensor norm is unique. Due
to the fact that /wp∗ is totally accessible, the second part follows from
[3, Corollary 22.2]. �

From [3, Corollary 9.8 and the symmetric version of Corollary 20.7]
and Theorem 3.5, we have:

Corollary 3.6. Let 1 ≤ p ≤ ∞, and let Γ be a set. Then, for every Ba-
nach space X, Kmax

up (ℓ1(Γ), X) is isometrically equal to Lp∗(ℓ1(Γ), X)

and Kmin
up (ℓ1(Γ), X) is isometric to ℓ∞(Γ)⊗̂wp∗X.

A Banach space X is said to have the approximation property (AP)
if, for every compact subsetK ofX and every ε > 0, there exists a finite
rank operator S onX such that supx∈K ∥Sx−x∥ ≤ ε. Grothendieck [7]
proved that X has the AP if and only if, for every Banach space Y ,

K(Y,X) = F(Y,X)
∥·∥

.

Based on this criterion, Oja [12] and Lassalle and Turco [10] introduced
the notion of approximation property related to a Banach operator ideal
[A, ∥ · ∥A], where the norm ideal ∥ · ∥A is taken into account, namely,
given a Banach operator ideal [A, ∥ · ∥A], a Banach space X is said to
have the A-AP if, for every Banach space Y ,

A(Y,X) = F(Y,X)
∥·∥A

.

The Kup-AP was investigated in [9], and it was shown that, if X has
the AP, then, for every 1 ≤ p ≤ ∞, X has the Kup-AP.

For a definition and further information on accessibility of Banach
operator ideals, see [3, subsection 21.2]. The next lemma follows
immediately.
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Lemma 3.7. Let [A, ∥ · ∥A] be a totally accessible Banach operator
ideal. Then, for all Banach spaces Y and X, ∥T∥A = ∥T∥Amin for
every T ∈ F(Y,X).

Proposition 3.8. Let [A, ∥·∥A] be a totally accessible Banach operator

ideal. Then, for all Banach spaces Y and X, A(Y,X) = F(Y,X)
∥·∥A

if and only if A(Y,X) is isometrically equal to Amin(Y,X).

Proof. Suppose that A(Y,X) = F(Y,X)
∥·∥A

, and let T ∈ A(Y,X).
Then, there exists a sequence (Tn) in F(Y,X) such that limn→∞ ∥Tn−
T∥A = 0. Then, by Lemma 3.7, (Tn) is a Cauchy sequence in
(Amin(Y,X), ∥ · ∥Amin). Thus, there exists an R ∈ Amin(Y,X) such
that limn→∞ ∥Tn −R∥Amin = 0. Hence, T = R ∈ Amin(Y,X) and

∥T∥Amin = lim
n→∞

∥Tn∥Amin = lim
n→∞

∥Tn∥A = ∥T∥A.

From [3, Proposition 22.1 (2)], the converse is always true. �

Consequently, for a totally accessible Banach operator ideal A, X
has the A-AP if and only if, for every Banach space Y , A(Y,X) is
isometrically equal to Amin(Y,X). Hence, from Corollary 3.4 and [3,
Proposition 22.1 (3)], we have the following result which should be
compared with [11, Proposition 3.4].

Corollary 3.9. Let 1 ≤ p ≤ ∞. Then, a Banach space X has
the Kup-AP(respectively, Kmax

up -AP) if and only if, for every Banach
space Y , Kup(Y,X) (respectively, Kmax

up (Y,X)) is isometrically equal to

Kmin
up (Y,X).

4. The dual space of (Kup(X,Y ), ∥ · ∥Kup
).

Proposition 4.1. Let 1 ≤ p ≤ ∞. If X∗ has the AP, then, for every
Banach space Y , Kup(X,Y ) is isometrically equal to Kmin

up (X,Y ).

Proof. Let Y be a Banach space, and let T ∈ Kup(X,Y ). Then,
by Corollary 2.4, there exist Banach space Z, R ∈ Kup(X,Z) and
S ∈ Kup(Z, Y ) such that T = SR. It is well known that X∗ has the



2286 JU MYUNG KIM

AP if and only if, for every Banach space Y ,

K(X,Y ) = F(X,Y )
∥·∥

.

Thus, we see that T ∈ (Kup ◦ F)(X,Y ). By [3, Proposition 25.2 (2)]
and Corollary 3.4, T ∈ Kmin

up (X,Y ). Also, by [3, Proposition 22.1 (3)
and Corollary 22.5], we have

∥T∥Kmax
up

≤ ∥T∥Kup ≤ ∥T∥Kmin
up

= ∥T∥(Kmax
up )min = ∥T∥Kmax

up
. �

We denote by αt and α′, respectively, the transposed and dual tensor
norm of a tensor norm α, see [3, subsection 15.2]. The adjoint tensor
norm is defined by α∗ := (αt)′ = (α′)t.

Theorem 4.2. Let 1 ≤ p ≤ ∞. If X∗ has the AP or Y has the
Kup-AP, then the dual space (Kup(X,Y ), ∥ · ∥Kup)

∗ is isometric to

((Linj
p )∗(X∗, Y ∗), ∥ · ∥(Linj

p )∗). Moreover, we have:

(a) if X∗ has the AP, then, for every T ∈ (Linj
p )∗(X∗, Y ∗) and every

S ∈ Kup(X,Y ),
⟨T, S⟩ = trX∗(S∗T ).

(b) If Y ∗ has the AP, then, for every T ∈ (Linj
p )∗(X∗, Y ∗) and every

S ∈ Kup(X,Y ),
⟨T, S⟩ = trY ∗(TS∗).

Proof. By Corollary 3.9 and Proposition 4.1, Kup(X,Y ) is isome-
trically equal to Kmin

up (X,Y ). In view of Theorem 3.5, the canonical
map

J/wp∗ : X∗⊗̂/wp∗Y −→ Kmin
up (X,Y )

in [3, Theorem 22.2] is an isometry.

Now, by [3, Proposition 20.10] and its symmetric version,

(/wp∗)′ = \w′
p∗ = \w∗

p = (wp\)∗.

Since Lp is associated to wp, by [3, Theorem 20.11 (1)] Linj
p is associated

to wp\. Thus, (Linj
p )∗ is associated to (wp\)∗ = (/wp∗)′. Hence, by [3,
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Theorem 17.5], we have the following isometries.

((Linj
p )∗(X∗, Y ∗), ∥ · ∥(Linj

p )∗) −→ (X∗⊗̂/wp∗Y )∗

−→ (Kup(X,Y ), ∥ · ∥Kup)
∗.

(a) Let T ∈ (Linj
p )∗(X∗, Y ∗). Then, by an application of [3,

Theorem 17.15] it may be verified that the map

idX∗ ⊗ T ∗ : X∗ ⊗(wp\)t Y
∗∗ −→ X∗ ⊗π X∗∗

is continuous and (wp\)t = /wp∗ , where π is the projective tensor norm.
Let

idX∗⊗̂T ∗ : X∗⊗̂(wp\)tY
∗∗ −→ X∗⊗̂πX

∗∗

be the continuous extension of idX∗ ⊗ T ∗. Let

Φ : (Kup(X,Y ), ∥ · ∥Kup) −→ N (X∗, X∗)

be the composition of the following maps, where [N , ∥ · ∥N ] is the ideal
of nuclear operators:

Kup(X,Y ) = Kmin
up (X,Y )

J−1
/wp∗−→ X∗⊗̂/wp∗Y

= X∗⊗̂(wp\)tY
idX∗ ⊗̂iY−→ X∗⊗̂(wp\)tY

∗∗ idX∗ ⊗̂T∗

−→

X∗⊗̂πX
∗∗ it−→ X∗∗⊗̂πX

∗ Jπ−→ N (X∗, X∗).

Here, iY : Y → Y ∗∗ is the canonical isometry and it is the transposed
map. Since X∗ has the AP, it is well known that the trace map

trX∗ : (N (X∗, X∗), ∥ · ∥N ) −→ C

is well defined and continuous. It may easily be verified that, for every
R ∈ F(X,Y ),

Φ(R) = R∗T

and ⟨T,R⟩ = trX∗(R∗T ), and then it follows that ⟨T, S⟩ = trX∗(S∗T )
for every S ∈ Kup(X,Y ).

(b) Let T ∈ (Linj
p )∗(X∗, Y ∗). Then, by [3, Theorem 17.15], the map

idY ∗∗ ⊗ T : Y ∗∗ ⊗wp\ X
∗ −→ Y ∗∗ ⊗π Y ∗
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is continuous. Let

idY ∗∗⊗̂T : Y ∗∗⊗̂wp\X
∗ −→ Y ∗∗⊗̂πY

∗

be the continuous extension of idY ∗∗ ⊗ T . Let

Φ : (Kup(X,Y ), ∥ · ∥Kup) −→ N (Y ∗, Y ∗)

be the composition of the following maps:

Kup(X,Y ) = Kmin
up (X,Y )

J−1
/wp∗−→ X∗⊗̂/wp∗Y

it−→ Y ⊗̂wp\X
∗ iY ⊗̂idX∗−→

Y ∗∗⊗̂wp\X
∗ idY ∗∗ ⊗̂T−→ Y ∗∗⊗̂πY

∗ Jπ−→ N (Y ∗, Y ∗).

Since Y ∗ has the AP, the trace map

trY ∗ : (N (Y ∗, Y ∗), ∥ · ∥N ) −→ C

is well defined and continuous. As in the proof of (a), the proof is
complete. �

We denote the ideal of p-dominated operators by Dp, cf., [3, Sec-
tion 19] and [14, subsection 17.4].

Corollary 4.3. Let 1 ≤ p ≤ ∞, and let Γ be a set. Then, for
every Banach space X, the dual space Kup(ℓ1(Γ), X)∗ is isometric
to Dp∗(ℓ∞(Γ), X∗) and, for every T ∈ Dp∗(ℓ∞(Γ), X∗) and every
S ∈ Kup(ℓ1(Γ), X), ⟨T, S⟩ = trℓ∞(Γ)(S

∗T ).

Proof. Recall that ℓ∞(Γ) has the AP. From the symmetric version
of [3, Corollary 20.7] and the fact that w′

p∗ = w∗
p, in the proof of

Theorem 4.2, we have the following isometries.

(L∗
p(ℓ∞(Γ), X∗), ∥ · ∥L∗

p
) −→ (ℓ∞(Γ)⊗̂wp∗X)∗

−→ (Kup(ℓ1(Γ), X), ∥ · ∥Kup)
∗.

Since L∗
p is isometrically equal to Dp∗ , cf., [3, subsection 17.12], we

complete the proof. �

5. The ideal of A-compact operators. Carl and Stephani [1]
introduced the notion of compactness determined by operator ideals.
Let [A, ∥ · ∥A] be a Banach operator ideal. A subset K of a Banach
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space X is said to be relatively A-compact if there exist a Banach
space Z, U ∈ A(Z,X) and a relatively compact subset C of Z such
that K ⊂ U(C). A linear map

R : Y −→ X

is said to be A-compact if R(BY ) is a relatively A-compact subset of X.
We denote by KA(Y,X) the space of all A-compact operators from Y
to X.

Lassalle and Turco [11] introduced a method of measuring the size of
relatively A-compact sets. For a relatively A-compact subset K of X,
let

mA(K;X) := inf{∥U∥A : U ∈ A(Z,X),

relatively compact C ⊂ BZ ,K ⊂ U(C)},

and let ∥R∥KA := mA(R(BY );X) for R ∈ KA(Y,X). Then, [KA, ∥ ·
∥KA ] is a Banach operator ideal, see [11, Section 2].

The following lemma combines, with standard modifications, [11,
Remark 1.3] and the proof of [6, Proposition 2.9]. We give a proof for
the sake of completeness.

Lemma 5.1. Let 1 ≤ p ≤ ∞. If (xn) ∈ ℓup(X), then, for every ε > 0,
there exist a relatively compact subset M of Bℓp∗ and T ∈ Kp∗(ℓp∗ , X)
with

∥T∥Kp∗ ≤ ∥(xn)∥wp + ε

such that
p-co({xn}) = T (M).

Proof. Let ε > 0 be given. By an application of Lemma 2.1, there
exists a sequence (βn) with limn→∞ βn = ∞ and βn > 1 such that
(βnxn) ∈ ℓup(X) and ∥(βnxn)∥wp ≤ ∥(xn)∥wp + ε. We see that the set

M :=

{(
αn

βn

)∞

n=1

: (αn) ∈ Bp∗

}
is a relatively compact subset of Bp∗ and

T :=
∞∑

n=1

en ⊗ βnxn ∈ Kp∗(ℓp∗ , X),



2290 JU MYUNG KIM

where (en) is the sequence of canonical unit vectors in ℓp. This yields

p-co({xn}) =
{ ∞∑

n=1

γnβnxn : (γn) ∈ M

}
= T (M)

and
∥T∥Kp∗ ≤ ∥(en)∥wp∗∥(βnxn)∥wp ≤ ∥(xn)∥wp + ε. �

Proposition 5.2. Let K ⊂ X, and let 1 ≤ p ≤ ∞. The following
statements are equivalent.

(a) K is relatively u-p-compact.

(b) K is relatively Kp∗-compact.

(c) K is relatively Kup-compact. In this case,

mKup(K;X) = mKp∗ (K;X)

= inf{∥(xn)∥wp : K ⊂ p-co({xn}), (xn) ∈ ℓup(X)}.
Proof.

(a) ⇒ (b). Let (xn) ∈ ℓup(X) be arbitrary such that K ⊂ p-co({xn}).
Let ε > 0 be given. By Lemma 5.1, there exist a relatively compact
subset M of Bℓp∗ and T ∈ Kp∗(ℓp∗ , X) with ∥T∥Kp∗ ≤ ∥(xn)∥wp +ε such
that

K ⊂ p-co({xn}) = T (M).

Thus, K is relatively Kp∗-compact and

mKp∗ (K;X) ≤ ∥T∥Kp∗ ≤ ∥(xn)∥wp + ε.

Since ε > 0 and (xn) ∈ ℓup(X) are arbitrary, we have

mKp∗ (K;X) ≤ inf{∥(xn)∥wp : K ⊂ p-co({xn}), (xn) ∈ ℓup(X)}.

(b) ⇒ (c). Simple verification shows that Kp∗ ⊂ Kup and ∥ · ∥Kup ≤
∥ · ∥Kp∗ . Hence, (b) ⇒ (c) follows and mKup(K;X) ≤ mKp∗ (K;X).

(c) ⇒ (a). Let Y be a Banach space, and let T ∈ Kup(Y,X) be such
that M is a relatively compact subset of BY and K ⊂ T (M). Let ε > 0
be given. Choose (zn) ∈ ℓup(X) with ∥(zn)∥wp ≤ ∥T∥Kup + ε such that

K ⊂ T (M) ⊂ T (BY ) ⊂ p-co({zn}).
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Then, K is relatively u-p-compact, and we have

inf{∥(xn)∥wp : K ⊂ p-co({xn}), (xn) ∈ ℓup(X)} ≤ ∥(zn)∥wp
≤ ∥T∥Kup + ε.

Since ε > 0 is arbitrary,

inf{∥(xn)∥wp : K ⊂ p-co({xn}), (xn) ∈ ℓup(X)} ≤ mKup(K;X). �

Corollary 5.3. Let 1 ≤ p ≤ ∞. Then, we have

[Kup, ∥ · ∥Kup ] = [KKp∗ , ∥ · ∥KKp∗
] = [KKup , ∥ · ∥KKup

].

Proposition 5.2 and [11, Corollary 2.3] improve [8, Corollary 2.9]
by the following proposition.

Proposition 5.4. Let K ⊂ X, and let 1 ≤ p ≤ ∞. Then, K is rel-
atively u-p-compact if and only if iX(K) is relatively u-p-compact in
X∗∗. In this case,

inf{∥(xn)∥wp : K ⊂ p-co({xn}), (xn) ∈ ℓup(X)}
= inf{∥(x∗∗

n )∥wp : iX(K) ⊂ p-co({x∗∗
n }), (x∗∗

n ) ∈ ℓup(X
∗∗)}.

Also, Proposition 5.2 and [11, Corollary 2.4] give the following:

Corollary 5.5. Let 1 ≤ p ≤ ∞. Then, T ∈ Kup(X,Y ) if and only if
T ∗∗ ∈ Kup(X

∗∗, Y ∗∗). In this case, ∥T∥Kup = ∥T ∗∗∥Kup .

For 1 ≤ p ≤ ∞, a linear map

T : X −→ Y

is called quasi unconditionally p-nuclear (quasi u-p-nuclear) [8] if there
exists an (x∗

n) ∈ ℓup(X
∗) such that ∥Tx∥ ≤ ∥(x∗

n(x))∥p for every x ∈ X.
This notion originates from [13], namely, when the space ℓup(X

∗) is
replaced by the space ℓp(X

∗), the linear map T is called the quasi p-
nuclear operator. We denote by NQ

up(X,Y ) the collection of all quasi

u-p-nuclear operators from X to Y . For T ∈ NQ
up(X,Y ), let

∥T∥NQ
up

:= inf ∥(x∗
n)∥wp ,
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where the infimum is taken over all such inequalities. As in the proof
of [13, Lemma 4], it may be shown that [NQ

up, ∥ · ∥NQ
up
] is a Banach

operator ideal.

Theorem 5.6. Let 1 ≤ p ≤ ∞. Then, T ∈ Kup(X,Y ) if and only if
T ∗ ∈ NQ

up(Y
∗, X∗). In this case, ∥T∥Kup = ∥T ∗∥NQ

up
.

Proof. According to [8, Theorem 2.4], we need only to check that
∥T∥Kup ≤ ∥T ∗∥NQ

up
. If T ∈ Kup(X,Y ), then, by Corollary 5.5 and [8,

Theorem 2.3], we have

∥T∥Kup = ∥T ∗∗∥Kup = ∥T ∗∥NQ
up
. �
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