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A GENERALIZATION OF THE CLASS
OF PRINCIPALLY LIFTING MODULES
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ABSTRACT. Let R be an arbitrary ring with identity
and M a right R-module. In this paper, we introduce a
class of modules which is analogous to that of Goldie∗-lifting
and principally Goldie∗-lifting modules. The module M is
called principally G∗-δ-lifting if, for any m ∈ M , there
exists a direct summand N of M such that mR is β∗

δ -
equivalent to N . We also introduce a generalization of
Goldie∗-supplemented modules, namely, a module M is said
to be principally G∗-δ-supplemented if, for any m ∈ M , there
exists a δ-supplement N in M such that mR is β∗

δ -equivalent
to N . We prove that some results of principally G∗-lifting
modules and Goldie∗-lifting modules can be extended to
principally G∗-δ-lifting modules for this general setting.
Several properties of these modules are given, and it is
shown that the class of principally G∗-δ-lifting modules
lies between the classes of principally δ-lifting modules and
principally G∗-δ-supplemented modules.

1. Introduction. Throughout this paper, R denotes an associative
ring with identity, and all modules are unital right R-modules. Let
N ≤ M mean N is a submodule of a module M . A submodule N of
a module M is called small in M if, for every submodule K of M , the
equality M = N +K implies M = K. A submodule P is a supplement
of N in M if M = P +N and P ∩N is small in P , while M is called
supplemented if every submodule of M has a supplement in M . In [1],
M is said to be principally supplemented if every cyclic submodule
of M has a supplement in M . Also, a module M is called (principally)
lifting if, for every (cyclic) submodule N of M , there is a decomposition
M = D ⊕D′ such that D ⊆ N and D′ ∩N is small in M .
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In [18], Zhou introduced the concept of δ-small submodules as
a generalization of the concept of small submodules. A submodule
N of a module M is said to be δ-small in M if N + K ̸= M for
any proper submodule K of M with M/K singular. Clearly, every
small submodule N of M is δ-small in M . Let N be a submodule
of M . A submodule P of M is called a δ-supplement of N in M if
M = N + P and N ∩ P is δ-small in P , and, in [7], M is called
principally δ-supplemented in case every cyclic submodule of M has
a δ-supplement in M . Recall that a module M is ⊕-supplemented
if every submodule of M has a supplement which is a direct sum-
mand in M . Principally ⊕-supplemented modules are investigated
in [14], and, in [15], principally ⊕-δ-supplemented modules generaliz-
ing principally δ-supplemented modules, principally ⊕-lifting modules
and strengthening principally δ-supplemented modules are studied. A
module M is said to be principally ⊕-δ-supplemented [15] if, for every
cyclic submodule mR of M , M has a direct summand which is a δ-
supplement of mR in M , that is, for any m ∈ M , there exists a direct
summand A of M such that M = mR + A and mR ∩ A is δ-small in
A. A module M is called principally δ-lifting [6] if, for every cyclic
submodule N of M , there is a decomposition M = D ⊕D′ such that
D ⊆ N and D′ ∩N is δ-small in M .

Let X and Y be submodules of a module M . In [2], X and Y
are β∗-equivalent, Xβ∗Y for short, if (X + Y )/X is small in M/X
and (X + Y )/Y is small in M/Y . A module M is called Goldie∗-
lifting (or briefly, G∗-lifting) [2] if, for each submodule X of M , there
exists a direct summand D of M such that Xβ∗D. Also, M is called
G∗-supplemented [2] if, for each submodule X of M , there exists a
supplement submodule Y of M such that Xβ∗Y . In [5], a module M is
called principally G∗-lifting if, for each cyclic submodule X of M , there
exists a direct summand D of M such that Xβ∗D. Motivated by these
principality of lifting modules, supplemented modules, Goldie∗-lifting
modules and Goldie∗-supplemented modules, we introduce classes of
modules, called principally G∗-δ-lifting modules and principally G∗-
δ-supplemented modules, by using the δ-small concept generalizing
smallness of submodules.

This paper is organized as follows. Section 2 is devoted to some
properties of δ-small submodules that will be used in the sequel. In
Section 3, we give a β∗

δ relation and some properties of this relation. In
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Section 4, the notion of principally G∗-δ-lifting modules is introduced.
It is shown that every principally δ-lifting module is a principally G∗-δ-
lifting module. We give an example to show that the reverse implication
need not hold in general. The conditions under which the reverse
implication hold are investigated. Relations between principally G∗-
δ-lifting modules and some certain classes of modules are presented.
Section 5 is devoted to the class of principally G∗-δ-supplemented
modules. In Section 6, we briefly mention principally semisimple
modules in terms of the principally G∗-δ-lifting modules.

In what follows, by Z, Q, Zn and Z/nZ we denote, respectively,
integers, rational numbers, the ring of integers and the Z-module of
integers modulo n. Let Mn(R), Rad(M) and Soc(M) denote the ring
of n×n matrices over a ring R, the radical and the socle of a module M ,
respectively.

2. δ-small submodules. In this section, we collect basic properties
of δ-small submodules of a module so that they may easily be referenced
in the sequel of the paper. The next lemma is from [18].

Lemma 2.1. Let M be a module. Then the following hold.

(1) A submodule N of M is δ-small in M if and only if, for every
submodule X of M , if M = X + N , then M = X ⊕ Y for a
projective semisimple submodule Y with Y ⊆ N .

(2) If K is δ-small in M and f : M → N is a homomorphism, then
f(K) is δ-small in N . In particular, if K is δ-small in N ⊆ M ,
then K is δ-small in M .

(3) Let M = M1 ⊕M2. Then, K1 is δ-small in M1, and K2 is δ-small
in M2 if and only if K1 ⊕K2 is δ-small in M .

(4) Let N and K be submodules of M with K δ-small in M and N ⊆ K.
Then, N is also δ-small in M .

Let P be the class of all singular simple modules. For a module M ,
in [18], the submodule

δ(M) =
∩{

N ≤ M | M
N

∈ P
}

is defined.
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Lemma 2.2. [18, Lemma 1.5]. Let M be a module. Then,

δ(M) =
∑

{L ≤ M | L is a δ-small submodule of M}.

Since every small submodule of a module M is δ-small in M ,
Rad(M) ⊆ δ(M), and there are modules in which this inclusion is
strict.

The next lemma is an immediate consequence of Lemma 2.1 (1).

Lemma 2.3. Let M be a module. Then, M is δ-small in M if and
only if M is semisimple projective.

3. β∗
δ relation. In [2], a relation β∗ on the set of submodules of

a module M is defined to investigate so called G∗-lifting modules and
G∗-supplemented modules. Also, in [5], that relation is used to study
principally G∗-lifting modules. In this section, we introduce a relation
generalizing β∗ on the set of submodules of a module M .

Definition 3.1. Let M be a module, X and Y submodules of M . We
say X is β∗

δ equivalent to Y and write Xβ∗
δY for short, if (X + Y )/X

is δ-small in M/X and (X + Y )/Y is δ-small in M/Y .

Lemma 3.2. β∗
δ is an equivalence relation.

Proof. The reflexive and symmetric properties are clear. For tran-
sitivity, assume that X is β∗

δ -equivalent to Y and Y is β∗
δ -equivalent

to Z. Then (X+Y )/X is δ-small in M/X, (X+Y )/Y and (Y +Z)/Y
are δ-small in M/Y , and (Y +Z)/Z is δ-small in M/Z. We prove that
(X +Z)/X is δ-small in M/X and (X +Z)/Z is δ-small in M/Z. Let
A/Z be a submodule of M/Z with (X+Z)/Z+A/Z = M/Z and M/A
singular. Note that every homomorphic image of a singular module is
singular. Then, (X + Z + A)/Z = M/Z, thus X + A = M . Hence,
M/Y = (X +A)/Y = (X + Y )/Y + (Y +A)/Y . Since (X + Y )/Y is
δ-small in M/Y and M/(Y + A) singular, (Y + A)/Y = M/Y . Thus,
M = Y + A. Then, M/Z = (Y + A)/Z = (Z + Y )/Z + A/Z. Since
(Y +Z)/Z is δ-small in M/Z and M/A is singular, A/Z = M/Z. Thus,
M = A, so (X + Z)/Z is δ-small in M/Z. Similarly, (X + Z)/X is
δ-small in M/X. Therefore, X is β∗

δ -equivalent to Z. �
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Since any small submodule is δ-small, for any submodules X and Y
of a module, Xβ∗Y impliesXβ∗

δY . There are modules with submodules
X and Y with Xβ∗

δY but not Xβ∗Y . We cite an example of Nichol-
son [9, Example 2.15] and Zhou [18, Example 4.3] in the following.

Example 3.3. Let F be a field and

I =

(
F F
0 F

)
,

R = {(x1, . . . , xn, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ I}.

Then, R is a ring with componentwise operations. Let M denote the
right R-module R. It is seen that

Soc(M) = {(x1, . . . , xn, 0, 0, . . .) | n ∈ N, xi ∈ M2(F )}

and

δ(M) = {(x1, . . . , xn, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ J},

where

J =

(
0 F
0 0

)
.

Consider the submodules

X = {(x1, 0, x3, . . . , x2n+1, 0, 0, . . .) | n ∈ N, xi ∈ M2(F )},
Y = {(0, x2, 0, x4, . . . , x2n, 0, 0, . . .) | n ∈ N, xi ∈ M2(F )},
Z = {(0, x2, 0, x4, . . . , x2n, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ I}

ofM . Then (X+Y )/Y is δ-small but not small inM/Y , and (X+Y )/X
is δ-small but not small inM/X since (X+Y )/Y +Z/Y = M/Y andX
and Y are δ-small in M .

In the rest of this section, we investigate some basic properties of
the β∗

δ relation.

Lemma 3.4. Let M = A⊕B be a decomposition of a module M , and
let U and V be any submodules of A. Then, the following hold.

(1) U is β∗
δ -equivalent to V in A if and only if U is β∗

δ -equivalent to
V in M .
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(2) Let A ⊆ X ≤ M . Then X is β∗
δ -equivalent to A if and only if

X ∩B is δ-small in B.
(3) Let X ⊆ A. If A is singular, then X is β∗

δ -equivalent to A if and
only if X = A.

Proof.

(1) Let U and V be any submodules of A. Assume that U is β∗
δ -

equivalent to V in A. Thus, (U+V )/V is δ-small in A/V and (U+V )/U
is δ-small in A/U . LetX be a submodule ofM with (U+V )/V+X/V =
M/V and M/X singular. Then, (U+V )/V +(A∩X)/V = A/V . Since
singularity is preserved under isomorphisms, taking submodules and
A/(A ∩ X) ∼= (A + X)/X ⊆ M/X and M/X is singular, A/(A ∩ X)
is singular. By assumption, (A ∩ X)/V = A/V . Hence, A ⊆ X.
Moreover, X/V = M/V . A similar proof gives rise to the δ-smallness
of (U + V )/U in M/U .

Conversely, suppose that U is β∗
δ -equivalent to V in M . Let X be

a submodule of A such that (U + V )/V + X/V = A/V and A/X is
singular. Then M/X = A/X + (B + X)/X, A/X ∼= M/(B + X)
is singular and M/V = (U + V )/V + (B + X)/V . By supposition,
(B + X)/V = M/V . Hence, B + X = M . So A = X. Therefore,
(U + V )/V is δ-small in A/V . Similarly, we may prove (U + V )/U is
δ-small in A/U .

(2) Let X be a submodule of M with A ⊆ X and X β∗
δ -equivalent

to A. Then, X = A ⊕ (X ∩ B) and (X + A)/A = X/A is δ-small in
M/A. Since X/A ∼= X ∩ B and M/A ∼= B, by Lemma 2.1 (2), X ∩ B
is δ-small in B. The converse is clear.

(3) Let X be a submodule of M with X ⊆ A and A singular.
Assume that X is β∗

δ -equivalent to A. Then, (X + A)/X = A/X
is δ-small in M/X. Singularity of A implies that of M/(B +X). Also,
M/X = A/X + (B +X)/X implies M = B +X. Hence, X = A. The
converse is clear. �

Proposition 3.5. Let f : M → N be an epimorphism. Then the
following hold.

(1) If X,Y ⊆ M such that X is β∗
δ -equivalent to Y , then f(X) is

β∗
δ -equivalent to f(Y ).
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(2) If X,Y ⊆ N such that X is β∗
δ -equivalent to Y , then f−1(X) is

β∗
δ -equivalent to f−1(Y ).

Proof.

(1) Assume that X is β∗
δ -equivalent to Y . Then, (X + Y )/X is δ-

small in M/X and (X + Y )/Y is δ-small in M/Y . Let U/f(X) be a
submodule of N/f(X) such that ((f(X)+ f(Y ))/f(X))+ (U/f(X)) =
N/f(X) with N/U singular. Then X + Y + f−1(U) = M . Hence,(

X + Y

X

)
+

(
f−1(U) +X

X

)
=

M

X
.

On the other hand, M/(f−1(U)+X) is singular as M/(f−1(U)+X) is
a homomorphic image of M/f−1(U), and M/f−1(U) is isomorphic to
the singular module N/U . By hypothesis, we have M = f−1(U) +X.
Hence, N = U + f(X). Since f(X) ⊆ U , N = U . The remainder is
clear by symmetry.

(2) Let X,Y ⊆ N be such that X is β∗
δ -equivalent to Y . In order

to prove that f−1(X) is β∗
δ -equivalent to f−1(Y ), we begin by proving

that (f−1(X)+f−1(Y ))/f−1(X) is δ-small inM/f−1(X), for, if L ≤ M
with ((f−1(X) + f−1(Y ))/f−1(X)) + (L/f−1(X)) = M/f−1(X) and
M/L singular, then f−1(Y ) + L = M since f−1(X) ⊆ L. Thus,
X + Y + f(L) = N . It is easily verified that M/(L + ker(f)) is
isomorphic to N/f(L) which is singular since it is a homomorphic
image of the singular module M/L. By hypothesis, N = f(L). Thus,
M = L + ker(f) since ker(f) ⊆ f−1(X) ⊆ L, M = L. A similar proof
reveals that

f−1(X) + f−1(Y )

f−1(Y )

is δ-small in M/f−1(Y ). This completes the proof. �

Lemma 3.6. Let M be a module and K, N , T submodules of M . If K
is β∗

δ -equivalent to N and T is δ-small in M , then K is β∗
δ -equivalent

to N + T in M .

Proof. Assume that K is β∗
δ -equivalent to N . Thus, (K + N)/K

is δ-small in M/K and (K + N)/N is δ-small in M/N . Let L be a
submodule of M with ((K + N + T )/K) + (L/K) = M/K and M/L
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singular. Then,
K +N

K
+

T + L

K
=

M

K
,

and the singularity ofM/L implies that ofM/(L+T ). Since (K+N)/K
is δ-small in M/K and M/(L+ T ) is singular, M = L+ T . Moreover,
M/L is singular and T is δ-small, and we haveM = L. Hence, (K+N+
T )/K is δ-small in M/K. In order to prove that (K+N +T )/(N +T )
is δ-small in M/(N + T ), let L be a submodule of M with N + T ⊆ L,
((K+N+T )/(N+T ))+(L/(N+T )) = M/(N+T ) and M/L singular.
Then,

K +N

N
+

T + L

N
=

M

N
, and

M

T + L

is singular as a homomorphic image of singular M/L. Since (K+N)/N
is δ-small in M/N , M = T + L. By hypothesis and the singularity of
M/L, we have M = L. This completes the proof. �

Theorem 3.7. Let N and K be submodules of a module M with N
β∗
δ -equivalent to K. Then, the following hold.

(1) N is δ-small in M if and only if K is δ-small in M .
(2) Let U be a submodule of M with M/U singular. If R is right non-

singular, then U is a δ-supplement of N in M if and only if U is
a δ-supplement of K in M .

Proof.

(1) Assume that N is δ-small in M . Let K +K ′ = M with M/K ′

singular. Then, (N + K)/N + (N + K ′)/N = M/N . The singularity
of M/K ′ implies the singularity of M/(N + K ′). By hypothesis,
M = N + K ′, and by assumption, M = K ′. Thus, K is δ-small
in M . Conversely, since N is β∗

δ -equivalent to K, the implication is
that K is β∗

δ -equivalent to N . By replacing N by K in the preceding
proof, we conclude that N is δ-small in M .

(2) Assume that U is a δ-supplement of N in M . Then, M =
N+U = N+K+K+U implies M/K = ((N+K)/K)+((K+U)/K).
By hypothesis, M/(K+U) is singular, and thus, M = K+U . In order
to prove U is a δ-supplement of K, we show that K ∩ U is δ-small
in U , for if L ⊆ U and U = (K ∩ U) + L with U/L singular, then
M = K + U = K + L and M/N = (K +N)/N + (L+N)/N . On the
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other hand, by [4], in the exact sequence,

0 −→ U

L
−→ M

L
−→ M

U
−→ 0,

M/L is singular sinceM/U and U/L are singular; therefore, M/(N+L)
is singular. Thus, M/N = (N + L)/N or M = N + L. Hence,
U = L + (N ∩ U). Since U/L is singular and N ∩ U is δ-small in U ,
U = L.

Conversely, suppose that U is a δ-supplement of K in M . Since N
is β∗

δ -equivalent to K, K is β∗
δ -equivalent to N . By replacing N by K

and K by N in the preceding proof, we may conclude that U is a
δ-supplement of N in M . This completes the proof. �

4. Principally G∗-δ-lifting modules. Motivated by the general-
izations of lifting and supplemented modules, we introduce principally
G∗-δ-lifting modules. This section is devoted to investigating some
properties of this class of modules.

We now introduce principally G∗-δ-lifting modules with the next
lemma by using the β∗

δ relation.

Lemma 4.1. Let M be a module, m ∈ M and D a direct summand
of M . Then the following are equivalent.

(1) mR is β∗
δ -equivalent to D.

(2) If M = mR +D + A and M/A is singular for any A ≤ M , then
M = mR+A and M = D +A.

Proof.

(1) ⇒ (2). Let M = mR + D + A with M/A singular for some
submodule A of M . Then

M

mR
=

(
mR+D

mR

)
+

(
mR+A

mR

)
.

Also, M/(mR+A) is singular as a homomorphic image of the singular
module M/A. Since (mR+D)/mR is δ-small in M/mR,

M

mR
=

mR+A

mR
.

Thus, M = mR+A. Similarly, M = D +A.
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(2) ⇒ (1). Let A be a submodule of M such that mR ⊆ A and

M

mR
=

(
mR+D

mR

)
+

(
A

mR

)
with M/A singular. Then, M = mR +D + A. By (2), M = mR + A,
and thus, M = A. Therefore, (mR + D)/mR is δ-small in M/mR.
Similarly, it is shown that (mR + D)/D is δ-small in M/D by using
M = D +A. �

We call a module M principally G∗-δ-lifting if, for every cyclic
submodule mR of M , there exists a direct summand D satisfying the
equivalent conditions of Lemma 4.1. Clearly, every (principally) G∗-
lifting module is principally G∗-δ-lifting. However, the converse does
not hold in general, as the following example shows.

Example 4.2. Consider Q as a Z-module. Every cyclic submodule
of Q is δ-small in Q. By [2, Example 2.15], Q is principally G∗-lifting,
and thus, principally G∗-δ-lifting. However, the Z-module Q is not
supplemented; thus, it is not G∗-lifting.

Recall that a module M is called principally δ-hollow if every proper
cyclic submodule of M is δ-small in M , while M is said to be a δ-radical
module if δ(M) = M . Since every submodule of a δ-small submodule
is again δ-small, every δ-radical module is principally δ-hollow. The
Z-module Q is δ-radical since every cyclic submodule of Q is small,
thus, δ-small in Q.

Proposition 4.3. Every principally δ-hollow module is principally G∗-
δ-lifting.

Proof. Let M be a principally δ-hollow module. Then, for each
m ∈ M , mR is δ-small in M . Thus, mR is β∗

δ -equivalent to a
zero submodule which is a direct summand of M . Therefore, M is
principally G∗-δ-lifting. �

According to the next result, the class of principally G∗-δ-lifting
modules is a generalization of that of principally δ-lifting modules.
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Theorem 4.4. If M is a principally δ-lifting module, then it is prin-
cipally G∗-δ-lifting.

Proof. Let m ∈ M . Then, there is a decomposition M = D ⊕ D′

with D ≤ mR and mR ∩ D′ δ-small in D′ and therefore in M also.
Since D ≤ mR, (mR + D)/mR is δ-small in M/mR. By modularity,
mR = D ⊕ (mR ∩ D′). Then, mR/D ∼= mR ∩ D′ and M/D ∼= D′.
The fact that the submodule mR ∩ D′ is δ-small in D′ implies that
(mR + D)/D is δ-small in M/D. Hence, mR is β∗

δ -equivalent to D.
Thus, M is principally G∗-δ-lifting. �

The next example shows that a principally G∗-δ-lifting module need
not be principally δ-lifting; thus, the converse of Theorem 4.4 is not
true in general.

Example 4.5. Let M denote the Z-module (Z/2Z) ⊕ (Z/8Z). By
[16, Example 3.7], M is H-supplemented, and thus, G∗-lifting. There-
fore, M is principally G∗-δ-lifting. On the other hand, M is not prin-
cipally δ-lifting from [6, Example 3.11].

Our next endeavor is to find conditions under which a principally
G∗-δ-lifting module is principally δ-lifting. In [12], Talebi and Vanaja
defined the cosingular submodule of a module M as

Z(M) =
∩

{Ker g | g : M −→ N, N is a small module}.

If Z(M) = 0 (Z(M) = M), then M is called a cosingular (non-

cosingular) module. In [10], inspired by this definition, Özcan defines
the submodule Zδ(M) of M as

Zδ(M) =
∩

{Ker g | g : M −→ N, N is a δ-small module}.

Clearly, Zδ(M) ⊆ Z(M). A module M is called δ-cosingular (non-δ-
cosingular) if Zδ(M) = 0 (Zδ(M) = M). Every cosingular module is
δ-cosingular and every non-δ-cosingular module is non-cosingular.

Proposition 4.6. Let M be a principally G∗-δ-lifting and non-δ-
cosingular module. Then, M is principally δ-lifting.
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Proof. Let m ∈ M . Since M is principally G∗-δ-lifting, there exists
a direct summand D of M such that (mR +D)/D is δ-small in M/D
and (mR+D)/mR is δ-small in M/mR. Hence, (mR+D)/mR is both
non-δ-cosingular and δ-cosingular, and thus, mR + D = mR. Hence,
D ≤ mR and mR/D is δ-small in M/D. Therefore, M is principally
δ-lifting. �

The following example shows that there are principally G∗-δ-lifting
modules but not principally δ-lifting. Hence, the condition of the
module being non-δ-cosingular is not irrelevant in Proposition 4.6.

Example 4.7. Let M denote the Z-module Q ⊕ (Z/2Z). By [15,
Example 3.1], M is principally ⊕-δ-supplemented module but not
principally δ-lifting. We claim that M is a principally G∗-δ-lifting Z-
module. For, if (u, v) ∈ M , as in the proof of [15, Example 3.1],
M = (u, 1)Z+ (Q⊕ (0)) and (u, 0)Z is small in M . Note that the only
direct summands of M are Q⊕ (0) and (0, 1)Z. We claim that (u, 1)Z
is β∗

δ -equivalent to (0, 1)Z, which is a direct summand of M . Let

M

(u, 1)Z
=

(u, 1)Z+ (0, 1)Z
(u, 1)Z

+
L

(u, 1)Z

with M/L singular. Then M = (0, 1)Z + L. Let (u/2, 0) ∈ M . There
exist (0, a) ∈ (0, 1)Z and (x, y) ∈ L such that (u/2, 0) = (0, a) + (x, y).
Then, u/2 = x and a + y = 0. Thus, a = y = 0 or a = y = 1.
Hence, (u/2, 0) ∈ L or (u/2, 1) ∈ L. Multiplying the latter cases by 2,
we have (u, 0) ∈ L. This and (u, 1) ∈ L imply (0, 1) ∈ L. Hence,
(0, 1)Z ⊆ L. Thus, M = L, and further, ((u, 1)Z + (0, 1)Z)/(u, 1)Z is
δ-small in M/(u, 1)Z. Also, clearly, ((u, 1)Z+(0, 1)Z)/(0, 1)Z is δ-small
in M/(0, 1)Z. By [10], Zδ(Q) = Q. Since Z/2Z is a small Z-module,
Zδ(Z/2Z) = 0 by [12]. Hence, Zδ(M) = Q ⊕ (0), and thus, M is not
non-δ-cosingular.

Recall that a module M is called π-projective if, for any U and V
with M = U + V , there exists an endomorphism of M such that
Imf ⊆ U and Im(1 − f) ⊆ V . For π-projective singular modules,
the concepts of principally G∗-δ-lifting modules and principally ⊕-δ-
supplemented modules are the same as shown next.
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Proposition 4.8. Let M be a π-projective module. Consider the fol-
lowing conditions.

(1) M is principally ⊕-δ-supplemented.
(2) M is principally G∗-δ-lifting.

Then (1) ⇒ (2). If, in addition, M is singular, then (2) ⇒ (1).

Proof.

(1) ⇒ (2). Let m ∈ M . From (1), mR has a δ-supplement D which
is a direct summand of M , that is, M = mR +D = D ⊕D′ for some
submodule D′ of M and mR∩D is δ-small in D. By hypothesis, there
exists a submodule N ⊆ mR with M = N ⊕D. Then, (mR+N)/mR
is δ-small in M/mR, and (mR + N)/N = mR/N is δ-small in M/N
since D ∼= M/N and mR/N ∼= mR ∩D is δ-small in D.

(2) ⇒ (1). Assume that M is singular and m ∈ M . By (2), there
exists a direct summand D of M such that M = D ⊕ D′ for some
submodule D′ of M and mR is β∗

δ -equivalent to D. Then, (mR+D)/D
is δ-small in M/D and (mR + D)/mR is δ-small in M/mR. Since
((mR+D)/mR) + ((mR+D′)/mR) = M/mR and (mR+D)/mR is
δ-small in M/mR and M is singular, M = mR+D′.

Next, we prove that mR ∩D′ is δ-small in D′. For, if (mR ∩D′) +
L = D′, then M = (mR ∩ D′) + L + D = mR + L + D implies
M/D = ((mR+D)/D) + ((L+D)/D). Since (mR+D)/D is δ-small
in M/D and M is singular, M = L + D. Hence, L = D′, and thus,
mR ∩D′ is δ-small in D′. This completes the proof. �

Note that the notions of principally δ-lifting modules and principally
G∗-δ-lifting modules are not equivalent. As we shall see in the next
proposition, we need projectivity and singularity conditions.

Proposition 4.9. Let M be a π-projective and singular module. Then,
the following are equivalent :

(1) M is principally δ-lifting.
(2) M is principally G∗-δ-lifting.
(3) M is principally ⊕-δ-supplemented.

Proof.

(1) ⇒ (2). By Theorem 4.4.
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(2) ⇔ (3). Follows from Proposition 4.8.

(3) ⇒ (1). By [15, Theorem 3.1]. �

A relation between principally G∗-δ-lifting modules and principally
δ-supplemented modules is presented in the next result.

Theorem 4.10. If M is a singular principally G∗-δ-lifting module,
then it is principally δ-supplemented.

Proof. Let m ∈ M . There exists a direct summand K such that
M = K ⊕ L and mR is β∗

δ -equivalent to K. Then, M/mR = (mR
+K)/mR+(mR+L)/mR and M/(mR+L) is singular. By hypothesis,
M = mR + L since (mR + K)/mR is δ-small in M/mR and every
homomorphic image of a singular module is singular.

Next, we prove that (mR)∩L is δ-small in L. For, if (mR)∩L+U = L
and L/U is singular (already given), then M = K + L = K + (mR) ∩
L + U = K + mR + U . Thus, M/K = (mR + K)/K + (U + K)/K.
Since (mR + K)/K is δ-small in M/K and M/(U + K) is singular,
M = U +K. By modularity, L = U . This completes the proof. �

We now give some characterizations of being a principally G∗-δ-
lifting module for π-projective singular modules and indecomposable
modules.

Proposition 4.11. Let M be a π-projective and singular module.
Then, M is principally G∗-δ-lifting if and only if every cyclic submod-
ule X of M can be written as X = D ⊕ A such that D is a direct
summand of M and A is δ-small in M .

Proof. Let M be a principally G∗-δ-lifting module. By Proposi-
tion 4.9, M is principally δ-lifting. Then, for any cyclic submod-
ule X of M , there exists a decomposition M = D ⊕ D′ such that
D ≤ X and X ∩ D′ is δ-small M . By modularity, we conclude that
X = D ⊕ (X ∩ D′). For the converse, by assumption and [6, Theo-
rem 3.6], M is principally δ-lifting. Hence, from Theorem 4.4, M is
principally G∗-δ-lifting. �
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Theorem 4.12. Let M be an indecomposable module. Then, the
following are equivalent :

(1) M is principally δ-lifting.
(2) M is principally δ-hollow.
(3) M is principally G∗-δ-lifting.

Proof.

(1) ⇒ (3). By Theorem 4.4.

(3) ⇒ (1). Let m ∈ M . By (3), there exists a direct summand D
of M such that M = D ⊕ D′ and mR is β∗

δ -equivalent to D. Then,
D = 0 or D = M . Assume that D = 0. Hence, mR is δ-small in M . If
D = M , this implies that mR is β∗

δ -equivalent to M , or equivalently,
(mR+M)/mR = M/mR is δ-small in M/mR. By Lemma 2.3, M/mR
is semisimple projective. Thus, mR is a direct summand of M , and
hence, mR = 0 or mR = M . In both cases, the rest is clear. Therefore,
M is principally δ-lifting.

(2) ⇒ (3). Let M be principally δ-hollow and m ∈ M . If mR is a
proper submodule of M , then mR is δ-small in M . This implies that
mR is β∗

δ -equivalent to (0). If mR = M , then there is nothing to show.
Thus, M is principally G∗-δ-lifting.

(3) ⇒ (2). LetmR be a proper cyclic submodule ofM . By (3), there
exists a decompositionM = D⊕D′ such thatmR is β∗

δ -equivalent toD.
Since M is indecomposable, D = M or D = 0. Assume that D = M .
Then, by Lemma 2.3, M/mR is semisimple projective, and thus, mR
is a direct summand of M . Since mR is proper, we have mR = 0, and
it is δ-small in M . If D = 0, then mR is β∗

δ -equivalent to (0); thus,
mR is δ-small in M , that is, M is principally δ-hollow. �

As a converse of Theorem 4.10, one may expect that every singular
principally δ-supplemented module is principally G∗-δ-lifting. However,
in light of Theorem 4.12, the next example illustrates that this is not
the case (see [15, Example 3.3]).

Example 4.13. Let F be a field. Consider the polynomial ring
R = F [x, y] with x and y commuting indeterminates, and the ring
S = R/(x2, y2). Let x and y denote the canonical images of x and y
from R onto S, and let M = xS + yS. Then, M is an indecomposable



1554 HOSSEINPOUR, UNGOR, TALEBI AND HARMANCI

and singular S-module. By [15, Example 3.3], M is principally δ-
supplemented but not principally ⊕-δ-supplemented. Further, M is not
principally δ-lifting by [15, Theorem 3.1]. Thus, it is not principally
G∗-δ-lifting by Theorem 4.12.

Note that a direct summand D of a module M is said to be relatively
projective if, whenever M has a decomposition M = D ⊕ D′, then D
and D′ are relatively projective.

Proposition 4.14. Let M be a module, and let any cyclic submodule
of M have a δ-supplement which is a relatively projective direct sum-
mand of M . Then, M is principally G∗-δ-lifting.

Proof. Let m ∈ M . By hypothesis, there exists a decomposition
M = D ⊕ D′ such that M = mR + D and mR ∩ D is δ-small in D
where D and D′ are relatively projective. Since D′ is D-projective,
M = A ⊕ D for some submodule A of mR by [8, Lemma 4.47].
Thus, M is principally δ-lifting. It follows from Theorem 4.4 that M
is principally G∗-δ-lifting. �

Direct summands of principally G∗-δ-lifting modules need not be
principally G∗-δ-lifting. Under some conditions, the property of being
a principally G∗-δ-lifting module may be inherited by direct summands
of principally G∗-δ-lifting modules.

Proposition 4.15. Let M0 be a direct summand of a module M such
that, for every decomposition M = N⊕K of M , there exist submodules
N ′ of N and K ′ of K such that M = M0⊕N ′⊕K ′. If M is principally
G∗-δ-lifting, then M/M0 is principally G∗-δ-lifting.

Proof. LetmR/M0 be a submodule ofM/M0. SinceM is principally
G∗-δ-lifting, there exists a decomposition M = N ⊕ K such that
mR is β∗

δ -equivalent to N . Then, (mR + N)/N is δ-small in M/N
and (mR + N)/mR is δ-small in M/mR. By hypothesis, M =
M0 ⊕ N ′ ⊕ K ′ for some submodules N ′ of N and K ′ of K. Clearly,
(mR +M0 +N ′)/mR is δ-small in M/mR. On the other hand, since
M/N ∼= K and M/(M0+K ′) ∼= K ′, it can be shown via Lemma 2.1 (2)
that (mR+M0+N ′)/(M0+N ′) is δ-small in M/(M0+N ′). Therefore,
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mR/M0 is β∗
δ -equivalent to (M0⊕N ′)/M0. This implies that M/M0 is

principally G∗-δ-lifting. �

Recall that a module M is said to be distributive if, for all submod-
ules U , V and W ,

U ∩ (V +W ) = (U ∩ V ) + (U ∩W )

or
U + (V ∩W ) = (U + V ) ∩ (U +W ).

A submodule N of a module of M is called fully invariant if f(N) ⊆ N
for all endomorphisms f of M . Also, M is said to be a duo (or weak-
duo) module if every submodule (or direct summand) of M is fully
invariant in M (see [11] for details).

Theorem 4.16. Let M = M1 ⊕M2 be a duo (or distributive) module.
Then, M is principally G∗-δ-lifting if and only if M1 and M2 are
principally G∗-δ-lifting.

Proof. Let m ∈ M1. Since M is principally G∗-δ-lifting, there is a
decomposition M = D⊕D′ such that mR is β∗

δ -equivalent to D in M .
Since M is a duo module,

M1 = (M1 ∩D)⊕ (M1 ∩D′),

mR = (mR ∩D)⊕ (mR ∩D′),

D′ = (M1 ∩D′)⊕ (M2 ∩D′).

We claim that mR is β∗
δ -equivalent to M1 ∩ D in M1. Consider the

isomorphisms

mR ∩D′ ∼=
mR

mR ∩D
∼=

mR+D

D

and

mR+ (M1 ∩D)

M1 ∩D
∼=

mR

mR ∩ (M1 ∩D)
=

mR

mR ∩D
∼= mR ∩D′.

Then, (mR + D)/D is δ-small in M/D ∼= D′. By Lemma 2.1 (2),
mR ∩ D′ is δ-small in D′. Again, by Lemma 2.1 (3), we have
that mR ∩ D′ is δ-small in M1 ∩ D′ ∼= M/(M1 ∩ D). Thus,
(mR + (M1 ∩ D))/(M1 ∩ D) is δ-small in M1/(M1 ∩ D). In order
to complete the proof, we need to show that (mR + (M1 ∩ D))/mR
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is δ-small in M1/mR. Since (mR + D)/mR is δ-small in M/mR, by
Lemma 2.1 (4), (mR+ (M1 ∩ D))/mR is δ-small in M/mR.

On the other hand,

mR+D

mR
=

mR+ (M1 ∩D)

mR
⊕ mR+ (M2 ∩D)

mR
.

Then, (mR+ (M1 ∩D))/mR is δ-small in M1/mR since

M

mR
∼=

M1

mR
⊕ M2 +mR

mR
,

and the natural projection π from M/mR onto M1/mR with kernel
(M2 +mR)/mR maps

π

(
mR+D

mR

)
=

mR+ (M1 ∩D)

mR

This completes the proof. As a trivial note, similarly, M2 is principally
G∗-δ-lifting.

Conversely, assume that M1 and M2 are principally G∗-δ-lifting.
Note that, in either case, M is duo or distributive, for any submodule N
of M , N = (N ∩M1)⊕ (N ∩M2). Let m ∈ M , and thus, m = m1+m2

for somem1 ∈ M1 andm2 ∈ M2. Then, mR = (mR∩M1)⊕(mR∩M2).
Hence, m1R = mR∩M1 and m2R = mR∩M2 are cyclic submodules of
M1 and M2, respectively. By hypothesis, there exist direct summands
D1 of M1 and D2 of M2 such that (m1R + D1)/m1R is δ-small
in M1/m1R and (m1R + D1)/D1 is δ-small in M1/D1, similarly,
(m2R+D2)/m2R is δ-small in M2/m2R and (m2R+D2)/D2 is δ-small
in M2/D2. Let D = D1 ⊕D2. Then, it is easily verified that ((m1R+
D1)/m1R)× ((m2R+D2)/m2R) is isomorphic to (mR+D)/mR, and
(M1/m1)×(M2/m2R) is isomorphic to M/mR. Hence, (mR+D)/mR
is δ-small in M/mR. Similarly, (mR+D)/D is δ-small in M/D. Thus,
M is principally G∗-δ-lifting. �

We close this section by observing some results related to homomor-
phic images of principally G∗-δ-lifting modules.

Lemma 4.17. [15, Lemma 3.3]. Let M be a module and N a fully
invariant submodule of M . If M = M1 ⊕M2 for some submodules M1
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and M2 of M , then

M

N
=

(
M1 +N

N

)
⊕

(
M2 +N

N

)
.

Proposition 4.18. Let M be a principally G∗-δ-lifting module. Then,
M/N is principally G∗-δ-lifting for every fully invariant submodule N
of M .

Proof. Let m ∈ M and L = (L+N)/N denote the image of L ⊆ M
under the natural map from M onto M = M/N . By hypothesis, there
exists a direct summand D of M such that M = D⊕D′ and mR is β∗

δ -

equivalent to D. We prove that mR is β∗
δ -equivalent to D. Note that

mR = (mR + N)/N and D = (D + N)/N . Therefore, we must show
that (mR+D)/D is δ-small in M/D and (mR+D)/mR is δ-small in
M/mR. Thus, let D +N ⊆ L ≤ M be such that(

mR+D +N

D +N

)
+

(
L

D +N

)
=

M

D +N

with M/L singular. Then mR + D + L = M and ((mR + D)/D) +
(L/D) = M/D. By hypothesis, M = L.

Similarly, to prove that (mR + D)/mR is δ-small in M/mR, let
mR+N ⊆ L ≤ M , and assume that(

mR+N +D

mR+N

)
+

(
L

mR+N

)
=

M

mR+N

and M/L singular. Then, M = mR + L + D. Therefore, M/mR =
((mR +D)/mR) + (L/mR). By hypothesis, M = L. This completes
the proof. �

As an immediate consequence of Proposition 4.18, we deduce that,
if M is principally G∗-δ-lifting, then so are M/Rad(M), M/ Soc(M)
and M/δ(M).

Corollary 4.19. Let M be a weak-duo and principally G∗-δ-lifting
module. Then, every direct summand of M is principally G∗-δ-lifting.
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5. Principally G∗-δ-supplemented modules. In this section, we
introduce a class of modules, the so-called principally G∗-δ-supplemented
modules, as a generalization of that of the principally G∗-δ-lifting mod-
ules.

Definition 5.1. A module M is called principally G∗-δ-supplemented
if, for all m ∈ M , each cyclic submodule mR of M , there exists a
δ-supplement submodule N of M such that mR is β∗

δ -equivalent to N .

The next theorem shows that the class of principally G∗-δ-lifting
modules lies between the classes of principally δ-lifting modules and
principally G∗-δ-supplemented modules.

Theorem 5.2. Let M be a module. Consider the following conditions.

(1) M is principally δ-lifting.
(2) M is principally G∗-δ-lifting.
(3) M is principally G∗-δ-supplemented.

Then (1) ⇒ (2) ⇒ (3).

Proof.

(1) ⇒ (2). By Theorem 4.4.

(2) ⇒ (3). Let m ∈ M . By (2), there exists a direct summand D
of M such that mR is β∗

δ -equivalent to D. Since M = D⊕D′ for some
submodule D′ of M , D is a δ-supplement of D′ in M . Therefore, M is
principally G∗-δ-supplemented. �

Theorem 5.3. If M is a π-projective principally G∗-δ-supplemented
module, then it is principally G∗-δ-lifting.

Proof. Let m ∈ M . There exists a δ-supplement K in M such that
mR is β∗

δ -equivalent to K and M = K+K ′ with K ∩K ′ δ-small in K,
for some submodule K ′ of M . By π-projectivity of M , there exists a
D ⊆ K such thatM = D⊕K ′. In order to complete the proof, we prove
that mR is β∗

δ -equivalent to D. Due to the fact that (mR+K)/mR is
δ-small in M/mR, (mR+D)/mR is δ-small in M/mR.

It remains to prove that (mR + D)/D is δ-small in M/D. For, if
(mR+D)/D+L/D = M/D with M/L singular, then M = mR+D+
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L = mR+K +L. By hypothesis, M/K = (mR+K)/K + (L+K)/K
and M/(L + K) singular implies that M = L + K. By modularity,
K = D ⊕ (K ∩ K ′); thus, M = L + D + (K ∩ K ′). Since K ∩ K ′

is δ-small in K, by Lemma 2.1 (2), K ∩ K ′ is δ-small in M . Thus,
M = L+D, and M = L since D ⊆ L. This completes the proof. �

Theorem 5.4. Let M be an ⊕-δ-supplemented module. If M is
distributive and singular, then it is principally δ-lifting.

Proof. Let m ∈ M . By hypothesis, there exists a direct summand
δ-supplement K in M such that M = mR+K = L⊕K and mR ∩K
is δ-small in K for some submodule L of M .

Next, we prove L ⊆ mR. By distributivity, we have mR = (mR∩L)
⊕ (mR ∩K). Then,

M = mR+K = (mR ∩ L) + (mR ∩K) +K = (mR ∩ L) +K.

Hence, L = mR ∩ L ⊆ mR. Therefore, M is principally δ-lifting. �

The following example shows that there are principally G∗-δ-lifting
and ⊕-δ-supplemented but not principally δ-lifting modules. It also
shows that, in Theorem 5.4, the conditions of the module being dis-
tributive and singular are not irrelevant.

Example 5.5. Consider the Z-module M = Q ⊕ (Z/2Z). In Exam-
ple 4.7, it is shown that M is a principally G∗-δ-lifting Z-module. Since
Z(Q) = 0, and thus, Z(M) = Z/2Z, the module M is not singular.
Now,

(1, 1)Z ̸= ([(1, 1)Z] ∩ [Q⊕ (0)])⊕ ([(1, 1)Z] ∩ [(0⊕ Z/2Z)])
= {(2n, 0) | n ∈ Z}

shows that M is not distributive.

Theorem 5.6. Let M be a singular principally G∗-δ-supplemented
module. Then it is principally δ-supplemented.

Proof. Assume that M is singular. Let m ∈ M . Suppose that mR
is β∗

δ -equivalent to N and there exists a δ-supplement K of N in M
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such that M = N +K and N ∩K is δ-small in K. Then,

M

mR
=

mR+N

mR
+

mR+K

mR
.

The singularity of M/(mR + K) implies M = mR + K since (mR +
N)/mR is δ-small in M/mR.

Next, we prove (mR) ∩ K is δ-small in K. Let L ⊆ K be such
that K = (mR) ∩ K + L. Then, M = L + mR + N . Therefore,
M/N = (L+N)/N +(mR+N)/N . By the singularity of M/(L+N),
we have M = L + N . Hence, K = L + (K ∩ N). Then, K = L since
N ∩K is δ-small in K and K/L is singular as a submodule of singular
module M/L. Therefore, K is a δ-supplement of mR. �

Recall from [15] that a module M is said to be principally δ-
semiperfect if every factor module of M by a cyclic submodule has
a projective δ-cover, that is, for any m ∈ M , there exists a projective
module P and an epimorphism f : P → M/mR such that Ker f is δ-
small in P . A ring R is called principally δ-semiperfect in the case where
the right R-module R is principally δ-semiperfect. Every δ-semiperfect
module is principally δ-semiperfect.

Next, we deal with projective principally δ-semiperfect modules in
terms of the notion of principally ⊕-δ-supplemented.

Proposition 5.7. Let M be a projective module, and consider the
following statements.

(1) M is principally δ-semiperfect.
(2) M is principally G∗-δ-lifting.
(3) M is principally G∗-δ-supplemented.

Then (1) ⇒ (2) ⇔ (3). If M is a singular module, then all of them are
equivalent.

Proof.

(1) ⇔ (2). This is clear by [15, Theorem 3.11] and Proposition 4.8.

(2) ⇔ (3). By Theorems 5.2 and 5.3. �

If R is δ-semiperfect, then by Proposition 5.7, the right R-module R
is principally G∗-δ-lifting.
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Example 5.8. Let

Q =

∞∏
i=1

Fi,

where Fi = Z2 for all i, and R denote the subring of Q generated by

∞⊕
i=1

Fi

and 1Q. Then, R is δ-semiperfect by [18, Example 4.1], and thus,
principally G∗-δ-lifting by Proposition 5.7, but not semiperfect (i.e.,
not lifting). However, it is principally lifting since it is von Neumann
regular.

6. On principally semisimple modules. A module M is said
to be principally semisimple if every cyclic submodule of M is a
direct summand of M . Tuganbaev calls a principally semisimple
module a regular module in [13]. Obviously, every semisimple module
is principally semisimple. Every principally semisimple module is
principally δ-lifting, and thus, principally ⊕-δ-supplemented. A ring R
is called principally semisimple if the right R-module R is principally
semisimple. It is clear that every principally semisimple ring is von
Neumann regular and vice versa. In this section, we briefly mention
principally semisimple modules in terms of the notion of principally
G∗-δ-lifting.

Proposition 6.1. Every principally semisimple module is principally
G∗-δ-lifting.

Proof. Let M be a principally semisimple module and m ∈ M .
Then, mR is a direct summand of M . Also, mR is β∗-equivalent to
mR. Therefore, M is principally G∗-δ-lifting. �

Proposition 6.2. Let M be a principally G∗-δ-lifting module. If M
is singular and distributive, then M/δ(M) is a principally semisimple
module.

Proof. Let m ∈ M . There exists a decomposition M = D⊕D′ such
that mR is β∗

δ -equivalent to D. We show that D′ is a δ-supplement of
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mR. Then
M

mR
=

(
mR+D

mR

)
+

(
mR+D′

mR

)
.

The singularity of M and the δ-smallness of (mR+D)/mR in M/mR
implies M = mR+D′. Let (mR∩D′)+L = D′ where L is a submodule
of D′. Similarly,

M

D
=

(
mR+D

D

)
+

(
D + L

D

)
implies M = D ⊕ L. Hence, L = D′. Thus, mR ∩D′ is δ-small in D′,
and therefore, mR ∩D′ ⊆ δ(M). By the distributivity of M , we have

(mR+ δ(M)) ∩ (D′ + δ(M)) = (mR ∩D′) + δ(M) = δ(M).

Thus, (mR+δ(M))/δ(M) is a direct summand of M/δ(M). Therefore,
M/δ(M) is a principally semisimple module. �

REFERENCES

1. U. Acar and A. Harmanci, Principally supplemented modules, Albanian J.
Math. 4 (2010), 79–88.

2. G.F. Birkenmeier, F.T. Mutlu, C. Nebiyev, N. Sokmez and A. Tercan,
Goldie∗-supplemented modules, Glasgow Math. J. 52 (2010), 41–52.

3. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, in Supple-
ments and projectivity in module theory, Frontiers Mathematics, Birkhäuser Verlag,
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