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KRULL DIMENSION AND UNIQUE FACTORIZATION
IN HURWITZ POLYNOMIAL RINGS

PHAN THANH TOAN AND BYUNG GYUN KANG

ABSTRACT. Let R be a commutative ring with identity,
and let R[x] be the collection of polynomials with coefficients
in R. We observe that there are many multiplications in R[x]
such that, together with the usual addition, R[x] becomes
a ring that contains R as a subring. These multiplications
belong to a class of functions λ from N0 to N. The trivial
case when λ(i) = 1 for all i gives the usual polynomial ring.
Among nontrivial cases, there is an important one, namely,
the case when λ(i) = i! for all i. For this case, it gives the
well-known Hurwitz polynomial ring RH [x]. In this paper,
we study Krull dimension and unique factorization in RH [x].
We show in general that dimR ≤ dimRH [x] ≤ 2 dimR + 1.
When the ring R is Noetherian we prove that dimR ≤
dimRH [x] ≤ dimR + 1. A condition for the ring R is also
given in order to determine whether dimRH [x] = dimR or
dimRH [x] = dimR+1 in this case. We show that RH [x] is a
unique factorization domain, respectively, a Krull domain, if
and only if R is a unique factorization domain, respectively,
a Krull domain, containing all of the rational numbers.

1. Introduction. In this paper, a ring always means a commutative
ring with identity. Let R be a ring, and let

R[x] =

{ n∑
i=0

aix
i | n ≥ 0, ai ∈ R

}
be the collection of polynomials with coefficients in R. With the
usual addition ‘+’ and multiplication ‘·,’ R[x] becomes a ring that
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contains R as a subring. This polynomial ring is an important object
in commutative algebra and has been widely studied.

While standard multiplication in R[x] is usually considered, in
general, many other multiplications in R[x] exist such that, together
with the usual addition, R[x] is still a ring that contains R as a
subring. For example, let N0, respectively N, be the set of nonnegative,
respectively positive, integers, and let λ : N0 → N be any function
such that λ(0) = 1 and λ(i)λ(j) divides λ(i+ j) in N for each i and j.
Identifying the positive integer αi,j = (λ(i+ j))/(λ(i)λ(j)) with the
element αi,j · 1 in R, we define a multiplication ∗ in R[x] by( n∑

i=0

aix
i

)
∗
( m∑

j=0

bjx
j

)
=

n+m∑
k=0

( ∑
i+j=k

αi,jaibj

)
xk.

With this new multiplication, R[x] is also a ring containing R as a
subring, see Section 2. We denote this ring by (R[x], λ). With this
observation, the usual polynomial ring R[x] is a special case of (R[x], λ)
when λ is trivial, i.e., λ(i) = 1 for all i, and hence, αi,j = 1 for all i
and j.

Among nontrivial cases, there is the important case where λ(i) = i!
for all i. In this case,

αi,j =
λ(i+ j)

λ(i)λ(j)
=

(i+ j)!

i!j!
=

(
i+ j

i

)
is a binomial coefficient, and the corresponding ring (R[x], λ) is the
well-known Hurwitz polynimial ring which is denoted by RH [x] in this
paper (the term “H” stands for “Hurwitz”).

Further, a product of two power series can also be defined in the
same way, giving the Hurwitz power series ring RH [[x]]. This type of
product was first considered by Hurwitz [11] and was further studied
in [6, 7, 21].

Closely related to the power series ring, the Hurwitz power series
ring has been shown to have many interesting properties, including
applications in differential algebra [14, 15]. Notably, considered as
formal functions, Hurwitz power series provide formal solutions to
homogeneous linear ordinary differential equations [15], see also [16].
Other properties of Hurwitz polynomials and Hurwitz power series may
be found in [1, 2, 3, 4, 5, 8, 17, 18].
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In this paper, we study the Krull dimension and unique factorization
properties in the Hurwitz polynomial ring RH [x], a very important
subring of the Hurwitz power series ring RH [[x]]. We show in general
that

dimR ≤ dimRH [x] ≤ 2 dimR+ 1

is similar to the result for usual polynomial rings, see [20]:

dimR+ 1 ≤ dimR[x] ≤ 2 dimR+ 1.

If R is a Noetherian ring, then so is R[x]. In this case, by using Krull’s
principal ideal theorem, it can be shown that dimR[x] = dimR+1, see,
for example, [13]. Unfortunately, RH [x] is not necessarily a Noetherian
ring if R is ([5]). Therefore, Krull’s principal ideal theorem cannot be
applied to determine dimRH [x] as in the usual polynomial ring case
when R is a Noetherian ring. However, we show that a similar result
still holds for dimRH [x]: the upper bound 2 dimR + 1 is reduced to
dimR+ 1. This means that, if R is a Noetherian ring, then

dimRH [x] = dimR or dimRH [x] = dimR+ 1.

In this case, a condition on R is also given in order to determine whether
dimRH [x] = dimR or dimRH [x] = dimR+ 1.

It is well known that, if R is a unique factorization domain (UFD),
then so is the polynomial ring R[x]. For the Hurwitz polynomial ring
RH [x], we show that RH [x] is a UFD if and only if R is a UFD
containing Q if and only if R is a UFD and RH [x] ∼= R[x]. The Krull
domain is a generalization of UFDs. With a more technical proof we
can show that the same result holds for a Krull domain R, that is, RH [x]
is a Krull domain if and only if R is a Krull domain containing Q if
and only if R is a Krull domain and RH [x] ∼= R[x].

2. Multiplications in R[x]. In this section, we show that, in gen-
eral, there are many multiplications in R[x] such that, together with
the usual addition, R[x] becomes a ring containing R as a subring.

Let λ : N0 → N be any function such that λ(0) = 1 and λ(i)λ(j)
divides λ(i+ j) in N for each i and j. Let

αi,j =
λ(i+ j)

λ(i)λ(j)
.
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Then, αi,j is a positive integer. Note that αi,jαi+j,k = αi,j+kαj,k for
each i, j, and k. Let F be the collection of such functions λ. For each
λ ∈ F , we define a multiplication ∗ in R by( n∑

i=0

aix
i

)
∗
( m∑

j=0

bjx
j

)
=

n+m∑
k=0

( ∑
i+j=k

αi,jaibj

)
xk.(2.1)

In order to show that this multiplication is associative, we only need
to show that

(xi ∗ xj) ∗ xk = xi ∗ (xj ∗ xk)

for each i, j, and k. However, this follows from the fact that αi,jαi+j,k =
αi,j+kαj,k for each i, j, and k. With this new multiplication (and
the usual addition), R[x] is a ring. This ring is denoted by (R[x], λ).
Assumption λ(0) = 1 guarantees that αi,j = 1 if either i = 0 or j = 0. It
follows that 1 ∈ R is also the identity of (R[x], λ). Furthermore, taking
the product of two elements in R is identical to taking their product in
(R[x], λ), which implies that (R[x], λ) contains R as a subring.

Example 2.1. Let λ(i) = 1 for all i ∈ N0. Then, αi,j = 1 for each
i and j. In this case, the multiplication obtained from λ is the usual
multiplication in R[x], and we obtain the usual polynomial ring R[x].

Example 2.2. Let λ(i) = i! for all i ∈ N0. Then, λ(0) = 1, and
λ(i)λ(j) divides λ(i+ j) in N for each i and j since

λ(i+ j)

λ(i)λ(j)
=

(i+ j)!

i!j!
=

(
i+ j

i

)
is a positive integer. Therefore, λ ∈ F . The corresponding ring
(R[x], λ) is the well-known Hurwitz polynomial ring, denoted by RH [x]
and studied in the following sections in this paper.

Example 2.3. In general, one can construct a function λ in F as
follows. First, define λ(0) = 1. Choose any a1 ∈ N, and let λ(1) = a1.
We can then define all λ(n) by using induction on n. Suppose that we
have defined λ(0), λ(1), . . . , λ(n) with n ≥ 1 such that λ(i)λ(j) divides
λ(i+ j) in N for all i, j ≥ 0 with i+ j ≤ n. Choose any an+1 ∈ N, and
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let
λ(n+ 1) = an+1

∏
i+j=n+1
1≤i≤j≤n

λ(i)λ(j).

Since λ(0) = 1, this definition guarantees that λ(i)λ(j) divides λ(i+ j)
for all i, j ≥ 0 with i + j ≤ n + 1. Therefore, we obtain a function
λ ∈ F and the corresponding ring (R[x], λ).

Remark 2.4. More generally, whenever there is a set {αi,j | i, j ∈ N0}
of elements in R such that

(i) αi,j = 1 if either i = 0 or j = 0,
(ii) αi,jαi+j,k = αi,j+kαj,k in R for all i, j and k,

a multiplication ∗ in R[x] can be defined by (2.1) so that, together with
the usual addition, R[x] becomes a ring containing R as a subring.

3. Krull dimension in RH [x]. In this section, we study the Krull
dimension of the Hurwitz polynomial ring RH [x] over R. Note that,
if charR ̸= 0, then dimRH [x] = dimR [5, Section 7]. Hence, when
studying the Krull dimension of RH [x], we may always assume that
charR = 0.

The following proposition, see [1, Proposition 1], is useful.

Proposition 3.1. RH [x] is a domain if and only if R is a domain with
charR = 0.

Theorem 3.2. If R is a ring such that Q ⊆ R, then RH [x] ∼= R[x],
and hence, dimRH [x] = dimR[x].

Proof. If Q ⊆ R, then the map φ : R[x] → RH [x] defined by
φ(

∑n
i=0 aix

i) =
∑n

i=0 i!aix
i is a ring isomorphism, see, for example,

[5, Theorem 1.4]. �

Lemma 3.3. If R is a ring, then any three different prime ideals
Q1 ⊂ Q2 ⊂ Q3 in RH [x] cannot contract to the same prime ideal
in R.
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Proof. Suppose, on the contrary, that there exist prime ideals Q1 ⊂
Q2 ⊂ Q3 in RH [x] having the same contraction to R. Let

P = Q1 ∩R = Q2 ∩R = Q3 ∩R.

We have a ring epimorphism

RH [x] −→ RH [x]/PH [x] ∼= (R/P )H [x].

LetQ1 ⊂ Q2 ⊂ Q3 be the images ofQ1 ⊂ Q2 ⊂ Q3 in (R/P )H [x]. Then
Qi ∩ (R/P ) = (0), for all i = 1, 2, 3. If we let (R/P )∗ = (R/P ) \ {0},
then

(Q1)(R/P )∗ ⊂ (Q2)(R/P )∗ ⊂ (Q3)(R/P )∗

is a chain of prime ideals of length 2 in ((R/P )H [x])(R/P )∗
∼= KH [x],

where K is the quotient field of R/P . This is a contradiction since
dimKH [x] ≤ 1. Indeed, if charK ̸= 0, then dimKH [x] = dimK = 0.
If charK = 0, then Q ⊆ K, and hence, dimKH [x] = dimK[x] = 1. �

Let ϕ : RH [x] → R be the natural ring homomorphism mapping
each polynomial in RH [x] to its constant term. Hence, if P is a prime
ideal in R, then ϕ−1(P ) is a prime ideal in RH [x].

Theorem 3.4. If R is a finite-dimensional ring with charR = 0, then

dimR ≤ dimRH [x] ≤ 2 dimR+ 1.

Furthermore, if Q ⊆ R or R is a domain, then dimR+1 ≤ dimRH [x].

Proof. It follows from Lemma 3.3 that dimRH [x] ≤ 2 dimR + 1.
Now, let n = dimR, and let

P0 ⊂ P1 ⊂ · · · ⊂ Pn

be a chain of prime ideals of length n in R. Then

ϕ−1(P0) ⊂ ϕ−1(P1) ⊂ · · · ⊂ ϕ−1(Pn)

is a chain of prime ideals of the same length in RH [x]. This shows
that dimRH [x] ≥ n. If Q ⊆ R, then RH [x] ∼= R[x], and hence,
dimRH [x] = dimR[x] ≥ dimR + 1. If R is a domain, then RH [x]
is also a domain, by Proposition 3.1. This means that (0) is a prime
ideal in RH [x], and hence,

(0) ⊂ ϕ−1(P0) ⊂ ϕ−1(P1) ⊂ · · · ⊂ ϕ−1(Pn)
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is a chain of prime ideals of length n+1 in RH [x]. Therefore, dimRH [x]
≥ n+ 1. �

If charR ̸= 0, then dimRH [x] = dimR. Combining this with
Theorem 3.4, we obtain the next general theorem.

Theorem 3.5. If R is a finite-dimensional ring, then

dimR ≤ dimRH [x] ≤ 2 dimR+ 1.

Furthermore, if Q ⊆ R or R is a domain with charR = 0, then
dimR+ 1 ≤ dimRH [x].

We now study dimRH [x] when R is a Noetherian ring. Our purpose
is to reduce the upper bound 2 dimR+1 in Theorem 3.5 to dimR+1.
Since RH [x] may not be a Noetherian ring in this case, Krull’s principal
ideal theorem cannot be applied.

The next lemma plays an important role in proving the desired
result.

Lemma 3.6. Let R be a Noetherian ring. If P is a prime ideal of R
such that htP = 1, i.e., P is a height 1 prime ideal, and charR/P = 0,
then htPH [x] = 1.

Proof. Let P0 be a (minimal) prime ideal contained in P . Note that
PH [x] is a prime ideal in RH [x]. Indeed, RH [x]/PH [x] ∼= (R/P )H [x] is
a domain since charR/P = 0. By the same reasoning, (P0)H [x] is also
a prime ideal in RH [x] (charR/P = 0 implies charR/P0 = 0). Thus,
htPH [x] ≥ 1.

Now, suppose, on the contrary, that htPH [x] ≥ 2. Then, there exists
a chain Q0 ⊂ Q1 ⊂ PH [x] of prime ideals in RH [x]. Let P1 = Q1 ∩ R.
Then P1 ⊂ P . Since htP = 1, P1 is a minimal prime ideal. Thus,
P1 = Q0 ∩R = Q1 ∩R. We have the following.

(i) R/P1 is a Noetherian domain.
(ii) htP/P1 = 1.
(iii) char(R/P1)/(P/P1) = charR/P = 0.
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Hence, by passing to R/P1, we may assume that R is a domain. It
follows that the ring homomorphism

φ : R[x] −→ RH [x]

defined by

φ

( k∑
i=0

aix
i

)
=

k∑
i=0

i!aix
i

is a ring monomorphism.

Claim 1. PH [x] ∩ φ(R[x]) = φ(P [x]). It is clear that φ(P [x]) ⊆
PH [x]∩φ(R[x]). For the other containment, let f =

∑k
i=0 bix

i ∈ PH [x],

bi ∈ P . If f ∈ φ(R[x]), then f =
∑k

i=0 i!aix
i for some ai ∈ R. Thus,

i!ai = bi ∈ P for all i. Since charR/P = 0, P ∩Z = (0). It follows that
i! ̸∈ P , and hence, ai ∈ P for all i.

Claim 2. Q1 ∩ φ(R[x]) = PH [x] ∩ φ(R[x]). Consider the chain

Q0 ∩ φ(R[x]) ⊆ Q1 ∩ φ(R[x]) ⊆ PH [x] ∩ φ(R[x])

of prime ideals in φ(R[x]). Note thatQ1∩φ(R[x]) ̸= (0). Indeed, taking

any 0 ̸= f =
∑k

i=0 bix
i ∈ Q1, we have 0 ̸= k!f ∈ Q1 ∩ φ(R[x]). Since

R is Noetherian, P [x] is a height 1 prime ideal in R[x]. By Claim 1,
PH [x] ∩ φ(R[x]) is a height 1 prime ideal in φ(R[x]). Since φ(R[x]) is
a domain and Q1 ∩ φ(R[x]) ̸= (0),

Q1 ∩ φ(R[x]) = PH [x] ∩ φ(R[x]).

Claim 3. Q1 = PH [x]. Let f =
∑k

i=0 bix
i ∈ PH [x]. Then

k!f ∈ PH [x] ∩ φ(R[x]) = Q1 ∩ φ(R[x]) ⊆ Q1. We have

Q1 ∩ Z = (Q1 ∩R) ∩ Z = P1 ∩ Z ⊆ P ∩ Z = (0).

Therefore, k! ̸∈ Q1 and f ∈ Q1.

Claim 3 contradicts the assumption that Q1 ⊂ PH [x]. Therefore,
htPH [x] = 1. �

Remark 3.7. If P is a prime ideal of a Noetherian ring R such that
htP = 1, then htP [x] = 1. Indeed, htP [x] ≥ 1 is obvious. If P is
minimal over aR, then P [x] is minimal over aR[x]. Krull’s principal
ideal theorem, [13, Theorem 142], shows that htP [x] ≤ 1. The same
argument cannot be applied in order to show that htPH [x] ≤ 1 in
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Lemma 3.6 since RH [x] may not be a Noetherian ring. In fact, RH [x]
is a Noetherian ring if and only if R is a Noetherian ring and Q ⊆ R,
see [5, Corollary 7.7].

Theorem 3.8. If R is a finite-dimensional Noetherian ring with
charR = 0, then

dimR ≤ dimRH [x] ≤ dimR+ 1.

Furthermore, dimRH [x] = dimR+ 1 if one of the following holds.

(i) Q ⊆ R.
(ii) R is a domain.
(iii) dimR = 0, i.e., R is an Artinian ring.

Proof. We show dimRH [x] ≤ dimR+1 by using induction on dimR.
If dimR = 0, then dimRH [x] ≤ 1 by Theorem 3.5. Suppose that
dimR = n ≥ 1 and that the result holds for any ring with dimension
< n. We show that a chain of prime ideals of length n + 2 in RH [x]
does not exist. Suppose, on the contrary, that such a chain exists, say,

Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qn+2.

Let P = Q2 ∩ R. Since Q0 ⊂ Q1 ⊂ Q2 cannot contract to the same
prime ideal in R, P is not a minimal prime ideal of R, i.e., htP ≥ 1.
We have a ring epimorphism RH [x] → RH [x]/PH [x] ∼= (R/P )H [x]. Let

Q2 ⊂ · · · ⊂ Qn+2

be the images of Q2 ⊂ · · · ⊂ Qn+2 in (R/P )H [x].

Case 1. charR/P ̸= 0. In this case,

dim(R/P )H [x] = dim(R/P ) ≤ dimR− htP ≤ n− 1.

This is a contradiction since the chain Q2 ⊂ · · · ⊂ Qn+2 has length n.

Case 2. charR/P = 0. By the induction hypothesis,

dim(R/P )H [x] ≤ dim(R/P ) + 1 ≤ dimR− htP + 1 ≤ dimR = n.

Since the chain Q2 ⊂ · · · ⊂ Qn+2 has length n and (R/P )H [x] is a

domain, we must have htP = 1 and Q2 = (0). The latter equality
means PH [x] = Q2, and hence, htPH [x] ≥ 2. However, this is
impossible by Lemma 3.6.
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Therefore, every chain of prime ideals in RH [x] must have length
≤ n+ 1. This concludes the proof of dimRH [x] ≤ dimR+ 1.

If Q ⊆ R or R is a domain, then Theorem 3.4 shows that dimR+1 ≤
dimRH [x]. Thus, dimRH [x] = dimR+ 1. This proves (i) and (ii).

If R is an Artinian ring, then it is a finite product of local Artinian
rings, say,

R = R1 ×R2 × · · · ×Rt.

Since charR = 0, charRi = 0 for some i. Hence, if Mi is the prime
ideal of Ri, then charRi/Mi = 0 (since Mi is the nilradical of Ri).
Since Q ⊆ Ri/Mi (note that Ri/Mi is a field),

dim(Ri/Mi)H [x] = dimRi/Mi + 1 = 1.

We have

dimRH [x] ≥ dim(Ri)H [x] ≥ dim(Ri/Mi)H [x] = 1.

Hence, (iii) is proved. �

If charR ̸= 0, then dimRH [x] = dimR. Adding this to Theorem 3.8,
we obtain the following.

Theorem 3.9. If R is a finite-dimensional Noetherian ring, then

dimR ≤ dimRH [x] ≤ dimR+ 1.

Furthermore, dimRH [x] = dimR+ 1 if one of the following holds.

(i) Q ⊆ R.
(ii) R is a domain with charR = 0.
(iii) dimR = 0, i.e., R is an Artinian ring, and charR = 0.

By Theorem 3.8, for a finite-dimensional Noetherian ring R with
charR = 0, dimRH [x] is either dimR or dimR + 1. If dimR = 0,
i.e., R is Artinian, then dimRH [x] = dimR+ 1.

We now show that, if dimR ≥ 1, then dimRH [x] can be either
dimR or dimR + 1. Of course, if Q ⊆ R or R is a domain, then
dimRH [x] = dimR+ 1.

The next example illustrates the case where dimRH [x] = dimR.
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Example 3.10. For any n ≥ 1, there exists a Noetherian ring R with
charR = 0 such that dimRH [x] = dimR = n.

Proof. Let R1 be a Noetherian ring with charR1 = 0 and dimR1 ≤
n−1, and let R2 be a Noetherian ring with charR2 ̸= 0 and dimR2 = n.
Let R = R1 × R2. Then, R is a Noetherian ring with charR = 0 and
dimR = n. We have

dimRH [x] = max{dim(R1)H [x], dim(R2)H [x]}.

From dim(R1)H [x] ≤ dimR1 + 1 ≤ n and dim(R2)H [x] = dimR2 = n,
we obtain dimRH [x] = n. �

In general, for a Noetherian ring R with dimR = n ≥ 1, we can
determine when dimRH [x] = dimR and when dimRH [x] = dimR+ 1
by the next theorem.

Theorem 3.11. Let R be a Noetherian ring with dimR = n ≥ 1. Then
the following are equivalent :

(i) dimRH [x] = dimR = n.
(ii) For a minimal prime ideal P of R, charR/P = 0 implies

dimR/P ≤ n− 1.

Proof. If charR ̸= 0, then (i) and (ii) are always true. Hence, we
assume that charR = 0.

(i) ⇒ (ii). Suppose that P is a minimal ideal of R such that char
R/P = 0. Since R/P is a domain,

n = dimRH [x] ≥ dim(R/P )H [x] = dim(R/P ) + 1

by Theorem 3.9. Hence, n− 1 ≥ dimR/P .

(ii) ⇒ (i). Suppose, on the contrary, that dimRH [x] = n+1. Then,
there exists a chain of prime ideals

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn+1

in RH [x]. Let P = Q0 ∩R. Then PH [x] ⊆ Q0. Let

Q0 ⊂ Q1 ⊂ · · ·Qn+1

be the images of Q0 ⊂ Q1 ⊂ · · · ⊂ Qn+1 in (R/P )H [x] (through the
epimorphism RH [x] → RH [x]/PH [x] ∼= (R/P )H [x]). Then Q0 ⊂ Q1 ⊂
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· · ·Qn+1 is a chain of prime ideals in (R/P )H [x] of length n+ 1. This
means that dim(R/P )H [x] ≥ n + 1. However, we can see that this is
impossible by considering the next two cases.

Case 1. charR/P = 0. By the assumption, dimR/P ≤ n − 1. We
have

dim(R/P )H [x] = dimR/P + 1 ≤ (n− 1) + 1 = n.

Case 2. charR/P ̸= 0. In this case, we have

dim(R/P )H [x] = dimR/P ≤ dimR = n. �

Example 3.12. Using Theorem 3.11, we conclude that dimRH [x] =
dimR = n for the ring R = R1 × R2 in the proof of Example 3.10.
Indeed, minimal ideals of R are of the form P1 × R2 or R1 × P2

(where Pi is a minimal prime ideal of Ri). Since charR2 ̸= 0,
charR/(R1 × P2) = charR2/P2 ̸= 0. Thus, we only need to consider
charR/(P1 ×R2). However, whether or not charR/(P1 ×R2) = 0, we
always have dimR/(P1 × R2) = dimR1/P1 ≤ dimR1 ≤ n − 1. By
Theorem 3.11, dimRH [x] = dimR = n.

4. Unique factorizations in RH [x]. In this section, we study
unique factorization properties in RH [x]. We may assume that
charR = 0 since RH [x] is not a domain if charR ̸= 0.

Lemma 4.1. If R is a domain with charR = 0, then x is an irreducible
element in RH [x].

Proof. Suppose that there exist

f =
r∑

i=0

bix
i, g =

s∑
j=0

cjx
j in RH [x]

such that x = f ∗ g. We may assume that r ≤ s. Since RH [x] is a
domain, by comparing the degree on both sides of x = f ∗ g, we see
that r = 0 and s = 1. It follows that 1 = b0c1, and hence, f = b0 is a
unit. �

Theorem 4.2. The following are equivalent for a ring R:

(i) RH [x] is a UFD.
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(ii) R is a UFD and Q ⊆ R.
(iii) R is a UFD and RH [x] ∼= R[x].

Proof.

(i) ⇒ (ii). Suppose that RH [x] is a UFD. In particular, RH [x] is a
domain. Thus, R is a domain with charR = 0 (Proposition 3.1). If
we can show that Q ⊆ R, then we are done. Indeed, if Q ⊆ R, then
R[x] ∼= RH [x] is a UFD, and hence, R is a UFD. We show that Q ⊆ R
by proving the converse. Suppose, on the contrary, that Q ̸⊆ R. Then,
there exists a prime number p that is not a unit in R. We have

x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
p times

= p!xp = (p!) ∗ xp.

By Lemma 4.1, x is a prime element in RH [x] (since RH [x] is a UFD).
Thus, x divides either p! or xp in RH [x]. It is easy to see that x cannot
divide p!. Thus, x divides xp. Therefore, there exists an element f in
RH [x] such that x∗f = xp, and hence, f must have the form f = bxp−1

for some b ∈ R. We have

pbxp = x ∗ (bxp−1) = x ∗ f = xp.

This means that pb = 1 and p is a unit in R, a contradiction.

(ii) ⇒ (iii). If Q ⊆ R, then RH [x] ∼= R[x] (Theorem 3.2).

(iii) ⇒ (i). It follows from the well-known result that, if R is a UFD,
then so is R[x], see [10]. �

Corollary 4.3. If R is a UFD, then RH [x] is never a UFD unless it
is isomorphic to R[x].

Example 4.4. By Theorem 4.2, ZH [x] is not a UFD.

Let R be a domain, and let K be the quotient field of R. For an
ideal I of R, the v-operation is defined by Iv = (I−1)−1, where, for
J ⊆ K, J−1 is defined by J−1 = {z ∈ K | zJ ⊆ R}. The t-operation is
defined by It = ∪Jv, where the union is taken over all finitely generated
ideals J of R such that J ⊆ I. An ideal I in R is called a t-invertible
ideal if (II−1)t = R. A domain R is called a Krull domain if there is a
non-empty collection of prime ideals {Pα} in R such that R = ∩RPα ,
each RPα is a PID, and every non-zero element of R is contained in only
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finitely many Pαs. A UFD is always a Krull domain [9]. A domain R is
a Krull domain if and only if every proper principal ideal is a t-product
of t-invertible prime ideals, see [12, Theorem 3.9].

Theorem 4.5. The following are equivalent for a ring R:

(i) RH [x] is a Krull domain.
(ii) R is a Krull domain and Q ⊆ R.
(iii) R is a Krull domain and RH [x] ∼= R[x].

Proof.

(i) ⇒ (ii). Suppose that RH [x] is a Krull domain, in particular,
RH [x] is a domain. Hence, R is a domain with charR = 0. If we
can show that Q ⊆ R, then we are done. Indeed, if Q ⊆ R, then
R[x] ∼= RH [x] is a Krull domain, and hence, R is a Krull domain.

We now show that Q ⊆ R. Suppose, on the contrary, that Q ̸⊆ R.
Let p be the smallest prime number that is not a unit in R (so
that (p − 1)! is a unit in R). Since RH [x] is a Krull domain, we
write the principal ideal (x) as a t-product of t-invertible prime ideals,
(x) = (P e1

1 P e2
2 · · ·P el

l )t. Since

p!xp = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
p times

,

and (p− 1)! is a unit in R,

(p) ∗ (xp) = (x) ∗ (x) ∗ · · · ∗ (x)︸ ︷︷ ︸
p times

= (P pe1
1 P pe2

2 · · ·P pel
l )t.

It follows that (p) = (P f1
1 P f2

2 · · ·P fl
l )t, where 0 ≤ fi ≤ pei, i = 1,

2, . . . , l.

Claim. fi ≤ (p− 1)ei, i = 1, 2, . . . , l. Since pk!xp = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
pk times

,

(pk!) ∗ (xp) = (P pke1
1 P pke2

2 · · ·P pkel
l )t.

The number of p-factors in pk! in N is

1 + p+ · · ·+ pk−1 =
pk − 1

p− 1
.
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This implies that (pk − 1)/(p− 1)fi ≤ pkei, and hence, (pk − 1)/
(pk(p − 1))fi ≤ ei. Letting k go to ∞, we obtain fi/(p − 1) ≤ ei,
and the claim is proved.

Now, since (p− 1)!xp−1 = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
p−1 times

and (p− 1)! is a unit in R,

(xp−1) = (P
(p−1)e1
1 P

(p−1)e2
2 · · ·P (p−1)el

l )t ⊆ (P f1
1 P f2

2 · · ·P fl
l )t = (p).

Thus, xp−1 = p ∗ (axp−1) for some a ∈ R, which shows that p is a unit,
a contradiction.

(ii) ⇒ (iii). If Q ⊆ R, then RH [x] ∼= R[x].

(iii) ⇒ (i). It follows from the fact that, if R is a Krull domain, then
so is R[x], see, for example, [19]. �

Corollary 4.6. If R is a Krull domain, then RH [x] is never a Krull
domain unless it is isomorphic to R[x].

Example 4.7. By Theorem 4.5, ZH [x] is not a Krull domain. There-
fore, RH [x] may not be a Krull domain even when R is a principal ideal
domain (PID) with characteristic zero.
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