Translator Disclaimer
2017 Centers for generalized quintic polynomial differential systems
Jaume Giné, Jaume Llibre, Claudia Valls
Rocky Mountain J. Math. 47(4): 1097-1120 (2017). DOI: 10.1216/RMJ-2017-47-4-1097

Abstract

We classify the centers of polynomial differential systems in $\mathbb {R}^2$ of odd degree $d \ge 5$, in complex notation, as $ \cdot z = i z + (z \overline z)^{({d-5})/{2}} (A z^5 + B z^4 \overline z + C z^3 \overline z^2+ D z^2 \overline z^3+ E z \overline z^4 + F \overline z^5)$, where $A, B, C, D, E, F \in \mathbb {C}$ and either $A=\Re (D)=0$, $A=\Im (D)=0$, $\Re (A)=D=0$ or $\Im (A)=D=0$.

Citation

Download Citation

Jaume Giné. Jaume Llibre. Claudia Valls. "Centers for generalized quintic polynomial differential systems." Rocky Mountain J. Math. 47 (4) 1097 - 1120, 2017. https://doi.org/10.1216/RMJ-2017-47-4-1097

Information

Published: 2017
First available in Project Euclid: 6 August 2017

zbMATH: 1384.34038
MathSciNet: MR3689947
Digital Object Identifier: 10.1216/RMJ-2017-47-4-1097

Subjects:
Primary: 34C05
Secondary: 37C10

Rights: Copyright © 2017 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
24 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.47 • No. 4 • 2017
Back to Top