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SOME EXISTENCE AND UNIQUENESS RESULTS
FOR NONLINEAR FRACTIONAL

PARTIAL DIFFERENTIAL EQUATIONS

H.R. MARASI, H. AFSHARI AND C.B. ZHAI

ABSTRACT. In this paper, we study the existence and
uniqueness of positive solutions for some nonlinear fractional
partial differential equations via given boundary value prob-
lems by using recent fixed point results for a class of mixed
monotone operators with convexity.

1. Introduction. Fractional differential equations have recently
been of great interest, due primarily to the intensive development of
the theory of fractional calculus itself, as well as the application of
constructions in various sciences such as physics, mechanics, chemistry,
engineering, biology, economics, control theory, signal and image pro-
cessing, biophysics, blood flow phenomena, aerodynamics, etc. For de-
tails, see [3, 6, 7, 18, 22, 24, 25, 30, 31] and the references therein.
There are several definitions of a fractional derivative of order α > 0.
The most commonly used definitions are Riemann-Liouville and Ca-
puto.

Definition 1.1 ([18, 25]). For a continuous function f : [0,∞) → R,
the Caputo derivative of fractional order α is defined by

cDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds,

where n− 1 < α < n, n = [α]+ 1 and [α] denotes the integer part of α.
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Definition 1.2 ([18, 25]). The Riemann-Liouville fractional deriva-
tive of order α for a continuous function f is defined by

Dαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

f(s)

(t− s)α−n−1
ds, n = [α] + 1,

where the right-hand side is pointwise defined on (0,∞).

Definition 1.3 ([18, 25]). Let [a, b] be an interval in R and α > 0.
The Riemann-Liouville fractional order integral of a function f ∈
L1([a, b],R) is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

whenever the integral exists.

Note that most papers dealing with the existence of solutions of
nonlinear initial value problems of fractional differential equations use
the techniques of nonlinear analysis, such as fixed point results, the
Leray-Schauder theorem, stability, etc, see, for example, [1, 2, 5, 8,
12, 13, 14, 16, 20, 27, 29, 33, 34, 35, 36, 37, 38] and the references
therein. The existence of positive solutions for nonlinear fractional
differential equation boundary value problems has been studied by
several authors, see [8, 21, 35] and the references therein. However,
there are few results on uniqueness.

Recently, Zhai [32] proved some results on a class of mixed mono-
tone operators with convexity. Following [32], we give existence and
uniqueness results for equations of the form

(1.1)
Dα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0, 0 < α < 1,

and

(1.2)
cDα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0, 1 < α < 2,

via given boundary conditions where no conditions are prescribed on u
as a function of s.

Fractional partial differential equations are important in a variety of
application areas, including biology, chemistry, economics, mechanics,
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seismology, etc. They can be used to describe important phenomena in
many fields of science and engineering, such as damping law, diffusion
processes, etc. In [15], a more general fractional partial differential
equation for seepage flow without the assumption of continuity is pre-
sented. A fractional diffusion equation has been introduced in [23] to
describe diffusion in special types of porous media. The propagation
of mechanical diffusive waves in viscoelastic media is governed by frac-
tional wave equations [19]. A reaction diffusion equation of fractional
order appears in the modeling of the evolution of the bacterium Bacil-
lus subtilis, which grows on the surface of thin agar plates [9]. Host-
parasitoid systems may be found in many experimental and theoretical
investigations in ecology [4]. Indeed, many physical problems are gov-
erned by fractional differential equations of the forms (1.1)–(1.2). For
example, Giona and Roman [11] studied a fractional differential equa-
tion of the form

Dα

Dt
u(x, t) = −Ax−β ∂u(x, t)

∂x
,(1.3)

0 < α ≤ 1

2
; A > 0, β ≥ 0,

and also considered its application in transport phenomena for describ-
ing diffusion on random fractal structures. In [28], the same authors
discussed a more general form

Dα

Dt
u(x, t) = −A

[
∂u(x, t)

∂x
+

k

x
u(x, t)

]
,(1.4)

0 < α ≤ 1

2
; A > 0, k ∈ R,

for diffusion in isotropic and homogeneous fractal structures. In connec-
tion with phenomena between the heat and wave equations, Fujita [10]
considered the cauchy problem for the equation

Dα

Dt
u(x, t) =

Dβ

Dx
u(x, t),(1.5)

1 ≤ α, β ≤ 2; 0 < t < T, x ∈ R,

and showed the existence and uniqueness of the solution. One may find
a variety of applications in [17, 25, 26].
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In the sequel, we present some basic concepts in ordered Banach
spaces and a fixed-point theorem which will be used later. For details,
we refer the reader to [12, 13].

Suppose that (E, ∥ · ∥) is a Banach space with the zero element
denoted by θ. A non-empty closed convex set P ⊆ E is a cone if it
satisfies:

(i) x ∈ P , λ ≥ 0 ⇒ λx ∈ P ,
(ii) x ∈ P , −x ∈ P ⇒ x = θ.

We suppose that E is partially ordered by P , that is, x ≤ y if and only
if y−x ∈ P . A cone P is called normal if there exists a constant N > 0
such that θ ≤ x ≤ y implies ||x|| ≤ N ||y||. Also, we define an ordered
interval by

[x1, x2] = {x ∈ E | x1 ≤ x ≤ x2} for all x1, x2 ∈ E.

We say that an operator A : E → E is increasing whenever x ≤ y
implies Ax ≤ Ay. A is called a positive operator if A(x) ≥ θ for any
x ≥ θ.

Definition 1.4 ([12, 13]). A : P × P → P is said to be a mixed
monotone operator if A(x, y) is increasing in x and decreasing in y, i.e.,
ui, vi, i = 1, 2 ∈ P , u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). The
element x ∈ P is called a fixed point of A if A(x, x) = x.

Theorem 1.5 ([32]). Let E be a real Banach space, and let P be a
normal cone in E. A : P × P → P is a mixed monotone operator
satisfying :

(i) for c ∈ (0, 1), x, y ∈ P , there exists α(c, x, y) ∈ (1,∞) such that
A(cx, y) ≤ cα(c,x,y)A(x, y);

(ii) there exist u0, v0 ∈ P, r ∈ (0, 1), such that u0 ≤ rv0, A(u0, v0) ≥
u0, A(v0, u0) ≤ v0.

Then, A has a unique fixed point u∗in [u0, rv0]. Moreover, successively
constructing the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

for any initial values x0, y0 ∈ [u0, rv0], we have

∥xn − u∗∥ −→ 0, ∥yn − u∗∥ −→ 0 as n → ∞.
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2. Main results. We study the existence and uniqueness of solu-
tions for fractional differential equations on a partially ordered Banach
space with two types of boundary conditions and two types of fractional
derivatives, Riemann-Liouville and Caputo.

2.1. Existence results for the fractional differential equa-
tion with the Riemann-Liouville fractional derivative. First,
we study the existence and uniqueness of positive solutions for the
fractional differential equation

Dα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0,(2.1)

0 < ϵ < T, T ≥ 1, t ∈ [ϵ, T ], 0 < α < 1, s ∈ [a, b],

subject to condition

u(s, η) = u(s, T ), (s, η) ∈ [a, b]× (ϵ, T ),(2.2)

where Dα is the Riemann-Liouville fractional derivative of order α,
a, b ∈ (0,∞), a < b.

Let E = C([a, b]×[ϵ, T ]) be the Banach space of continuous functions
on [a, b]× [ϵ, T ] with the sup norm, and set

P = {y ∈ C([a, b]× [ϵ, T ]) : min
(s,t)∈[a,b]×[ϵ,T ]

y(s, t) ≥ 0}.

Then, P is a normal cone.

Lemma 2.1. Let (s, t) ∈ [a, b] × [ϵ, T ], (s, η) ∈ [a, b] × (ϵ, t) and
0 < α < 1. Then, the equation

Dα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0,

with boundary condition u(s, η) = u(s, T ), has a solution u0 if and only
if u0 is a solution of the fractional integral equation

u(s, t) =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ,
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where

G(t, ξ) =



[tα−1(η − ξ)α−1 − tα−1(T − ξ)α−1]/(ηα−1 − Tα−1)Γ(α)

−(t− ξ)α−1/Γ(α), ϵ ≤ ξ ≤ η ≤ t ≤ T,

[−tα−1 − (T − ξ)α−1]/(ηα−1 − Tα−1)Γ(α)

−(t− ξ)α−1/Γ(α), ϵ ≤ η ≤ ξ ≤ t ≤ T,

[−tα−1(T − ξ)α−1]/(ηα−1 − Tα−1)Γ(α)

ϵ ≤ η ≤ t ≤ ξ ≤ T.

Proof. From

Dα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0

and the boundary condition, we can see that

u(s, t)− c1t
α−1 = −Iαϵ f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
.

By the definition of a fractional integral, we obtain

u(s, t) = c1t
α−1 −

∫ η

ϵ

(t− ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ,

u(s, η) = c1T
α−1 −

∫ η

ϵ

(η − ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

and

u(s, T ) = c1T
α−1 −

∫ T

ϵ

(t− ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ.

Since u(s, η) = u(s, T ), we obtain

c1 =
1

ηα−1 − Tα−1

∫ η

ϵ

(η − ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

− 1

ηα−1 − Tα−1

∫ T

ϵ

(T − ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ.
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Hence,

u(s, t) =
tα−1

ηα−1 − Tα−1

∫ η

ϵ

(η − ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

− tα−1

ηα−1 − Tα−1

∫ T

ϵ

(T − ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

−
∫ t

ϵ

(t− ξ)α−1

Γ(α)
f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

=

∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ.

This completes the proof. �

Now, we are ready to state and prove the first main result.

Theorem 2.2. Let 0 < ϵ < T be given, and

(H1) f(s, t, u(s, t), v(s, t)) ∈ C([a, b]×[ϵ, T ], [0,∞), [0,∞)) is increas-
ing in u and decreasing in v.

(H2) ∂/∂s is positive and, for c ∈ (0, 1), u, v ∈ P , there exists
α(c, u, v) ∈ (1,∞) such that

f(s, t, cu(s, t), v(s, t)) ≤ cα(c,u,v)f(s, t, u(s, t), v(s, t))

and

f(s, t, u(s, t), v(s, t)) = 0

whenever G(s, t) < 0.
(H3) There exist u0, v0 ∈ P and r ∈ (0, 1) such that

u0(s, t) ≤ rv0(s, t),∫ T

ϵ

G(t, ξ)f
(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ ≥ u0(s, t),∫ T

ϵ

G(t, ξ)f
(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ ≤ v0(s, t),

for (s, t) ∈ ([a, b]× [ϵ, T ]).
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Then, equation (2.1), with boundary condition (2.2), has a unique
solution u∗ ∈ [u0, rv0]. Moreover, for the sequences

un+1 =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, un(s, ξ),

∂

∂s
un(s, ξ)

)
dξ,

vn+1 =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, vn(s, ξ),

∂

∂s
vn(s, ξ)

)
dξ,

n = 0, 1, . . ., we have ∥un − u∗∥ → 0 and ∥vn − u∗∥ → 0.

Proof. By using Lemma 2.1, the problem is equivalent to the integral
equation

u(s, t) =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ,

where

G(t, ξ) =



tα−1(η − ξ)α−1 − tα−1(T − ξ)α−1/(ηα−1 − Tα−1)Γ(α)

−(t− ξ)α−1/Γ(α), ϵ ≤ ξ ≤ η ≤ t ≤ T,

−tα−1−(T − ξ)α−1/(ηα−1−Tα−1)Γ(α)−(t− ξ)α−1/Γ(α)

ϵ ≤ η ≤ ξ ≤ t ≤ T,

−tα−1(T − ξ)α−1/(ηα−1 − Tα−1)Γ(α)

ϵ ≤ η ≤ t ≤ ξ ≤ T.

Define the operator A : P × P → P by:

A(u(s, t), v(s, t)) =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
v(s, ξ)

)
dξ.

Then, u is a solution for the problem if and only if u = A(u, u). It
is easy to see that the operator A is increasing in u and decreasing
in v on P . On the other hand, for c ∈ (0, 1), s, t ∈ P , there exists
α(c, s, t) ∈ (1,∞) such that

A(cu(s, t), v(s, t)) =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, cu(s, ξ),

∂

∂s
v(s, ξ)

)
dξ

≤ cα
∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
v(s, ξ)

)
dξ

= cαA(u(s, t), v(s, t)).
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Therefore, A satisfies all conditions of Theorem 1.5, and so, the opera-
tor A has a unique positive solution (u∗, u∗) such that A(u∗, u∗) = u∗.
This completes the proof. �

Example 2.3. Let 0 < ϵ < 1 be given. Consider the periodic boundary
value problem

D1/3u(s, t) + g(s, t)[u(s, t)]2 −
[
∂

∂s
u(s, t)

]2
= 0,

(s, t) ∈ [a, b]× [ϵ, 1], u(s, η) = u(s, 1), (s, η) ∈ [a, b]× (ϵ, t),

where g(s, t) is continuous on [a, b]× [ϵ, 1], with

γ1 = min
(s,t)∈[a,b]×[ϵ,1]

g(s, t) > 0, γ2 = max
(s,t)∈[a,b]×[ϵ,1]

g(s, t) > 0.

In addition, let

M1 = min
t∈[ϵ,1]
η∈[ϵ,1]

−t−2/3(1− ϵ)1/3 − (t− ϵ)1/3(η−2/3 − 1)

Γ(4/3)(η−2/3 − 1)

and

M2 = max
η∈[ϵ,1]

ϵ−2/3η1/3

Γ(4/3)(η−2/3 − 1)
,

such that γ1 ≤ 1/M1. Set

(2.3)

G(t, ξ) =



t−2/3(η−ξ)−2/3−t−2/3(1−ξ)−2/3/(η−2/3−1−2/3)Γ(1/3)

−(t− ξ)−2/3/Γ(1/3), ϵ ≤ ξ ≤ η ≤ t ≤ 1,

−t−2/3 − (1− ξ)−2/3/(η−2/3 − 1−2/3)Γ(1/3)

−(t− ξ)−2/3/Γ(1/3), ϵ ≤ η ≤ ξ ≤ t ≤ 1,

−t−2/3(1− ξ)−2/3/(η−2/3 − 1−2/3)Γ(1/3)

ϵ ≤ η ≤ t ≤ ξ ≤ 1.

Then,∫ 1

ϵ

G(t, ξ) dξ=
t−2/3(η−ϵ)1/3 − t−2/3(1−ϵ)1/3−(t− ϵ)1/3(η−2/3−1)

Γ(4/3)(η−2/3−1)
.
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Also,

f(s, t, u(s, t), v(s, t)) = g(s, t)[u(s, t)]2 −
[
∂

∂s
v(s, t)

]2
is increasing in u and decreasing in v. For c ∈ (0, 1), consider
1 < α(c, s, t) < 2. Then we have

f
(
s, t, cu(s, t),

∂

∂s
u(s, t)

)
= g(s, t)[cu(s, t)]2 −

[
∂

∂s
u(s, t)

]2
≤ cα(c,s,t)

(
g(s, t)[u(s, t)]2 −

[
∂

∂s
u(s, t)

]2)
= cα(c,s,t)

(
f
(
s, t, u(s, t),

∂

∂s
u(s, t)

))
.

Now, set u0 = 1, r = 1/2 and 2 ≤ v0 ≤ 1/γ2M2. Note that u0 and v0
are real numbers. Then we have

u0 ≤ 1

2
v0,

A(u0, v0) =

∫ 1

ϵ

G(t, ξ)f
(
s, ξ, cu0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ

=

∫ 1

ϵ

G(t, ξ)g(s, t)[u0(s, t)]
2dξ =

∫ 1

ϵ

G(t, ξ)g(s, t) dξ

≥ γ1M1 ≥ 1 = u0,

A(v0, u0) =

∫ 1

ϵ

G(t, ξ)f
(
s, ξ, v0(s, ξ),

∂

∂s
u0(s, ξ)

)
dξ

=

∫ 1

ϵ

G(t, ξ)g(s, t)[v0(s, t)]
2 dξ ≤ γ2M2v0

2 ≤ v0.

Thus, by Theorem 2.2, the problem has a unique solution in [1, (1/2)v0].

2.2. Existence results for the fractional differential equation
with the Caputo fractional derivative. We study the existence and
uniqueness of a positive solution for the fractional differential equation

cDα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0,(2.4)

((s, t) ∈ [a, b]× [0, T ]), T ≥ 1, 1 < α < 2,
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with boundary conditions

u(s, 0) = β1u(s, η), u(s, T ) = β2u(s, η),(2.5)

((s, η) ∈ [a, b]× (0, t), 0 < β1 < β2 < 1),

where cDα is the Caputo fractional derivative of order α. Let E =
C([a, b]× [0, T ]) be the Banach space of continuous functions on [a, b]×
[0, T ] with the sup norm and

P = {y ∈ C([a, b]× [0, T ]) : min
((s,t)∈[a,b]×[0,T ])

y(s, t) ≥ 0}.

Then, P is a normal cone. Similar to the proof of Lemma 2.1, we can
prove the next result.

Lemma 2.4. Let 1 < α < 2, T ≥ 1, (s, t) ∈ ([a, b] × [0, T ]),
((s, η) ∈ [a, b]× (0, t)) and 0 < β1 < β2 < 1. Then the equation

(2.6)
cDα

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0,

with boundary conditions u(s, 0) = β1u(s, η), and u(s, T ) = β2u(s, η)
has a solution u0 if and only if u0 is a solution of the fractional integral
equation

(2.7) u(s, t) =

∫ T

0

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ,

where

G(t, ξ) =


L/TΓ(α) 0 ≤ ξ ≤ η ≤ t ≤ T,

t(T − ξ)α−1 − T (t− ξ)α−1/TΓ(α) 0 ≤ η ≤ ξ ≤ t ≤ T,

t(T − ξ)α−1/TΓ(α) 0 ≤ η ≤ t ≤ ξ ≤ T,

and

L = [β1T + t(β2 − β1)](η − ξ)α−1 + t(T − ξ)α−1 − T (t− ξ)α−1.

Theorem 2.5. Let T ≥ 1, 0 < ϵ < T , and the following hold :

(H4) f(s, t, u(s, t), v(s, t)) ∈ C([a, b]× [ϵ, T ], [0,∞], [0,∞]) is increas-
ing in u and decreasing in v.
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(H5) ∂/∂s is positive and for c ∈ (0, 1), u, v ∈ P , there exists
α(c, u, v) ∈ (1,∞) such that

f(s, t, u(s, t), v(s, t)) ≤ cα(c,u,v)f(s, t, u(s, t), v(s, t))

and

f(s, t, u(s, t), v(s, t)) = 0,

whenever G(s, t) < 0.
(H6) There exist u0, v0 ∈ P and r ∈ (0, 1) such that

u0(s, t) ≤ rv0(s, t),∫ T

ϵ

G(t, ξ)f
(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ ≥ u0(s, t),∫ T

ϵ

G(t, ξ)f
(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ ≤ v0(s, t),

for (s, t) ∈ ([a, b]× [ϵ, T ]).

Then, equation (2.4) with boundary conditions (2.5) has a unique
solution u∗ ∈ [u0, rv0]. Moreover, for the sequences

un+1 =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, un(s, ξ),

∂

∂s
un(s, ξ)

)
dξ,

vn+1 =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, vn(s, ξ),

∂

∂s
vn(s, ξ)

)
dξ,

n = 0, 1, . . ., we have ∥un − u∗∥ → 0 and ∥vn − u∗∥ → 0.

Proof. Similar to the proof of Theorem 2.2, we can show that, for
the operator A defined by

A(u(s, t), v(s, t)) =

∫ T

ϵ

G(t, ξ)f
(
s, ξ, u(s, ξ),

∂

∂s
v(s, ξ)

)
dξ,

A(u(s, t), u(s, t)) ≥ 0 for all u ∈ P and (s, t) ∈ [a, b] × [0, 1]. Also, A
satisfies the conditions of Theorem 1.5; therefore, it has a unique
positive fixed point u∗. The use of Lemma 2.4 completes the proof. �

Remark 2.6. By using the fixed point theorem for mixed monotone
operators with convexity, we established the uniqueness of positive
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solutions to fractional partial differential equation BVPs. The method,
as well as the existence and uniqueness result to fractional partial
differential equations, is relatively new to the literature.
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