Translator Disclaimer
2017 On torsion free and cotorsion discrete modules
Edgar Enochs, J.R. García Rozas, Luis Oyonarte, Blas Torrecillas
Rocky Mountain J. Math. 47(2): 429-444 (2017). DOI: 10.1216/RMJ-2017-47-2-429

Abstract

We prove that, if $\mathcal F $ is the class of torsion free discrete modules over a profinite group $G$, that is, the class of discrete $G$-modules which are torsion free as abelian groups, then $({\mathcal F},{\mathcal F}^\bot )$ is a complete cotorsion pair. Moreover, we find a structure theorem for torsion free and cotorsion discrete $G$-modules and for finitely generated cotorsion discrete $G$-modules.

Citation

Download Citation

Edgar Enochs. J.R. García Rozas. Luis Oyonarte. Blas Torrecillas. "On torsion free and cotorsion discrete modules." Rocky Mountain J. Math. 47 (2) 429 - 444, 2017. https://doi.org/10.1216/RMJ-2017-47-2-429

Information

Published: 2017
First available in Project Euclid: 18 April 2017

zbMATH: 06715755
MathSciNet: MR3635368
Digital Object Identifier: 10.1216/RMJ-2017-47-2-429

Subjects:
Primary: 18G25

Rights: Copyright © 2017 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
16 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.47 • No. 2 • 2017
Back to Top