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STRONGLY COPURE PROJECTIVE,
INJECTIVE AND FLAT COMPLEXES

XIN MA AND ZHONGKUI LIU

ABSTRACT. In this paper, we extend the notions of
strongly copure projective, injective and flat modules to
that of complexes and characterize these complexes. We
show that the strongly copure projective precover of any
finitely presented complex exists over n-FC rings, and a
strongly copure injective envelope exists over left Noetherian
rings. We prove that strongly copure flat covers exist over
arbitrary rings and that (SCF ,SCF⊥) is a perfect hereditary
cotorsion theory where SCF is the class of strongly copure
flat complexes.

1. Introduction. Enochs and Jenda [7] introduced the notions of
strongly copure injective and flat modules. A left R-module M is said
to be strongly copure injective if ExtiR(E,M) = 0 for all injective left
R-modules E and all i ≥ 1. A left R-module M is said to be strongly
copure flat if TorRi (E,M) = 0 for all injective right R-modules E and
all i ≥ 1. They showed the existence of strongly copure injective preen-
velopes over Noetherian rings and strongly copure flat preenvelopes
over commutative Artinian rings. Mao and Ding [15] introduced the
notion of strongly P -projective modules. M is said to be strongly P -
projective if ExtiR(M,P ) = 0 for all projective left R-modules P . We
find that the notion happens to be the duality of strongly copure in-
jective modules and call them strongly copure projective modules in
this paper. Mao [13] studied homological properties of strongly cop-
ure projective modules and the existence of strongly copure projective
precovers.

In this paper, we extend the notions of strongly copure projective
modules, strongly copure injective and flat modules to complexes. They
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are called strongly copure projective, injective and flat complexes, re-
spectively, which are generalizations of Gorenstein projective, injective
and flat complexes. However, the existence of envelopes and covers
with respect to the classes of Gorenstein projective, injective and flat
complexes has been studied extensively (see [9, 10, 11, 12]). Based
on these studies, in this paper, we will concentrate our effort on the
existence of covers and envelopes of strongly copure projective, injec-
tive and flat complexes. We prove that any finitely presented complex
C has a strongly copure projective precover over n-FC rings. We show
the existence of the strongly copure injective envelope over Noetherian
rings. We also show that the strongly copure flat cover exists over ar-
bitrary rings and that (SCF ,SCF⊥) is a perfect hereditary cotorsion
theory, where SCF is the class of strongly copure flat complexes.

Throughout this paper, R denotes a ring with unitary. C will be the
abelian category of complexes of R-modules. This category has enough
projectives and injectives. For objects C and D of C, Hom(C,D) is
the abelian group of morphisms from C to D in C, and Exti(C,D) for
i ≥ 0 will denote the groups we obtain from the right derived functors
of Hom.

A complex

· · · −→ C−1 δ−1

−→ C0 δ0−→ C1 δ1−→ · · ·

of left R-modules will be denoted (C, δ) or C. We will use subscripts
to distinguish complexes. So, if {Ci}i∈I is a family of complexes, Ci
will be

· · · −→ C−1
i

δ−1
i−→ C0

i

δ0i−→ C1
i

δ1i−→ · · · .

Given a left R-module M , we will denote by M the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

with the M in the −1 and 0th position. Also, by M we mean the
complex with M in the 0th place and 0 in the other places. Given a
complex C and an integer m, C[m] denotes the complex such that
C[m]n = Cm+n whose boundary operators are (−1)mδm+n. The
nth cycle module is defined as Kerδn and is denoted ZnC. The nth
boundary module is defined as Im δn−1 and is denoted BnC.
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We recall that a complex P is projective if the functor Hom(P,−)
is exact. Equivalently, P is projective if and only if P is exact and, for
each n ∈ Z, Ker(Pn → Pn+1) is a projective module. For example, if
M is a projective module, then the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

is projective. In fact, any projective complex is uniquely, up to
isomorphism, the direct sum of such complexes (one such complex
for each n ∈ Z). The dual notion is that of injective complex. A
complex E is injective if and only if it is exact and if, for every n ∈ Z,
Ker(En → En+1) is an injective module. If N is a injective module,
then

· · · −→ 0 −→ N
id−→ N −→ 0 −→ · · ·

is an injective complex. Up to an isomorphism, any injective complex
is a direct sum of such complexes. This direct sum is also the direct
product of these complexes.

Let C be a complex of left R-modules (respectively, of right R-
modules), and let D be a complex of left R-modules. We will denote by
Hom•(C,D) (respectively, C ⊗• D) the usual homomorphism complex
(respectively, tensor product) of the complexes C and D.

Given two complexes C and D, let Hom(C,D) = Z(Hom•(C,D)).
Then, we see that Hom(C,D) can be made into a complex with
Hom(C,D)m the abelian group of morphisms from C to D[m] and
with boundary operator given by f ∈ Hom(C,D)m. Then

δm(f) : C −→ D[m+ 1]

with
δm(f)n = (−1)mδn+mD fn, for any n ∈ Z.

We note that the new functor Hom(C,D) will have right derived
functors whose values will be complexes. These values shall be denoted
Exti(C,D). It is easy to see that Exti(C,D) is the complex

· · ·−→ Exti(C,D[n−1])−→ Exti(C,D[n])−→ Exti(C,D[n+1])−→ · · ·

with boundary operator induced by the boundary operator of D.

Let C be a complex of right R-modules, and let D be a complex of
left R-modules. We define C ⊗ D to be C ⊗• D/B(C ⊗• D). Then,



2020 XIN MA AND ZHONGKUI LIU

with the maps

(C ⊗• D)n

Bn(C ⊗• D)
−→ (C ⊗• D)n+1

Bn+1(C ⊗• D)
, x⊗ y 7−→ δC(x)⊗ y,

where x⊗ y is used to denote the coset in (C ⊗• D)n/Bn(C ⊗• D), we
obtain a complex. Note that the functor will have left derived functors
which we denote by Tori(−, C).

Let B be a class of objects in an abelian category D, and let X be an
object of D. A homomorphism α : B → X, where B is in B, is called
a B-precover of X if the diagram

B′

β

��

γ

~~}
}
}
}

B
α

// X

can be completed for each homomorphism β : B′ → X with B′ in
B. If, furthermore, when B′ = B and β = α, the only such γ is an
automorphism of B, then α : B → X is called a B-cover of X. Dually,
we have the concepts of B-preenvelopes and B-envelopes.

2. Strongly copure projective complexes.

Definition 2.1. We say that a complex C is strongly copure projective
if Exti(C,P ) = 0 for all projective complexes P and all i ≥ 1.

Remark 2.2.

(i) The class of strongly copure projective complexes is closed under
direct sums, extensions and kernels of epimorphisms.

(ii) Every Gorenstein projective complex is strongly copure projec-
tive.

(iii) Exti(C,P ) = 0 ⇔ Exti(C,P ) = 0 for any projective complex P .

Lemma 2.3. [11, Lemma 2.7]. Let k be a positive integer. If a

complex C satisfies Extk(C,Q) = 0 for all projective complexes Q, then

Extk(Cm,M) = 0 for all m ∈ Z and all projective left R-modules M .
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Theorem 2.4. Let C be a complex of left R-modules. Then the fol-
lowing conditions are equivalent :

(i) C is a strongly copure projective complex ;
(ii) Cm is a strongly copure projective left R-module for all m ∈ Z.

Proof.

(i) ⇒ (ii) follows from Lemma 2.3.

(ii) ⇒ (i). Now, assume that C is a complex such that each term
Cm is a strongly copure projective module. We only need to show that
Exti(C,Q) = 0 for any projective complex Q. Let P be a projective
module. Let

0 −→ P −→ I0 −→ I1 −→ · · ·

be an injective resolution of P . Then,

0 −→ P −→ I0 −→ I1 −→ · · ·

is an injective resolution of the projective complex P . If we apply
Hom(C,−) to this injective resolution, we obtain the complex:

0 −→ Hom(C,P ) −→ Hom(C, I0) −→ Hom(C, I1) −→ · · ·

and the following commutative diagram:

0 // Hom(C,P ) //

∼=
��

Hom(C, I0) //

∼=
��

Hom(C, I1) //

∼=
��

· · ·

0 // HomR(C
0, P ) // HomR(C

0, I0) // HomR(C
0, I1) // · · ·

Since C0 is strongly copure projective, we obtain ExtiR(C
0, P ) = 0 for

all i ≥ 1. This results in Exti(C,P ) = 0 for i ≥ 1. Now, we can repeat
the argument with P [n] for any n ∈ Z and obtain Exti(C,P [n]) = 0
for any projective module P , any n ∈ Z and any i ≥ 1. Now, if Q is
an arbitrary projective complex, we have Q = ⊕Pn[n], where Pn is a
projective left R-module for each n ∈ Z. Furthermore,⊕

Pn[n] =
∏

Pn[n].

Thus, from this observation and from the above, we see that Exti(C,Q)
= 0. Hence, C is a strongly copure projective complex. �
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Now, we provide the definition of strongly copure projective dimen-
sion.

Definition 2.5. Let C be a complex of left R-modules. The strongly
copure projective dimension, Scpd(C), of C is defined as:

Scpd(C) = inf
{
n | there exists an exact sequence:

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ C −→ 0,

with each Pi strongly copure projective
}
.

If no such n exists, set Scpd(C)=∞.

Details and results on strongly copure projective dimension of mod-
ules appeared in [13]. The strongly copure projective dimension of
R-module M is also denoted as Scpd(M).

Theorem 2.6. Let C be a complex of left R-modules. Then, Scpd(C) =
sup{Scpd(Cm) | m ∈ Z}.

Proof. If sup{Scpd(Cm) | m ∈ Z} = ∞, then

Scpd(C) ≤ sup{Scpd(Cm) | m ∈ Z}.

Naturally, we may assume that sup{Scpd(Cm) | m ∈ Z} = n is finite.
Consider a projective resolution

0 −→ Kn −→ Pn−1 −→ Pn−2 −→ · · · −→ P0 −→ C −→ 0

of C, where each Pi is a projective complex. Then, there is an exact
sequence of modules

0 −→ Km
n −→ Pmn−1 −→ Pmn−2 −→ · · · −→ Pm0 −→ Cm −→ 0,

for all m ∈ Z. Then Km
n is strongly copure projective for all m ∈ Z

by [13, Proposition 3.2]. Now, by Theorem 2.4, Kn is strongly copure
projective. This shows that Scpd(C) ≤ n, and so,

Scpd(C) ≤ sup{Scpd(Cm) | m ∈ Z}.

Now, it is enough to show that sup{Scpd(Cm) | m ∈ Z} ≤ Scpd(C).
Naturally, we may assume that Scpd(C) = n is finite. Then there exists
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an exact sequence:

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ C −→ 0,

with each Pi strongly copure projective. By Theorem 2.4, Pmi are
strongly copure projective for all m ∈ Z and all i = 0, 1, . . . , n. Thus,
Scpd(Cm) ≤ n, and so, sup{Scpd(Cm) | m ∈ Z} ≤ Scpd(C). �

Theorem 2.7. The following are equivalent for a complex C and n ≥ 0:

(i) Scpd(C) ≤ n;
(ii) Exti(C,P ) = 0 for any projective complex P and any i > n;
(iii) Exti(C,L) = 0 for all complexes L with finite projective dimension

and any i > n;
(iv) For any exact sequence

0 −→ Kn −→ Qn−1 −→ · · · −→ Q1 −→ Q0 −→ C −→ 0

with each Qi strongly copure projective, then Kn is a strongly
copure projective complex.

Proof.

(i) ⇒ (iii). By the definition, there exists an exact sequence:

0 −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ C −→ 0,

with each Pj strongly copure projective. It is easy to see that

Exti(Pj , L) = 0 for all i ≥ 1 and all complexes L with finite pro-

jective dimension. Thus, Exti(C,L) ∼= Exti−n(Pn, L) = 0 for all i > n
and all complexes L with finite projective dimension.

(iii) ⇒ (ii). It is clear.

(ii) ⇒ (i). Since Exti(C,P ) = 0 for all i > n and all projective
complexes P , by Lemma 2.3, we have ExtiR(C

m, Q) = 0 for i > n, all
m ∈ Z and all projective left R-modules Q. Thus, by [13, Proposition
3.2], Scpd(Cm) ≤ n. Hence,

Scpd(C) = sup{Scpd(Cm | m ∈ Z} ≤ n

by Theorem 2.4.

(i) ⇔ (iv). It follows from Theorems 2.4 and 2.6. �
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Proposition 2.8. Let C be a complex with pd(C) <∞.

(i) If C is strongly copure projective, then C is projective.
(ii) Scpd(C) = pd(C).

Proof. Analogous to the proof of [13, Proposition 3.4]. �

Proposition 2.9. Let C be an exact complex with HomR(−, Q) exact
for all projective R-modules Q. Then, C is a strongly copure projective
complex if and only if Ker(δm) is a strongly copure projective R-module
for all m ∈ Z.

Proof.

⇐. Since Ker(δm) is strongly copure projective for each m ∈ Z,
then Cm is strongly copure projective. By Theorem 2.4, C is strongly
copure projective.

⇒. Since C is strongly copure projective, there exists an exact
sequence:

· · · −→ P2
µ2−→ P1

µ1−→ P0
µ0−→ C −→ 0,

with Pi projective such that the sequence is Hom(−, P ) exact for any
projective complex P . Note that, for any complex D, Extn(R[−m], D)
∼= Hn+m(D). Particularly, for any exact complex C, Extn(R[−m], C) ∼=
Hn+m(C) = 0, n ≥ 0. So, we obtain an exact sequence:

· · · −→ Hom(R[−m], P2) −→ Hom(R[−m], P1) −→ Hom(R[−m], P0)

−→ Hom(R[−m], C) −→ 0.

However, Hom(R[−m], D) ∼= Ker(δmD ) for any complex D. So, there is
an exact sequence:

· · · −→ Ker(δmP2
) −→ Ker(δmP1

) −→ Ker(δmP0
) −→ Ker(δmC ) −→ 0,

with Ker(δmPi
) projective, where Pi are projective complexes.

Now, we need to show that the above complex is Hom(−, Q) exact
for any projective complex Q. Consider the short exact sequence:

0 −→ Ker(δmKer(µ0)
) −→ Ker(δmP0

) −→ Ker(δmC ) −→ 0.

Suppose that g : Ker(δmKer(µ0)
) → Q with Q a projective R-module.

Since C is exact and strongly copure projective, then the short exact
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sequence
0 −→ Ker(µ0)

m −→ Pm0 −→ Cm −→ 0

is HomR(−, Q) exact. Since Ker(µ0) is exact, then Ker(µ0) is HomR(−,
Q) exact. Thus, we have a morphism h such that the following diagram
is commutative.

Ker(δmKer(µ0)
)

g

((

//

��

Ker(δmP0
)

�� h

��

Ker(µm0 ) //

--

Pm0

##G
GG

GG
GG

GG

Q

Analogously with the above discussion, we can show that

Ext1(Ker(δmKer(µi)
, Q)) = 0.

Then, the proof is finished. �

The following theorems show the existence of strongly copure pre-
covers under some special conditions.

Proposition 2.10. Every complex C with pd(C) < ∞ has a strongly
copure projective precover.

Proof. Let C be a complex with pd(C) < ∞. There is an exact
sequence

0 −→ K −→ P −→ C −→ 0

with a projective complex P . Note that pd(K) < ∞. So, for any
strongly copure projective complex N , there is an exact sequence:

0 −→ Hom(N,K) −→ Hom(N,P ) −→ Hom(N,C) −→ 0.

Thus, P → C is a strongly copure projective precover of C. �

Definition 2.11. [9, Definition 4.1.1]. We will say that a complex C
is finitely generated if, in the case

C =
∑
i∈I

Di,
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with Di ∈ C subcomplexes of C, there exists a finite subset J ⊆ I such
that

C =
∑
i∈J

Di.

We say that a complex C is finitely presented if C is finitely
generated and for any exact sequence of complexes

0 −→ K −→ L −→ C −→ 0

with L finitely generated, K is also finitely generated.

Lemma 2.12. [9, Theorem 5.2.2]. Let R be a ring. The following
conditions are equivalent :

(i) R is right coherent.
(ii) Any complex of left R-modules has a flat preenvelope.

Recall that R is an n-FC ring [13] if R is a left and right coherent
ring with FP -id(RR) ≤ n and FP -id(RR) ≤ n for an integer n ≥ 0.

Lemma 2.13. Let R be an n-FC ring, and let C be a finitely generated
strongly copure projective complex of left R-modules. Then, there is an
exact sequence

0 −→ C −→ P0 −→ P1 −→ · · ·

with all Pi finitely generated projective complexes for all i ≥ 0.

Proof. By Lemma 2.12, C has a flat preenvelope C → F . But, then,
by [9, Theorem 4.1.3], C → F has a factorization C → P → F where
P is a finitely generated projective complex. So C → P is a finitely
generated projective preenvelope. Then, there is a complex

0 −→ C −→ P0 −→ P1 −→ P2 −→ · · · ,

with each Pi a finitely generated projective such that Hom(−, P ) leaves
the sequence exact whenever P is a projective complex. We claim
that the complex is exact. Consider the mth degree. There is a

monomorphism Cm
λ−→ E with E an injective left R-module, and

there is an exact sequence

0 −→ A −→ B
π−→ E −→ 0
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with B a projective left R-module. Since FP -id(RR) < ∞, FP -
id(B) < ∞. So FP -id(A) < ∞. Thus, fd(A) < ∞ by [3, Theorems
3.5, 3.8]. Since C is a strongly copure projective complex, then Cm is
a strongly copure projective R-module by Theorem 2.4. Therefore,
Ext1R(C

m, A) = 0 by [13, Propostion 2.3], and so, there exists a

Cm
α−→ B such that πα = λ. Hence, α is a monomorphism. So,

C → P0 is a monomorphism. Note that coker (C → P0) is also a
finitely generated strongly copure projective. So, proceeding in the
above manner, we obtain the exact sequence

0 −→ C −→ P0 −→ P1 −→ P2 −→ · · · . �

Theorem 2.14. Let R be an n-FC ring, and let C be a finitely
presented complex. Then, there is an exact sequence

0 −→ K −→ X −→ C −→ 0

such that X is a finitely presented strongly copure projective complex
and pd(K) ≤ n− 1.

Proof. First, suppose that C is a finitely presented complex in C.
By [17, Theorem 2.4], we can find an epimorphism P0 → C with P0

bounded and P0
m is free for all m ∈ Z. Then, the induced short exact

sequence
0 −→ K −→ P0 −→ C −→ 0

has K finitely generated. Hence, K is finitely presented. Proceeding
in this manner, we obtain an exact sequence:

0 −→ Kn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ C −→ 0,

with Pi and Kn finitely presented. Moreover, by [13, Corollary 3.3],
Kn is strongly copure projective. By Lemma 2.13, there is an exact
sequence:

0 −→ Kn −→ Q0 −→ Q1 −→ · · · −→ Qn−2 −→ Qn−1 −→ L −→ 0,

with allQi finitely generated projective complexes such that Hom(−, P )
leaves the sequence exact whenever P is a projective complex. In fact,
Qi is finitely presented. Thus, we obtain the following commutative
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diagram:

0 // Kn
// Q0

//

��

· · · // Qn−2
//

��

Qn−1
//

��

L //

��

0

0 // Kn
// Pn−1

// · · · // P1
// P0

// C // 0

By [6, Proposition 1.4.14], we obtain the exact sequence:

0 −→ Kn −→ Q0 ⊕Kn −→ Q1 ⊕ Pn−1 −→
· · · −→ Qn−1 ⊕ P1 −→ L⊕ P0 −→ C −→ 0.

which gives the exact sequence:

0 −→ Q0 −→ Q1⊕Pn−1 −→ · · · −→ Qn−1⊕P1 −→ L⊕P0 −→ C −→ 0.

Note that L is a finitely presented strongly copure projective, so L⊕P0

is a finitely presented strongly copure projective. Consider the short
exact sequence

0 −→ K −→ L⊕ P0 −→ C −→ 0.

It is clear that pd(K) ≤ n − 1. So, Ext1(G,K) = 0 for any strongly
copure projective complex G. Thus, L ⊕ P0 → C is a strongly copure
projective precover of C. �

Corollary 2.15. Let R be an n-FC ring. Any finitely presented
complex has a special L-preenvelope, where L is denoted as the class
of complexes with finite projective dimension.

Proof. Let C be a finitely presented complex. By Theorem 2.14,
there is an exact sequence

0 −→ K −→ Q −→ C −→ 0

with Q a finitely presented strongly copure projective and pd(K) <∞.
There is also an exact sequence

0 −→ Q −→ P −→ L −→ 0
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with P a finitely generated projective complex, by Lemma 2.13. Con-
sider the push-out diagram of Q→ C and Q→ P :

0

��

0

��
0 // K // Q //

��

C //

��

0

0 // K // P //

��

D //

��

0

L

��

L

��
0 0

So, L is a strongly copure projective and pd(D) < ∞. Hence, C → D
is an L-preenvelope. �

In what follows, SCP stands for the class of strongly copure projec-
tive complexes.

Proposition 2.16. (SCP,SCP⊥) is a hereditary cotorsion theory.

Proof. SCP ⊆ ⊥(SCP⊥) is obvious. We only need to show the

converse. Let X ∈ SCP and N ∈ SCP⊥. There is an exact sequence

0 −→ K −→ P −→ X −→ 0

with P projective and an exact sequence

0 −→ N −→ E −→ L −→ 0

with E injective. Then, Ext2(X,N) ∼= Ext1(K,N) = 0 and Ext1(X,L)
∼= Ext1(X,N) = 0. So, L ∈ SCP⊥. Now, let C ∈ ⊥(SCP⊥). Then,
Ext2(C,N) ∼= Ext1(C,L) = 0. Therefore, Exti(C,N) = 0 for any i ≥ 1
by induction. Thus, Exti(C,P ) = 0 for any projective complex P and
i ≥ 1. So, C ∈ SCP. �
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3. Strongly copure injective complexes.

Definition 3.1. We say that C is a strongly copure injective complex
if Exti(E,C) = 0 for all injective complexes of left R-modules E and
for all i ≥ 1.

Remark 3.2.

(i) The class of a strongly copure injective complex is closed under
direct products, extensions and cokernels of monomorphisms.

(ii) Every Gorenstein injective complex is strongly copure injective.
(iii) Exti(E,C) = 0 ⇔ Exti(E,C) = 0 for all injective complexes E.

Theorem 3.3. Let C be a complex of left R-modules. Thus, the
following conditions are equivalent :

(i) C is a strongly copure injective complex ;
(ii) Cm is a strongly copure injective left R-module for all m ∈ Z.

We also give the definition of strongly copure injective dimension.

Definition 3.4. The strongly copure injective dimension, Scid(C), of
C is defined as

Scid(C) = inf
{
n | there exists an exact sequence:

0 −→ C −→ E0 −→ E1 −→ · · · −→ En−1 −→ En −→ 0,

with each Ei strongly copure injective
}
.

Theorem 3.5. Let R be a left Noetherian ring, and let C be a complex
of left R-modules. Then, Scid(C) = sup{Scid(Cm) | m ∈ Z}.

Theorem 3.6. Let R be a left Noetherian ring. The following condi-
tions are equivalent for a complex C and n ≥ 0:

(i) Scid(C) ≤ n;
(ii) Exti(E,C) = 0 for all injective complexes E and all i > n;
(iii) Exti(L,C) = 0 for all complexes L with finite injective dimension

and all i > n;
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(iv) For any exact sequence

0 −→ C −→ E0 −→ · · · −→ En−1 −→ Ln −→ 0

with each Ei strongly copure injective, then Ln is a strongly copure
injective complex.

Proposition 3.7. Let C be an exact complex with HomR(I,−) exact
for all injective R-modules I. Then C is strongly copure injective if
and only if Ker(δm) is strongly copure injective for all m ∈ Z.

Theorem 3.8. Let R be a left Noetherian ring, and let C be a complex
with Scid(C) ≤ n. Then there is an exact sequence

0 −→ C −→ X −→ L −→ 0

with C → X a strongly copure injective preenvelope and id (L) ≤ n−1.

Proof. By Theorem 3.8, we have an exact sequence:

0 −→ C −→ E0 −→ E1 −→ · · · −→ En−1 −→ K −→ 0,

with E0, E1, . . . , En−1 injective and K strongly copure injective. Since
R is left Noetherian, by [8], there is a set χ of injective left R-modules
such that any injective left R-module is the direct sum of modules, each
isomorphic to an element of χ. Set

S = {I[m] | I ∈ χ,m ∈ Z}.

Then it is clear that every injective complex is the direct sum of
complexes, each isomorphic to an element of S. Thus, by [2, Theorem
3.2], any complex has an injective cover. So, we have an exact sequence:

0 −→ C ′ −→ D0 −→ D1 −→ · · · −→ Dn−1 −→ K −→ 0,

where
Dn−1 −→ K,Dn−2 −→ Ker(Dn−1 −→ K), . . .

are injective covers. Then C ′ is strongly copure injective. Consider the
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commutative diagram of complexes:

0 // C //

��

E0
//

��

E1
//

��

· · · // En−1
//

��

K // 0

0 // C ′ // D0
// D1

// · · · // Dn−1
// K // 0

Then, we can form the exact sequence of complexes:

0 −→ C −→ C ′ ⊕ E0 −→ D0 ⊕ E1 −→
· · · −→ Dn−2 ⊕ En−1 −→ Dn−1 ⊕K −→ K −→ 0.

Note that the complex K is a subcomplex of the above, and it is exact.
Hence, there is the exact sequence:

0 −→ C −→ C ′ ⊕ E0 −→ D0 ⊕ E1 −→
· · · −→ Dn−2 ⊕ En−1 −→ Dn−1 −→ 0.

It follows that

0 −→ C −→ C ′ ⊕ E0 −→ V −→ 0

is exact. We see that id (V ) ≤ n − 1. This implies that C → C ′ ⊕ E0

is a strongly copure injective preenvelope of C. �

Corollary 3.9. Any complex C with Scid(C) ≤ n over a left Noe-
therian ring has a strongly copure injective envelope which is a quasi-
isomorphism.

Proof. Let C be a complex, and let

0 −→ C −→ E −→ L −→ 0

be a sequence with C → E a special strongly copure injective preenve-
lope. Then the class of short exact sequences

{0 −→ C −→ H −→ D −→ 0 | D ∈ L}

has a generator where L is the class of complexes with finite injective
dimension (we consider this class as a category with the obvious maps).
Since the class of L is closed under direct limits and extensions, it
follows by Zorn’s lemma for categories that this class has a “minimal”
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generator, that is, a generator

0 −→ C −→ N −→ K −→ 0

such that, for any commutative diagram, f, g are automorphisms:

0 // C // N //

f

��

K //

g

��

0

0 // C // N // K // 0.

This minimal generator produces a strongly copure injective envelope
of C. �

Lemma 3.10. If ϕ : C →M is a strongly copure injective preenvelope,
then ϕm : Cm → Mm is a strongly copure injective preenvelope in R-
Mod for all m ∈ Z.

Proof. Let f : Cm → E be a map with E a strongly copure injective
R-module. We consider the diagram:

C
ϕ //

(f)
��

M

g

||zz
zz
zz
zz

E[m]

where (f)m = f , (f)m−1 = fδm−1
C and (f)i = 0 for i ̸= m−1,m. Since

E[m] is strongly copure injective, then there exists g :M → E[m] such
that gϕ = (f). Therefore, gmf = ϕm, and so ϕm : Cm → Mm is a
strongly copure injective preenvelope in R-Mod. �

Lemma 3.11. Let

C ≡ 0 −→ C0 −→ C1 −→ · · ·

be a bounded from below complex, and let C −→ E be a strongly copure
injective envelope. Then E is also bounded from below.

Proof. The complex

E′ ≡ 0 −→ E0 −→ E1 −→ · · ·
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is clearly strongly copure injective, and the obvious induced map
C → E′ is a strongly copure injective preenvelope. So, E is a direct
summand of E′, and hence, E is bounded from below. �

Proposition 3.12. Let

(C, δ) ≡ 0 −→ C0 −→ C1 −→ · · ·

be a bounded from below complex, and let ϕ : C → E be a strongly
copure injective envelope of C. Then ϕ0 : C0 → E0 is a strongly
copure injective envelope of E0 in R-Mod.

Proof. By Lemma 3.11, we know that E is bounded from below
and, by Lemma 3.10, ϕ0 : C0 → E0 is a strongly copure injective
preenvelope. So, let ψ0 : C0 → E(C0) be a strongly copure injective
envelope of C0 in R-Mod. We consider the splitting monomorphism
α : E(C0) → E0 such that αψ0 = ϕ0. We take the complex

E′ ≡ 0 −→ E(C0)
h0α−→ E1 h1

−→ · · · ,

where

E ≡ 0 −→ E0 h0

−→ E1 h1

−→ · · · .

Also, we consider the morphism of complexes:

0 // C0 δ0 //

ψ0

��

C1 δ1 //

ϕ1

��

C2 //

ϕ2

��

· · ·

0 // E(C0)
h0α // E1 h1

// E2 // · · · .

Now, it is easy to check that the above map, say ϕ′ : C → E′, is a
strongly copure injective preenvelope. Therefore, there exists a splitting
monomorphism t : E → E′ such that tϕ = ϕ′. However, t0ϕ0 = ψ0;
hence, t0αψ0 = ψ0 and so t0α is an automorphism. We conclude that
t0 is an automorphism, which means that ϕ0 : C0 → E0 is a strongly
copure injective envelope in R-Mod. �

4. Strongly copure flat complexes.

Definition 4.1. We will say that C is strongly copure flat if Tori(E,C)
= 0 for all injective complexes of right R-modules E and for i ≥ 1.
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Remark 4.2. Every Gorenstein flat complex is strongly copure flat.
Strongly copure flat complexes are DG-flat by [9, Lemma 5.4.1].

Theorem 4.3. The following conditions are equivalent :

(i) C is strongly copure flat ;
(ii) C+ is strongly copure injective;
(iii) Cm is strongly copure flat in R-Mod for all m ∈ Z.

Proof.

(i) ⇒ (iii). There is an exact sequence

· · · −→ F1 −→ F0 −→ C −→ 0

with all Fi flat, and for any injective complex E of right R-modules,
the sequence remains exact when we apply E ⊗ −. Consider the mth
degree term,

· · · −→ Fm1 −→ Fm0 −→ Cm −→ 0.

The sequence remains exact when we apply I ⊗R − ≡ I ⊗−.

(iii) ⇒ (ii). For any injective right R-module I, Tori(I, C
m)+ ∼=

Exti(I, Cm+) = 0. By Theorem 3.3, C+ is strongly copure injective.

(ii) ⇒ (i). By Exti(E,C+) ∼= Tori(E,C)
+ = 0. �

Definition 4.4. The strongly copure flat dimension Scfd(C) of a
complex C is defined by declaring that Scfd(C) ≤ n if and only if
C has a strongly copure flat resolution of length n.

Theorem 4.5. Let C be a complex of left R-modules. Then

Scfd(C) = sup{Scfd(Cm) | m ∈ Z}.

Proof. It follows from [7, Lemma 3.3]. �

Corollary 4.6. Let C be a complex. Then,

Scfd(C) = Scid(C+).

Proposition 4.7. The following conditions are equivalent for a com-
plex C over any ring R:
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(i) Scfd(C) ≤ n;
(ii) Tori(E,C) = 0 for all injective complexes of right R-modules E

and for i > n;
(iii) Tori(E,C) = 0 for all complexes of right R-modules E with

injective dimension finite and for i > n;
(iv) Every nth syzygy of C is strongly copure flat.

Recall that a complex M is cotorsion if Ext1(F,M) = 0 for any flat
complex F [6, Definition 5.3.22].

Theorem 4.8. Let R be a right coherent ring. Then, the following
conditions are equivalent for a complex C:

(i) C is a strongly copure flat complex ;
(ii) Exti(C,M) = 0 for any flat cotorsion complex M and i ≥ 1;
(iii) Exti(C,M) = 0 for any cotorsion complex M with fd(M) < ∞

and i ≥ 1;
(iv) Exti(C,N) = 0 for any pure injective complex N with fd(N) <∞

and i ≥ 1.

Proof.

(i) ⇒ (ii). Let M be a flat cotorsion complex. Then M+ is an
injective complex. Since R is right coherent, M++ is a flat complex.
Note that M is a pure subcomplex of M++ by [9, Proposition 5.1.4],
and hence, M++/M is flat. Since M is cotorsion, the pure exact
sequence

0 −→M −→M++ −→M++/M −→ 0

is split. Therefore, Exti(C,M) is a direct summand of Exti(C,M++).
By (i), Exti(C,M++) ∼= Tori(M

+, C)+ = 0, so Exti(C,M) = 0 for all
i ≥ 1.

(ii) ⇒ (iii). Let M be a cotorsion complex with fd(M) = n < ∞.
Then there is a flat resolution,

0 −→ Fn −→ Fn−1 −→ · · · −→ F0 −→M −→ 0,

where Fj → Ker(Fj−1 → Fj−2), F1 → Ker(F0 →M) and F0 →M are
flat covers for 2 ≤ j ≤ n − 1. Since Kj is cotorsion by Wakamatsu’s
lemma [9, Proposition 1.2.3], Fj−1 is flat cotorsion. Note that Fn = Kn
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is flat cotorsion. Therefore, Exti(C,M) ∼= Exti+1(C,K1) ∼= · · · ∼=
Exti+n(C,Kn) = 0 for any i ≥ 1 by (ii).

(iii) ⇒ (iv). By [9, Lemma 5.3.2], any pure injective and flat
complex C is cotorsion.

(iv) ⇒ (i). Let E be an injective complex of right R-modules. Then
E+ is flat. However, E+ is pure injective, and, as well, Tori(E,C)

+ ∼=
Exti(C,E+) = 0. �

Lemma 4.9. Let R be a right coherent ring with FP -id(RR) ≤ n,
n ≥ 0, and let C be a strongly copure flat complex. Then there is an
exact sequence

0 −→ C −→ F −→ L −→ 0

with F flat and L strongly copure flat.

Proof. Let C be a strongly copure flat complex, and consider the
following commutative diagram:

0

��

0

��
K

��

K

��
0 // H //

��

F (C) //

��

L′ // 0

0 // C //

��

E(C) //

��

L′ // 0

0 0

with C → E(C) an injective envelope of C and F (C) → E(C) a flat
cover of E(C). Clearly, K is cotorsion by Wakamatsu’s lemma and
exact by the exactness of E(C), F (C). Since R is right coherent
and FP − id(RR) ≤ n, fd(KerδmE(C)) ≤ n for all m ∈ Z; hence,

fd(E(C)) ≤ n. So, fd(K) ≤ n − 1. However, C is strongly copure
flat, and so Exti(C,K) = 0, by Theorem 4.8. Then the sequence

0 −→ K −→ H −→ C −→ 0
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is split. Therefore, C is a subcomplex F (C). Note that C has a
flat preenvelope α : C → F since R is right coherent. So, α is a
monomorphism, and we get an exact sequence

0 −→ C −→ F −→ L −→ 0.

For degree m, m ∈ Z, by [14, Proposition 2.7] and [16, Remark 3.2],
Lm is a copure flat R-module. Then Tor1(I, L

m) = 0 for any injective
right R-module I. Note that Tori(I, L

m) ∼= Tori−1(I, C
m) = 0 for

i ≥ 2. Since Cm is strongly copure flat, Lm is strongly copure flat. So,
L is strongly copure flat by Theorem 4.3. �

Theorem 4.10. Let R be a right coherent ring with FP -id(RR) ≤
n, n ≥ 0. Then the following conditions are equivalent :

(i) C is strongly copure flat ;
(ii) C is Gorenstein flat ;
(iii) There is an exact sequence:

· · · −→ F−1 −→ F0 −→ F1 −→ F2 −→ · · ·

of flat complexes with C ∼= Ker(F0 → F1) such that Hom(−,M)
leaves the sequence exact for any flat cotorsion complex M ;

(iv) There is an exact sequence:

· · · −→ F1 −→ F0 −→ C −→ 0

with Fi flat such that Hom(−,M) leaves the sequence exact for
any flat cotorsion complex M .

Proof.

(ii) ⇒ (i). Obvious.

(i) ⇒ (ii). Let C be a strongly copure flat complex, and let E be an
injective complex. By Lemma 4.9, there is an exact sequence

0 −→ C −→ F0 −→ L1 −→ 0

with F0 flat and L1 strongly copure flat. It is clear that E⊗− preserves
the exactness of this sequence. For L1, by Lemma 4.9 again, we can
also get an exact sequence

0 −→ L1 −→ F1 −→ L2 −→ 0
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with L2 strongly copure flat such that E ⊗ − is exact. Repeating the
same procedure, we get an exact sequence:

0 −→ F0 −→ F1 −→ F2 −→ · · · .

On the other hand, consider the exact sequence:

· · · −→ F1 −→ F0 −→ C −→ 0,

where F0 → M , F1 → Ker(F0 → M) and Fi+1 → Ker(Fi → Fi−1)
are flat covers for any i ≥ 1. Since Tor1(E,C) = 0, E ⊗ − leaves the
sequence

0 −→ Ker(F0 −→ C) −→ F0 −→ C −→ 0

exact. It is easy to see that Ker(F0 → C) is strongly copure flat. Then,
we can show that E ⊗− leaves the sequence

· · · −→ F1 −→ F0 −→ C −→ 0

exact by repeating the same procedure. So, C is Gorenstein flat.

(i) ⇒ (iii). The proof is similar to that of (1) ⇒ (2).

(iii) ⇒ (iv). Trivial.

(iv) ⇒ (i). Let M be a flat cotorsion complex. Consider the exact
sequence:

· · · −→ F1 −→ F0 −→ C −→ 0

of flat complexes such that Hom(−,M) leaves the sequence exact. Let
K1 = Ker(F0 → C). Then, there is an exact sequence

0 −→ K1 −→ F0 −→ C −→ 0.

Clearly, Hom(−,M) preserves the exactness of this sequence. Hence,
Ext1(C,M) = 0. Now, by induction, Exti(C,M) = 0 for any i ≥ 1. So
Exti(C,M) = 0. Hence, C is strongly copure flat by Theorem 4.8. �

Theorem 4.11. Let SCF be the class of strongly copure flat complexes.
Then (SCF ,SCF⊥) is a complete hereditary cotorsion theory.

Proof. Let F ∈ SCF and S ⊆ F be a pure subcomplex. Then

0 −→ (F/S)+ −→ F+ −→ (S)+ −→ 0
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is split, and F+ is strongly copure injective; therefore, F and F/S are
strongly copure flat, that is, SCF is closed under pure subcomplexes
and pure epimorphisms. Thus, there exists a cardinal N such that F
can be written as the direct union of a continuous chain of subcomplexes
(Fα)α<λ with λ an ordinal number such that F0, Fα+1/Fα ∈ SCF when
α+1 < λ with Card (F0), Card (Fα+1/Fα) ≤ N . Therefore, if B is the
direct sum of all representatives of SCF such that their cardinal is less
than or equal toN , thenM ∈ SCF⊥ if and only if Ext1(B,M) = 0. �

Now, let N be any complex. We will use the procedure in [4,
Theorem 10] to get an exact sequence

0 −→ N −→ A −→ F −→ 0

such that A ∈ SCF⊥ and F ∈ SCF .

Let B be a complex, and let

0 −→ S −→ P −→ B −→ 0

be exact with P a projective complex. For any ordinal λ, by transfi-
nite induction, we can construct a continuous chain of subcomplexes
(Nα)α<λ such that N0 = N and, if α+ 1 < λ, any morphism S → Nα
has an extension P → Nα+1. Then, each Nα+1/Nα is a direct sum of
copies of P/S ∼= B for α+ 1 < λ.

We now use [6, Corollary 7.3.2] with S the set of that corollary to
find a corresponding ordinal λ and define A = ∪α<λNα and F = A/N .
Then, for any morphism S → A, there is a factorization S → Nα → A
for some α < λ. Since λ is a limit ordinal, we have α + 1 < λ, and
so, by construction, there is a morphism P → Nα+1 which agrees with

S → Nα. However, this is just to say that A ∈ SCF⊥. If we put
Fα = Nα/N , we get that F0 and Fα+1/Fα are in SCF . Now, using
an easy induction over the exact sequence of Tor’s associated with the
exact sequence

0 −→ Fα −→ Fα+1 −→ Fα+1/Fα −→ 0,

we obtain Fα ∈ SCF for each α < λ. Since SCF is closed under direct
limits, it follows that F ∈ SCF .

If X ∈ ⊥(SCF⊥), there is an exact sequence

0 −→ K −→ P −→ X −→ 0
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with P a projective complex. If we apply the preceding to K, we obtain
an exact sequence

0 −→ K −→ A −→ F −→ 0

with A ∈ SCF⊥ and F ∈ SCF . Consider the next pushout diagram.

0

��

0

��
0 // K //

��

P //

��

X // 0

0 // A //

��

C //

��

X // 0

F

��

F

��
0 0

We get that C ∈ SCF for P , F ∈ SCF . Since A ∈ SCF⊥, the central
row splits, and so, X ∈ SCF . This gives us that SCF = ⊥(SCF⊥).

Therefore, (SCF ,SCF⊥) is a cotorsion theory with enough injectives

and projectives. The fact that (SCF ,SCF⊥) is hereditary is immediate
from the definition of SCF .

Corollary 4.12. (SCF ,SCF⊥) is a perfect hereditary cotorsion theory.

Proof. By Theorem 4.11, every complex has an SCF-precover and an
SCF⊥-preenvelope, and therefore, the result follows from [6, Theorem
7.2.6] since it is clear that SCF is closed under direct limits. �

Remark 4.13. If R is a right coherent ring with FP -id(RR) <∞, by
Theorem 4.10, then SCF becomes a Gorenstein flat complex.
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