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AFFINE-PERIODIC SOLUTIONS FOR
NONLINEAR DIFFERENTIAL EQUATIONS

CHUANBIAO WANG, XUE YANG AND YONG LI

ABSTRACT. The existence of affine-periodic solutions is
studied. These types of solutions may be periodic, harmonic
or even quasi-periodic. Mainly, via the topological degree
theory, a general existence theorem is proved, which asserts
the existence of affine-periodic solutions, extending some
classical results. The theorem is applied to establish the
Lyapunov function type theorem and the invariant region
principle relative to affine-periodic solutions.

1. Introduction. Great Newton discovered the law of universal
gravitation by applying his calculus, and firstly proved Kapler’s laws of
planetary motion mathematically, in which he showed that the orbit of
planetary motion is elliptical. This was the first result on the existence
of periodic solutions for differential equations. At the end of the 19th
century, in the study of celestial mechanics, Poincaré considered peri-
odic solutions and developed a theory which can show properties such
as periodicity by discussing the characteristics of equations without
solving them. This theory is called the qualitative theory of differen-
tial equations together with the work of Lyapunov on the stability of
solutions. The Poincaré map and the Lyapunov function are still very
important instruments in the research of periodic solutions.

Periodicity is a very important property in the study of differential
equations, but not all natural phenomena can be described alone by
periodicity. In fact, some differential equations often exhibit certain
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symmetries rather than periodicity. For example, consider the system:

(L.1) o’ = f(t,z),
where f(t,x) : R* x R® — R"; 2’ stands for
dz
dt’
and, for some @ € GL(R™), the following affine symmetry holds:
(1.2) ft+T,2) =Qf(t,Q 'x).
In the sense of (1.2), we have the concept of the affine-periodic system

(APS).

Definition 1.1. Consider system (1.1). If there exists Q € GL(n) and
T > 0 such that

ft+Tx) = Qf(t,Q 'x)

holds for all (t,z) € R' x R", we call (1.1) a (Q,T)-affine-periodic
system.

Remark 1.2. Consider system (1.1). If there is a linear transformation

of coordinates B which makes y = Bx, then

dy dBz 1
— = —— = Bf(t,B .
il f(t,B™y)

Letting g(t,y) = Bf(t, B~1y), we have
g(t+T,y) = Bf(t+T,B 'y) = BQf(t,Q"'B'y),
and
Qg(t,Q7'y) = QBf(t, B'Q 'y) = BQf(t,Q 'By),
where @ = BQB™!. Hence,

gt +T,y) = Qg(t.Q"'y).

This means that linear transformations of coordinates keep the affine-
periodicity of system (1.1). Obviously, for general nonlinear transfor-
mation of coordinates such as y = h(zx), the affine-periodicity will no
longer hold.
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By Definition 1.1, it is easy to see that this affine-periodic invariance
exhibits two characters: periodicity in time and symmetry in space.
Obviously, when @ = id (identity matrix), the invariance is just the
pure periodicity; when @ = —id, the invariance implies the usual
antisymmetry in space; when @) € O(n), the invariance shows rotating
symmetry in space. For some relative studies, we refer to [1, 2, 3].

Now a basic topic is to investigate the existence of (Q,T)-affine-
periodic solutions z(t) of system (1.1), i.e.,

(1.3) 2(t+T) = Qu(t).

In fact, this problem is equivalent to proving the existence of solutions
of the BVP in the following lemma.

Lemma 1.3. Consider system (1.1), where f(t,z) is continuous and
ensures the uniqueness of solutions with respect to initial values. The
existence of (Q,T)-affine-periodic solutions of equation (1.1) is equiva-
lent to the existence of solutions of the BVP (1.1) with z(T) = Qz(0).

Proof. For any solution x(t) of equation (1.1), let u(t) = Qta(t+T).
Then:
du(t)  Q 'dax(t+T)
dt At +1T)
= Q7N Qf(t,Q T a(t+ 1)) = f(t, u(t)).
This shows that wu(t) is a solution of equation (1.1). By the uniqueness

of solutions with respect to initial values and u(0) = Q~'z(T'), we know
that u(t) = Q7 'z(t + T) = z(t) if and only if Q~'z(T) = z(0). O

=Q ' f(t+T,z(t+ 1))

As a structural property of functions, affine periodicity is a general-
ization of pure periodicity. Some results have been proved to be similar
to periodic systems. For example, Yoshizawa proved that each dissi-
pative periodic system admits a periodic solution [13]. For dissipative
affine-periodic systems, the existence of affine-periodic solutions had
been proved [14]. In addition, Li, et al., discussed Levinson’s problem
on affine-periodic solutions where the system is dissipative-repulsive
[8], while some similar results on periodic solutions can be found in
[4, 5, 6, 12], and the problem was finally solved by Kiipper et al. [7].
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In this paper, we are interested in the existence of affine-periodic
solutions of systems without those conditions such as dissipativeness.
With the use of topological degree theory, some existence theorems
are proven for affine-periodic systems with @ € O(n). By using these
theorems, different conditions of Lyapunov function are given which
can be used to study the existence of affine-periodic solutions. We also
prove an invariant region principle on the existence of affine-periodic
solutions. Although this kind of principle has become popular in the
study of periodic solutions, it is unknown wether similar results hold
in quasi-periodic or almost periodic solutions. Now, our affine-periodic
solutions might be quasi-periodic.

Let us state our main results as follows.

Consider APS (1.1)
a' = f(t,x),

where the (Q,T)-affine-periodic function f : R! x R® — R" is con-
tinuous and ensures the uniqueness of solutions with respect to initial
values, @ € O(n).

To investigate the existence of solutions of equation (1.1), one often
considers the following auxiliary equation,

(1))\ x' = Af(ta Z‘),

where A € [0,1].

We first introduce an existence theorem for affine-periodic solutions.
The proof can be found in Section 2.

Theorem 1.4. Let D C R™ be a bounded open set. Assume the
following hypotheses hold for equation (1).

(Hy) For each X € (0,1], every possible affine-periodic solution x(t)
of equation (1) satisfies

x(t) ¢ OD  for all t;

(Hz) the Brouwer degree,

deg(g, D NKer(I —Q),0) #0, if Ker(I — Q) # {0},
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where
1 T
g(a) = —/ Pf(s,a)ds,
T Jo

P: R" — Ker(I — Q) is an orthogonal projection. Then equation (1.1)
has at least one (Q,T)-affine-periodic solution x.(t) € D for all t.

Remark 1.5. When @ = id, APS (1.1) is just the usual periodic
system and Ker(I — @) = R"™. In this situation, our result is the same
as Mawhin’s famous theorem [10].

Remark 1.6. When Ker(I — Q) = {0}, if we can make the prior
estimate in (H7), then we can conclude the existence of (Q,T)-affine-
periodic solutions. In this situation, the solutions are just special quasi-
periodic ones. It is well known that the study of quasi-periodic solutions
is rather difficult due to the “small divisor problem.” The celebrated
KAM theory [9] provides a powerful tool in solving the persistence
of quasi-periodic solutions from the formulism of perturbation. Theo-
rem 1.4 asserts the existence of some special quasi-periodic solutions in
certain topological formalism.

Theorem 1.4 offers a topological method for studying the existence
of affine-periodic solutions. When dealing with specific problems, we
hope to have a more direct method. The Lyapunov function method
is a very useful instrument in the study of solutions. Here, we give
two results on the basis of Lyapunov functions. The first one has been
proved by Wang, et al., in [11]. We give a new proof in this paper, and
the second one is new.

Corollary 1.7. Consider equation (1.1), where the affine-periodic
function f: R' x R" — R™ is continuous and ensures the uniqueness
of solutions with respect to initial values. Assume that there exist C*
functions Viy(xz), i =0,1,...,m and o > 0, such that the following hold.

(Hs) For M; large enough,
(VVi(x), f(t,2))| > o >0 for all |x| > M;, i =0,1,...,m, t € R",
And, if Ker(I — Q) # {0},
[(VVi(z), Pf(t, )| = 0 >0
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for all x € Ker(I — Q) and |z| > M;, i = 0,1,...,m, t € R, where
P : R* — Ker(I — Q) is an orthogonal projection;

(Ha)

m
Z |Vi(x)] — o0, as |z| = oo
i=0

(Hs) the Brouwer degree,

deg(VVy, By, NKer(I —Q),0) #0, if Ker(I — Q) # {0},

where B, = {p € R" : |p| < p}. Then equation (1.1) has at least one
(Q, T)-affine-periodic solution x.(t).

As a more concrete application of Corollary 1.7, we obtain the
following.

Corollary 1.8. Consider system (1.1). Assume that there exists a
constant M > 0, such that

[z, f(t,x))| >0 >0 forall|z| > M,te R,

and if Ker(I — Q) # {0},
|(z, Pf(t,z))| > o >0 forallx € Ker(I — Q) and |z| > M, t € R,

where P : R" — Ker(I — Q) is an orthogonal projection. Then equation
(1.1) has at least one (Q,T)-affine-periodic solution x,(t).

Proofs of Corollaries 1.7 and 1.8 can be found in Section 3.

The following result shows how Lyapunov functions work on the
boundary of the domain.

Theorem 1.9. Consider equation (1.1), where the affine-periodic func-
tion f : R' x R" — R™ is continuous and ensures the uniqueness of
solutions with respect to initial values. Let V : D — R be a C' function
such that the following hold.

(Hg) D is a bounded open set;

(Hzy) there exists a constant o > 0 such that

(VV(z), f(t,z))| >0 for all (t,x) € R* x dD,
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and, if Ker(I - Q) # {0},
(VV(z), Pf(t,2))| >0 for all (t,2) € R' x 9(D NKer(I — Q)),
where P : R™ — Ker(I — Q) is an orthogonal projection;
(Hs)
deg(VV,DNKer(I —Q),0) #0, if Ker(I —Q) # {0}.

Then equation (1.1) has at least one (Q,T)-affine-periodic solution
2.(t) € D for all t.

The proof can be found in Section 4.

When equation (1.1) is T-periodic, we know that if all the solutions
of (1.1) are inward to D from the boundary 9D, then (1.1) admits
a T-periodic solution. This result is known as the invariant region
principle. Does a similar result hold for affine-periodic solutions? The
answer is positive. The following theorem gives us an affine-periodic
type invariant region principle.

Before giving the last theorem, we first introduce the definition of
the hull.

Definition 1.10. Let T denote the translation operator, and let a
stand for a sequence {ay,}. T, f = [ means that

(1) = T f(t+a)
and is only written when the limit exists. Then,

H(f)={l: there exists a with T}, f = [ uniformly}
is called the hull of f.

Theorem 1.11. Consider equation (1.1), where f : R* x R* — R"
is continuous and (Q,T)-affine-periodic. Let D C R™ be a bounded
open and simply connected set, such that 0D is piecewisely smooth. Let
H(f) denote the hull of f. Assume the following hold.

(Hy) For every (t,p) € R* x D and h € H(f), h(t,p) is inward
toward D;
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(Hyo) g(a) # 0 for all a € D, where

1 (T
sa) =7 [ Prs.a)ds,
T Jo
P : R" — Ker(I — Q) is an orthogonal projection. Then equation (1.1)
has at least one (Q,T)-affine-periodic solution x.(t) € D for all t.

This theorem is proven in Section 5.

2. Proof of Theorem 1. To prove this theorem, we introduce the
definition of a retraction map.

Definition 2.1. Let X be a topological space and A a subspace of
X. Then a continuous map r : X — A is called a retraction if the
restriction of r to A is the identity map on A.

Now, we can prove Theorem 1.4.

Proof. Consider the auxiliary equation

(D) = \f(t, )

with boundary value condition z(T) = Qz(0), where XA € [0,1]. Let
x(t) be any solution of (1) with z(T) = Qz(0). Rewriting (1), in the
form of an equivalent integral equation, we obtain

T
2(0) + /\/O F(r2(r)) d7 = Qu(0).

Denote 2(0) by xg. Then

T
(2.1) (I —Q)xo = —/\/O f(r,z(7))dr,

where [ is the identity matrix.
Consider (2.1) in two parts.

(I) If Ker(I — Q) # {0}. In this case, (I — Q)~! does not exist. By
coordinate transformation, we can just let

I 0
QZ(O @)
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without loss of generality, where (I — Q1)! exists.

Let P: R™ — Ker(I — Q) be the orthogonal projection. Then:

(I = Q)zo = (I - Q)(aie +27)

(2.2) = —/\/0 flryz(r)dr

T T
Y / Py(r,x(r))dr — A / (I - P)f(r,x(r)) dr,

where 20, € Ker(I — Q), 29 € Im(I — Q) and z¢ = 2, + 9.

Let L, = (I — Q)hm(l—@)' It is easy to see that L, ! exists. Thus,
equation (2.2) is equivalent to:

T
(I - Q)ad = —A / Pf(r,x(r)) dr =0,
0
T
(- Q) = -\ / (I - P)f(r.a(r)) dr.

Thus, we have
T
a:(i = f)\Lgl(I - P)/O f(r,z(7))dr.

Let
X ={z:[0,T] - R" : x(t)is continuous on [0,T]},

and define the norm as ||z|| = sup |z(t)]. It is easy to see that X is a

Banach space with the norm || - ||.
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For z € X which satisfies that z(t) € D for all ¢ € [0,7], we define
an operator T'(x)_ ,z,\) by
(2.3) T(2fer, @, M) (2)

_ ( thoe +(1/T) Jy PS(r,a(r) dr )
z) - )\Lp_l(I - P) fo f(r,x(r))dr + )‘fo f(r,x(r))dr, )’

where A € [0,1]. We claim that each fixed point x of T in X is a
solution of (1), with z(T") = Qz(0).

In fact, if x is a fixed point of T', we have

(m) _ e + (1T) Jy PS(r,2(r))dr |
(1) 20 — ALY (I = P) [ f(r,z(r))dr + A [y f(r,2(r))dr

Thus,

(2.4) % /0 Pf(r,xz(r))dr =0,

T t
(2.5) (1) :xger—ALgl(f—P)/o f(T,m(T))dT+A/O F(r (7)) dr.

By equation (2.5), we know that

To = x) —)\L_l(I—P)/Tf( z(7))d
0 ker P A T, (T T.

Thus,
T
Quo = Qalu, — AQL;(I - P) / f(r.z(r)) dr
0

T
=20, —AQL;'(I - P) / f(r,2(r)) dr.

Since equation (2.4) holds, we have
T T
(- QL -P) [ fratm)dr=(-P) [ fra(m)dr
0 0

T T
:(I—P)/O f(T,SU(T))dT'f‘P-/O flryz(r))dr
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- /0 " Hra(m) dr.

Thus,
T
QLM (I - P)/O f(r,z(r))dr

— LI~ P) /OT f(ryx(r)) dr — /\/OT f(ryx(r)) dr.
Then,
(2.6)
Qo= XaL; 1) [ frat)dr
(2.7)

— 2l AL NI — P)/O F(ra(r) dr + )\/0 £, 2(r))dr = 2(T).

By equations (2.5) and (2.6), we know that equation (2.1) holds. Thus,

T
2 = ALY — T,2(T T.
9 = AL P)/O f(ra(r)d

Then,
T t
=70 — ~r— T, 0(T T T, (T T
2(t) = 2y — AL NI P)/O f(rya(r)d +A/Of<, ()d

t t
=z D) T,2(7))dT = A T,2(7))dT.
200+ 1 + /Ofm( ))dr = 2o + /Ofwc( )

This means that the fixed point x is a solution of (1) with z(T) =
Qx(0).

Now, we need to prove the existence of the fixed point of T'. Take a
constant M which satisfies that

M > sup f(t,z)|,

te[0,7]
xz€D

and let

z(t) — a(s)

X)\:{.Z‘EX:
t—s

< AM  for all t # s}
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Then, it is easy to make a retraction a : X — X.

Define an operator f(mﬁer, x,\) by
(2.8)
R :cker 1/T fo Pf(r, oo‘ox( ))dr
T(zd,z, () = | ay oxd. — AL, Y1 - P) fo (1,a) o z(7)) dr
A fo 7,0 0 x(T)) dT

As P : R" — Ker(I—Q), it is easy to see that (1/T) fOT Pf(r,x(r))dr
€ Ker(I — Q). Also, (1/7) fOT Pf(r,ayox(r))dr € Ker(I — Q).

Let us consider the homotopy:

(29) H(gjgerazaA) = f(zgervx’)‘)v
(2.10) (20,2, )) € (DNKer(I —Q)) x D x [0,1],

where D = {z € X : 2(t) € D for all t € [0, T]}.
We claim that

(2.11) 0¢ (id—H)(O((D NnKer(I — Q)) x D) x [0,1]).

Suppose, on the contrary, that there exists (Z¥,.,7, X) e o((Dn
Ker(I—Q))xD)x[0,1], such that (id —H)(z0,.,Z,A) = 0. AsZ0_ € D
is contradictory to (Hi), and 9(D NKer(I —Q)) C ID, we have that
7P, ¢ O(DNKer(I—Q)). In other words, 7 € dD. Then equation (2.11)
can be proved as follows.

(i) When X =0, by the definition of set X, we have

X~ #(t) = 2(s)

t—s
Hence, ag o z(t) = ag o z(0) for all ¢ € [0,T]. Since (id —H)(Z),,,Z,0)
=0, we have

() - (e - WD Prrorea()ar),

(1) 00 0 %,

<0 for allt;és}.

This means that Z(¢t) = Z(0) for all t € [0,T]. Taking Z(t) = p, we have
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a0 Y., = Z(t) = p. Consequently,

1 T
7| Prmpar-

and this is equivalent to g(p) = 0 by the definition of g(a). Notice that
TedDand D= {z € X :z(t) € D for all t € [0,T]}. Then there
exists to € [0,7T] such that Z(ty) € dD. As Z(t) = p for all t € [0,T],
we obtain that p € 9D. Thus, we have p € 9D and g(p) = 0. It is
contradictory to (Hz) because the Brouwer degree deg(g, D,0) # 0.

(ii) When A € (0,1], as 0 = (id —H)(Z2,,, %, A), we have

70 xker 1/T fo Pf(r, a/\ox( 7))dr
(fl((;;) = |a502, — )\L I - P) fo (1,05 0Z(7))dr
N\ fo T, a5 0 (7)) dT

Thus,
1 T
?/0 Pf('r,ozxof(’r))dT:O7

and
(2.12)

N T ot
Z(t) = aXOEger_AL;I(I_P)/O [, a50%(7)) dT—i—)\/O f(7, 502 (7)) dr.

ot
)\/ f(r,a5 02(7))dr

t —~
/ |f(T7O[XO.7L'\(T))| dr < \M,

Noting that:

3(t) — 3(s)
t—s

Tt

<
]

by the definition of X, we obtain 7 € X, which means that a0 = 7.
Now we can rewrite equation (2.12) as

f(t)—xkcr— NI - P/ flr,z(r dT—i—)\/fo

By a similar discussion of equation (2.5), we can prove that Z(t) is a
solution of equation (1)5. By hypothesis (H;), we know that Z(t) ¢ 0D
for any ¢ € [0,T]. This is a contradiction to Z € 9D.
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By (i) and (ii), we obtain that
0¢ (id—H)(0((DNKer(I —Q)) x D) x [0,1]).

Therefore, by the homotopy invariance and the theory of Brouwer
degree, we have

deg(id —H (20, -, 1), (D N Ker(I — Q)) x D,0)
= deg(id —H(l’gcr, R 0)7 (D N KGT(I - Q)) X ﬁ’ 0)
= deg(g, D NKer(I — Q),0) # 0.

This means that there exists Z, € 5, such that
(2.13) Tlher) — T(20 1o, To (1), 1)

. &'\*(t) * kery “* ) .
Similar to the proof in (ii), we get T, € X;. Then,

(2.14) T(@hers B(1),1) = T(@ jers Bu(t), 1)

By equations (2.13) and (2.14), we obtain that Z, is a fixed point of T
in X. Thus, Z,(t) is a solution of equation 2’ = f(¢,z) with boundary
value condition z(T") = Qz(0).

(IT) If Ker(I — Q) = {0}. In this case, (I — Q)™ ! exists. Then:

T
To = —AL;l(I - P)/O flrz(r))dr.

We no longer need hypothesis (Hs). Consider the homotopy:
T t
H(z,\) = —AL;l(I—P)/ f(r,anox(T)) d7+)\/ f(r,anox(r))dr.
0 0

Similar to the proof of Ker(I — @) # {0}, we have 0 ¢ (id fH)((?E X
[0,1]). Hence,
deg(id —H(-, 1), D,0) = deg(id —H(-,0), D, 0) = deg(id, D,0) = 1.

This means that there exists Z,, which satisfies Z.(t) € D for all
t € [0,T7], such that:
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Therefore, Z,(t) is a solution of equation ' = f(¢,z) with boundary
value condition z(T) = Qz(0).

By Lemma 1.3 and the proofs in (I) and (II), it is easy to see
that APS (1.1) has a (@, T)-affine-periodic solution . (t), which is an
extension of 7, (t) on R!. Since z,(t) is continuous and z,(t) € D when
t € [0,T7], by hypothesis (H;), we know that x.(t) € D for all ¢. O

3. Proofs of Corollaries 1 and 2. Consider the auxiliary equa-
tion,
(1) o’ = M(t, ),
where A € [0,1]. Set

Li = sup {|Vi(w)| « || < M;}, L=Y L
=0
D={peR”:Z|vi<p>|<L+1}7 V(z) =" [Vi(a)]
1=0 =0

By (Hy), we claim that D is bounded for A € (0,1], and every
possible (@, T)-affine-periodic solution z(t) of (1), satisfies

z(t) € D for all t.

In fact, since z(t) is a (Q, T)-affine-periodic function and @ € O(n),
there exists a sequence {t;} C R' such that

(3.1) [V(x(t;))] — S;P|V(x(t))| <00, asj— oo.

Hence, for some 1,

Vi(z(t))] — suplVi(z (1))l as j = o0,

which implies that
4
dt
By (Hs), this result yields

Vi(z(t;)) = (VVi(x(t;)), Af(tj, 2(t;))) — 0, asj— oo.

lz(t;)| < M;, asj— oo.
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Consequently, by the definition of D and equation (3.1), we have
z(t) € D for all t.

Thus, hypothesis (H;) holds.

If Ker(I — Q) = {0}, by the proof of Theorem 1.4, we know that
equation (1.1) admits a (@, T')-affine-periodic solution.

Now we prove that, if Ker(I — Q) # {0},
deg(g, D NKer(I — Q),0) # 0.

Indeed, consider the homotopy,

H(p,A) = Asgn((VVo (), PF(t; D oBas,nker1-@))) VVo(p)+(1=A)g(p),

where (p, ) € (B, N Ker(I —@Q)) x [0,1]. Tt follows that

(3.2)

(VVo(p), H(p, A)) = Asen((VVo (), Pf(t, ) a(Ba, nker(— ) [V Vo ()]
+ (1= (VVa(p), g(p))-

For any (p,t) € d(By, NKer(I —Q)) x RY, by (H3) we know that the

sign of (VVy(p), Pf(t,p)) does not change. And, by the definition of
g(a), we have

(VVo(p). 9(p)) = (VVolp /’pfspds

:TA<WMmPﬂmW®

This means that (VV(p), g(p)) always has the same sign with (VVj(p),
Pf(t,p)). Also, by (Hs), we know that |Vy(p)| # 0 when p € (B, N
Ker(I — @)). Consequently, the right hand side of equation (3.2) is
nonzero.

Thus, (VVy(p), H(p,\)) # 0 for all (p,\) € (B, NKer(I — Q)) x
[0, 1], which implies that 0 ¢ H(9(Ba, NKer(I — Q)) x [0,1]).

The homotopy invariance of the Brouwer degree implies

deg(g, By, NKer(I — Q),0)
= deg(sgn((VVo(-), Pf(t, N o(Ba,nker(1-@)))
VVo, Bag, NKer(I — Q),0) # 0.
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Hence, hypothesis (Hs) holds. Thus, Corollary 1.7 follows from Theo-
rem 1.4.

By Corollary 1.7, we can easily prove Corollary 1.8 as follows.

Proof. Let

1
V(z) = §\x|2

Then
deg(VV, By NKer(I — Q),0) = deg(id, By NKer(I — Q),0) =1,

and
V(z) — o0, as |z| = oo.

Thus, the conclusion follows from Corollary 1.7. O

4. Proof of Theorem 2. In Corollary 1.7, we proved that equa-
tion (1.1) admits an affine-periodic solution when hypotheses (Hs)—
(Hs) hold. Notice that (Hs) requires the properties of V(x) far enough
from the origin. For some certain f(¢,x), such a V(z) may not be easily
constructed. Thus, we give Theorem 1.9 which requires the properties
of V(z) on the boundary of the domain. It makes the construction of
the Lyapunov function easier in some situations.

Proof. By (H7) and the definition of g(a), it follows that
gla) #0 for all a € OD.
Consider the homotopy:
H(a,\) = Asgn((VV (), Pt laorkestr ) V(@) + (1= A)g(a),

where (a,\) € 9(D NKer(I —Q)) x [0,1].

A similar argument to the proof of Corollary 1.7, together with (H7)
and (Hg), implies

deg(g, D NKer(I — Q),0) # 0.

In the following, we will prove that, for each A € (0,1] fixed, every
possible (@, T)-affine-periodic solution z(¢) of (1), in D satisfies

z(t) € D for all t.
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If this is false, then there exists a ty € R' such that
l‘(to) € 0D.
By (H7), there is an ¢y > 0 such that

(VV (). f(t.2)] > 3,

provided t € R', z € D and dist(x,0D) < €. Since z(t) is
(Q, T)-affine-periodic and @ € O(n), there exists a {t,} C R! with
tr — oo(k — o0) such that

(VV(@(te)), M (i, z(tr)) = V' (2(te)) — 0, k — oo,
which implies that
x(ty) € D, dist (z(tg),0D) > €y, k — 0.

On the other hand, there exists a {7} C R! with 7, — oo(k — 00)
such that
x(mx) € D, x(1i) — x(to), Tr — 00.

By the properties of {x(tx)}, {(7)} and the continuity of V’'(z(t)),
there are s1,s2 € R' such that

x(s1) € D, dist (z(s1),0D) < €o;

x(s2) € D, dist (z(s2),0D) < €o;

V'(z(s1)) >0; V'(z(s2)) <0.
However, (VV (z),\f(t,x)) keeps a sign on the domain dist (z,0D) <
€9. This is a contradiction.

Now, the conclusion follows from Theorem 1.4. O

5. Proof of Theorem 3. Consider the auxiliary equation:
(L o' = Af(t, @),
where A € [0,1].
For € > 0 small enough, define a set D, as
D, ={z € D:dist(x,0D) > €}.

Then OD, is piecewise smooth. Since, for each (t,p) € R x 9D and
h € H(f), Ah(t,p) is inward to D, there exists an €y > 0 small enough
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such that, for each (¢,p) € R x dD,, h € H(f) and € € [0,¢€], Ah is
inward to D.. This obviously implies that every possible (Q, T')-affine-
periodic solution x(t) of (1) satisfies that z)(¢) € D, for all ¢.

It suffices to count the Brouwer degree deg(g, D N Ker(I — Q),0),
when Ker(I — Q) # {0}.

We assume without loss of generality that g satisfies the local
Lipschitz condition; otherwise, we use the C'* sequence {g;} such that
gx — g (k — o0) uniformly on D NKer(I — @), and consider the
map g.

Consider the system
(5.1) y' =g(y)

Let y(t, yo) denote the solution of equation (5.1) with the initial value
y(0) = yo for yg € D NKer(I — Q). By Poincaré’s theorem, there exists
a homomorphism B : D N Ker(I — Q) — B(0,1), where B(0,1) C R™
is the unity ball centered at the origin, m = min{n, dim Ker(I — Q)}.
Set the map

_ {(1/t)[yo —y(t.0)] = ~(1/0) [y 9(u(s,0))ds 1> 0;
J(y07t) -
—9(o) t=0.
Then J is continuous on D NKer(I — @) x [0, 1]. Notice that, for each
point ¢ € 9D, f(s,q) is inward to D for all s € R by (Hy). By
the definition in (Hs3), we know that ¢ is inward to D. Also, g(a) €
Ker(I — Q) for any a € Ker(I — Q). We have y(t,-) : DNKer( — Q) —
D NKer(I —Q) for all ¢ > 0, and J(O(DNKer(I —Q)) x [0,1]) # 0,
which implies that

(id —B(y(t, B~ ()| smx (0,1 # O,

where B(y(t, B~1(-))) : B(0,1) — B(0,1)\ 5™ for all ¢ > 0. Hence,
the homotopy invariance implies

deg(—g, DNKer(I—Q),0) = deg(—J(-,t), DNKer(I—Q),0) for all ¢t > 0,
and the Rouché theorem yields:

deg(id —B(y(t, B~'(-))), B(0,1) \ $™,0) =1 for all ¢ > 0.
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Since B : DN Ker(I — Q) — B(0,1) is a homomorphism, by Leray’s
formula, we have

deg(—J(-,t), D NKer(I — Q),0)
= +deg(id —B(y(t, B-(-))), B(0,1) \ §™,0) = £1 for all ¢ > 0.
Consequently,
deg(—g, D NKer(I — Q),0) = +1.

Now, the conclusion follows from Theorem 1.4. O
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